三角函数专题:三角函数的值域

合集下载

三角函数的定义域、值域

三角函数的定义域、值域
23
要使y 1 sin z有最小值- 1,
必须
2
z
2
2k ,k z
2
要使y 1 sin z有最大值 1,
1 x 2k
必须
2
z
2
2k ,k z
1
x
2
2k
x
4k
2 x
35
2
4k
3
使原函数取得最小值的集合是
2 32
3
y sin x
x
|
x
5
3
4k ,k
Z
y sin x

练习 求函数 y=cos2x+4sin x 的最值及取到最大值和最小值 时的 x 的集合.
解 y=cos2x+4sin x=1-sin2x+4sin x =-sin2x+4sin x+1=-(sin x-2)2+5.
∴当 sin x=1,即 x=2kπ+2π,k∈Z 时,ymax=4; 当 sin x=-1 时,即 x=2kπ-2π,k∈Z 时,ymin=-4. 所以 ymax=4,此时 x 的取值集合是{x|x=2kπ+π2,k∈Z}; ymin=-4,此时 x 的取值集合是{x|x=2kπ-π2,k∈Z}.
2
所以结论要相反 y sin z 最小
3.二次函数的某些知识点
例 求函数 y=sin2x-sin x+1,x∈R 的值域.
解 设 t=sin x,t∈[-1,1],f(t)=t2-t+1. ∵f(t)=t2-t+1=t-122+34. ∵-1≤t≤1, ∴当 t=-1,即 sin x=-1 时,ymax=f(t)max=3;
x x sinx
忘掉的同学再去看看课本, 后面的老师还会讲到
课堂小结

三角函数的值域与解析式

三角函数的值域与解析式

三角函数的值域与解析式三角函数是高中数学中的重要概念,它们在几何学和物理学等领域有广泛的应用。

在学习三角函数时,我们需要了解它们的值域和解析式,以便能够正确地运用它们。

本文将重点探讨正弦函数和余弦函数的值域与解析式。

一、正弦函数的值域与解析式正弦函数的解析式为:y = sin(x)正弦函数的值域是[-1, 1],即其取值范围在-1与1之间。

正弦函数的图像是一条连续的波浪线,它在x轴上是周期性的,在y轴上取值介于-1到1之间。

当x为0、π、2π及其整数倍时,正弦函数的值为0;当x为π/2、3π/2及其奇数倍时,正弦函数的值为1或-1;当x为π/4、3π/4及其奇数倍时,正弦函数的值介于0和1之间;当x为5π/4、7π/4及其奇数倍时,正弦函数的值介于-1和0之间。

根据这些特点,我们可以绘制出正弦函数的图像,并正确理解其值域。

二、余弦函数的值域与解析式余弦函数的解析式为:y = cos(x)余弦函数的值域也是[-1, 1],与正弦函数相同。

余弦函数的图像也是一条连续波浪线,但与正弦函数的图像相位差π/2,即余弦函数的图像在x轴上是正弦函数图像向左平移π/2个单位。

余弦函数的值域与正弦函数相同,当x为0、2π、4π及其整数倍时,余弦函数的值为1;当x为π、3π、5π及其奇数倍时,余弦函数的值为-1;当x为π/2、5π/2及其奇数倍时,余弦函数的值介于0和-1之间;当x为3π/2、7π/2及其奇数倍时,余弦函数的值介于-1和0之间。

理解余弦函数的值域有助于正确应用该函数解决问题。

综上所述,正弦函数和余弦函数的值域都是[-1, 1],但在特定的x取值时,它们的值会有所不同。

熟练掌握它们的值域和解析式是理解三角函数的重要一步,为应用三角函数解决实际问题打下基础。

我们可以通过反复练习和实际运用来加深对三角函数值域和解析式的理解,提高数学应用的能力。

三角函数求值域专题

三角函数求值域专题

三角函数求值域专题求三角函数值域及最值的常用方法:(1)一次函数型:或利用为:y asinx bcosx a2b2sin(x ),利用函数的有界性或单调性求解;化为一个角的同名三角函数形式,(1):y 2sin(3x —) 5,y sin xcosx12(2)y 4sin x 3cosx(3) _____________________________________ .函数在区间上的最小值为_1.(4 )函数且的值域是—(,1] [1,)(2)二次函数型:化为一个角的同名三角函数形式的一元二次式,利用配方法、换元及图像法求解;二倍角公式的应用:女口. ( 1) y sin x cos2x3(2)函数的最大值等于3.4(3) _____________________________ .当时,函数的最小值为_4 •(4).已知k v—4,则函数y = cos2x + k(cos x-1)的最小值是 1 •(5).若,则的最大值与最小值之和为2— _ •(3) 借助直线的斜率的关系用数形结合求解;a sin x b型如f(x) 型。

此类型最值问题可考虑如下几种解法:ccos x d①转化为asinx bcosx c再利用辅助角公式求其最值;②利用万能公式求解;③采用数形结合法(转化为斜率问题)求最值。

例1 :求函数y sinx的值域。

cosx 2结合图形可知,此函数的值域是[』3,』3]。

33例2.求函数的最小值.解法一:原式可化为,得,即, 故,解得或(舍),所以的最小值为. 解法二:表示的是点与连线的斜率,其中点 B 在左半圆上,由图像知,当 AB 与半圆相切时,最小, 此时,所以的最小值为.(4) 换元法•识,易求得过Q 的两切线得斜率分别为 解法2:将函数ycosx sinx_变形为 2y cosx sin x2y ,二 sin( x )2y 1 y 2|sin(x )| 理 1V 1 y2(2y)y2,解得:彳,故值域是3]解法 3:利用万能公式求解: 由万能公式sin x -1 2t cosx 口;,代入1 t 2sinx得到cosx 22t2厂沪则有3yt2t0知:当t0,则y满足条件;当0,由24 12y 0 ,乜,故所求函数的值域是3解法4:利用重要不等式求解:由万能公式sinx -12t T , cosx.代入t 2sinx得到cosx 20,2t1 3t 20时,则y 0,满足条件;当t 0时,2 1" t 3t——,如果t >3t)2 ([)(3t)2 ~1 (:3t)2 2、于,此时即有如果t2、( ;)( 3t)彳,此时有0 y 于。

三角函数的定义域和值域

三角函数的定义域和值域

三角函数的定义域和值域三角函数是数学中的一类重要函数,包括正弦函数、余弦函数、正切函数等。

在进行三角函数的研究和应用时,了解其定义域和值域是非常重要的。

一、正弦函数的定义域和值域正弦函数是以角度(或弧度)为自变量,输出对应的正弦值。

其定义域是实数集。

根据正弦函数的特点,我们知道正弦值的范围在-1到1之间,即其值域为[-1, 1]。

二、余弦函数的定义域和值域余弦函数也是以角度(或弧度)为自变量,输出对应的余弦值。

与正弦函数类似,余弦函数的定义域也是实数集,而其值域同样为[-1, 1]。

三、正切函数的定义域和值域正切函数是以角度(或弧度)为自变量,输出对应的正切值。

正切函数的定义域为除去其奇数倍的π的实数集,即R - {(2n + 1)π/2 |n∈Z}。

值域为全体实数,即整个实数集R。

四、其它三角函数的定义域和值域除了正弦函数、余弦函数、正切函数之外,还有诸如余切函数、正割函数、余割函数等三角函数。

这些函数的定义域和值域如下:1. 余切函数(cotx)的定义域为除去其奇数倍的π的实数集,即R - {nπ | n∈Z}。

值域也为全体实数。

2. 正割函数(secx)的定义域为除去π/2 + nπ的实数集,即R - {(2n + 1)π/2 | n∈Z}。

值域为正数和负数的并集,即R - {0}。

3. 余割函数(cscx)的定义域为除去nπ的实数集,即R - {nπ |n∈Z}。

值域同样为正数和负数的并集,即R - {0}。

五、总结三角函数的定义域和值域是根据函数的特点和性质决定的。

正弦函数和余弦函数的定义域为实数集,值域都是[-1, 1];正切函数的定义域为除去其奇数倍的π的实数集,值域为全体实数;余切函数、正割函数、余割函数的定义域分别为R - {nπ | n∈Z},值域为正数和负数的并集。

在实际应用中,对三角函数的定义域和值域的了解有助于我们分析和计算相关问题,并且在解决实际问题时能够更加准确地进行数值的转换和计算。

三角函数的图象、定义域、最值(值域)、单调性

三角函数的图象、定义域、最值(值域)、单调性
三角函数的图象、定义域、最值(值域)、单调性
[学习要求] 1.能画出 y = sin x , y = cos x , y =tan x 的图象. 2.理解
正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小
值、图象与 x 轴的交点等). 3.理解正切函数在区间
π
π
− ,
2
2
上的性质.
π
π
− <<
2
2
由题意得 y = cos x ·|tan x |=ቐ
的大致图象是(
sin,0 ≤
π
< ,
2
π
−sin, − <
2
所以其图象的大致形状如选项C所示.
< 0,
C )
2. 已知函数 f ( x )= sin x +2| sin x |, x ∈[0,2π],若直线 y = k
与其仅有两个不同的交点,则 k 的取值范围为
, k ∈Z,
2
2
π
π
π
+ ≥ + 2π,
4
2
所以ቐ 2
k ∈Z,
π

π+ ≤ + 2π,
4
2
1
5
解得4 k + ≤ω≤2 k + , k ∈Z.
2
4
1
5
5
又由4 k + - 2+ ≤0, k ∈Z,且2 k + >0, k ∈Z,解得 k =0,
2
4
4
1
5
所以ω∈ , .
2
4
方法总结
A. [-1,1]
令 sin x = t , t ∈[-1,1],
则 y = t 2+ t -1=
1 2

三角函数的图像和性质讲解(定义域,值域,周期,单调性等)

三角函数的图像和性质讲解(定义域,值域,周期,单调性等)

三角函数的图象与性质教学目标:1、掌握正、余弦函数的定义域和值域;2、进一步理解三角函数的周期性和奇偶性的概念,会求它们的周期,会判断它们的奇偶性;3、能正确求出正、余弦函数的单调区间教学重点:正、余弦函数的性质教学难点:正、余弦函数的单调性知识要点:1、定义域:函数sin y x =及cos y x =的定义域都是(),-∞+∞,即实数集R2、值域:函数sin y x =,x R ∈及cos y x =,x R ∈的值域都是[]1,1-理解:(1)在单位圆中,正弦线、余弦线的长都是等于或小于半径的长1的,所以sin 1x ≤,cos 1x ≤,即1sin 1x -≤≤,1cos 1-≤≤。

(2)函数sin y x =在2,()2x k k Z ππ=+∈时,y 取最大值1,当22x k ππ=-,()k Z ∈时,y 取最小值-1;函数cos y x =在2x k π=,()k Z ∈时,y 取最大值1,当2x k ππ=+,()k Z ∈时,y 取最小值-1。

正弦函数sin y x =,x R ∈和余弦函数cos y x =,x R ∈是周期函数,2k π(0)k Z k ∈≠且都是它们的周期,最小正周期是2π。

4、奇偶性正弦函数sin y x =,x R ∈是奇函数,余弦函数cos y x =,x R ∈是偶函数。

理解:(1)由诱导公式()sin sin x x -=-,cos()cos x x -=可知以上结论成立;(2)反映在图象上,正弦曲线关于原点O 对称,余弦曲线关于y 轴对称。

5、单调性(1)由正弦曲线可以看出:当x 由2π-增大到2π时,曲线逐渐上升,sin x 由-1增大到1;当x 由2π增大到32π时,曲线逐渐下降,sin x 由1减至-1,由正弦函数的周期性知道:①正弦函数sin y x =在每一个闭区间2,222k k ππππ⎡⎤-++⎢⎥⎣⎦()k Z ∈上,都从-1增大到1,是增函数; ②在每一个闭区间32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k Z ∈上,都从1减小到-1,是减函数。

求三角函数的值域(最值)题型例析

求三角函数的值域(最值)题型例析
3c
2
2
1
3
3
s
i
n2
x c
o
s2
x +
=
3 =
2
2
2
s
i
n2
x-
(
3

π
。 由 0≤x ≤
,可 得
+
2
1
2
3
)
π
π

3
,所 以 - ≤ 2
x ≤

3
3
6
2
s
i
n2
x-
(
π
π
≤1,所 以 0 ≤ s
i
n2
+
x3
3
)
(
)
[
;
当定义域为某个给定
-|A|+k,
|A|+k]
函数的单调性求值域。
题 型 2:
(
或 y=Ac
Aω≠0)
o
s(
ωx+φ)
+k(
Aω≠0)
例1
(32π-x) - 3 cosx + 3。 当 x ∈
[0,712π] 时,函 数 f(x)的 最 小 值 和 最 大 值 分
s
i
n
2

别为
解:
函数 f(
x)= (-s
i
nx)(-c
o
sx)-
1
3
(
o
s2x+ 3= s
i
n2
xc
o
s2
x+1)+
i
n(
ωx+φ)
+k 或y=Ac

三角函数的定义域、值域和最值讲解

三角函数的定义域、值域和最值讲解

三角函数的定义域、值域和最值一知识点精讲:1 三角函数的定义域(1)sinα=yryxxr定义域为R. (2)cosα=⎧⎩定义域为R.(3)tanα=定义域为⎨α|α≠πx⎫定义域为+kπ,k∈Z⎬. (4)cotα=2y⎭{α|α≠kπ,k∈Z}.2 三角函数的值域① y=asinx+b,(a≠0) 型当a>0时,y∈[-a+b,a+b] ;当a<0时 y∈[a+b,-a+b] ② y=asin2x+bsinx+c型此类型的三角函数可以转化成关于sinx的二次函数形式。

通过配方,结合sinx的取值范围,得到函数的值域。

sinx换为cosx也可以。

③ y=asinx+bcosx型利用公式asinx+bcosx=的情形。

④y=a(sinx+cosx)+bsinxcosx型利用换元法,设t=sinx+cosx, t∈[-2,2],则sinxcosx=t-122a+bsin(x+φ),tanφ=22ba,可以转化为一个三角函数22,转化为关于t 的二次函数y=at+b22=b2t+at-2b2.⑤y=asinx+bcosx+csinxcosx型这是关于sinx,cosx的二次齐次式,通过正余弦的降幂公式以及正弦的倍角公式,sin2x=1-cos2x2,cos2x=1+cos2x2,sinxcosx=sin2x2,可转化为y=msin2x+ncos2x+p的形式。

⑥ y=⑦y=asinx+bcsinx+dsinx+a型可以分离常数,利用正弦函数的有界性。

cosx+b型可以利用反解的思想方法,把分母乘过去,整理得,sinx-ycosx=by-a,sin(x-φ)=by-a+y,by-a+y≤1, 通过解此不等式可得到y的取值范围。

或者转化成两点连线的斜率。

以上七种类型是从表达的形式上进行分类的,如果x有具体的角度范围,则再进行限制。

二典例解析:例1.求下列函数的定义域(1)y=3-3sinx-2cos2x;(2)y例2.求下列函数的值域(1) y=-2sinx+3 (2)y=2cos2x+5sinx-4;(3)y=5sin2x-4sinxcosx+2cos2x; (4)y=sinx+cosx+sinxcosx (5)yπ6=3sinx+13sinx+2=logsinx(cosx+12). (3) y=25-x+lgcosx;;(6)y=sinx+2cosx+21-tan()cosx.π4-x)(7)y=sin(x-(8)y=1+tan(π4-x)(9)求函数y=sin2x1-sinx-cosx+sin2x的值域.三课堂练习:1.若cosα⋅cscαsec2α-1=-1,则α所在的象限是A.第二象限限2.不解等式:(1)sinx<-3.已知f(x)的定义域为(-4.求下列函数的定义域(1)y=1tanx-112 () B.第四象限 C.第二象限或第四象限 D.第一或第三象(2)cosx>12 12,32),则f(cosx)的定义域为____________. (2)y=sinx+125-x2.5.求下列函数的值域(1)y=2cosx-1(3)y=1+sinx+cosx+(5)y=12+sinx12sin2xx∈[-π,π]. (4)y=-cos3 (2)y=2sinxcos1+sinx2x. xsinx. (6)y=tan2x+4cot+1 26.有一块扇形铁板,半径为R,圆心角为60°,从这个扇形中切割下一个内接矩形,即矩形的各个顶点都半径或弧在扇形的上,求这个内接矩形的最大面积.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考复习专题 三角函数的值域与最值一、基础知识1、形如()sin y A x ωϕ=+解析式的求解:详见“函数()sin y A x ωϕ=+解析式的求解”一节,本节只列出所需用到的三角公式 (1)降幂公式:221cos21cos2cos,sin 22αααα+-==(2)2sin cos sin2ααα=(3)两角和差的正余弦公式()sin sin cos sin cos αβαββα+=+ ()sin sin cos sin cos αβαββα-=- ()cos cos cos sin sin αβαβαβ+=- ()cos cos cos sin sin αβαβαβ-=+(4)合角公式:()sin cos a b αααϕ+=+,其中tan b aϕ=2、常见三角函数的值域类型:(1)形如()sin y A x ωϕ=+的值域:使用换元法,设t x ωϕ=+,根据x 的范围确定t 的范围,然后再利用三角函数图像或单位圆求出x ωϕ+的三角函数值,进而得到值域 例:求()2sin 2,,444f x x x πππ⎛⎫⎡⎤=-∈- ⎪⎢⎥⎝⎭⎣⎦的值域 解:设24t x π=-当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,32,444t x πππ⎡⎤=-∈-⎢⎥⎣⎦sin 22t ⎡∴∈-⎢⎣⎦()f x ⎡∴∈⎣(2)形如()sin y f x =的形式,即()y f t =与sin t x =的复合函数:通常先将解析式化简为同角同三角函数名的形式,然后将此三角函数视为一个整体,通过换元解析式转变为熟悉的函数,再求出值域即可例:求()22sin cos 2,,63f x x x x ππ⎡⎤=-+∈-⎢⎥⎣⎦的值域 解:()()22sin 1sin 2sin sin 1f x x x x x =--+=++设sin t x =2,63x ππ⎡⎤∈-⎢⎥⎣⎦ 1,12t ⎡⎤∴∈-⎢⎥⎣⎦2213124y t t t ⎛⎫=++=++ ⎪⎝⎭3,34y ⎡⎤∴∈⎢⎥⎣⎦,即()f x 的值域为3,34⎡⎤⎢⎥⎣⎦(3)含三角函数的分式,要根据分子分母的特点选择不同的方法,通常采用换元法或数形结合法进行处理(详见例5,例6) 二、典型例题例1:已知向量()()()cos ,sin 3cos ,cos 3sin ,sin ,a x x x b x x x f x a b =+=--=⋅ (1)求函数()f x 的单调递增区间 (2)当,64x ππ⎡⎤∈-⎢⎥⎣⎦时,求()f x 的取值范围解:(1)()()()()cos cos sin sin f x a b x x x x x x =⋅=++⋅-22cos sin cos x x x x =--cos 222cos 23x x x π⎛⎫==+⎪⎝⎭()52222336k x k k x k k Z πππππππππ+≤+≤+⇒+≤≤+∈ ∴单调递增区间为:()5,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)思路:由(1)可得:()2cos 23f x x π⎛⎫=+ ⎪⎝⎭,从,64x ππ⎡⎤∈-⎢⎥⎣⎦得到角23x π+的范围,进而求出()f x 的范围解:由(1)得:()2cos 23f x x π⎛⎫=+⎪⎝⎭,64x ππ⎡⎤∈-⎢⎥⎣⎦ 52,20,3236x x ππππ⎡⎤⎡⎤∴∈-⇒+∈⎢⎥⎢⎥⎣⎦⎣⎦cos 2,132x π⎡⎤⎛⎫∴+∈-⎢⎥ ⎪⎝⎭⎣⎦ ()2cos 223f x x π⎛⎫⎡⎤∴=+∈ ⎪⎣⎦⎝⎭ 小炼有话说:对于形如()()sin f x A x ωϕ=+的形式,通常可先计算出x ωϕ+的范围,再确定其三角函数值的范围例2:已知函数()cos 22sin sin 344f x x x x πππ⎛⎫⎛⎫⎛⎫=-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (1)求函数()f x 的最小正周期和图像的对称轴方程 (2)求函数()f x 在区间,122ππ⎡⎤-⎢⎥⎣⎦的值域 解:(1)()cos 22sin sin 344f x x x x πππ⎛⎫⎛⎫⎛⎫=-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1cos 2222x x x x x x ⎫=+++⎪⎪⎝⎭⎝⎭221cos 22sin cos 22x x x x =++-11cos 22cos 22cos 22222x x x x x =+-=- sin 26x π⎛⎫=-⎪⎝⎭T π∴= 对称轴方程:()26232k x k x k Z πππππ-=+⇒=+∈ (2)思路:将26x π-视为一个整体,先根据x 的范围求出26x π-的范围,再判断其正弦值的范围解:()sin 26f x x π⎛⎫=-⎪⎝⎭,122x ππ⎡⎤∈-⎢⎥⎣⎦52,636x πππ⎡⎤∴-∈-⎢⎥⎣⎦()sin 262f x x π⎡⎤⎛⎫∴=-∈-⎢⎥ ⎪⎝⎭⎣⎦例3:函数27cos sin cos24y x x x =--+的最大值为___________ 思路:解析式中的项种类过多,不利于化简与分析,所以考虑尽量转化为同一个角的某一个三角函数。

观察可得cos x 次数较低,所以不利于转化,而2sin ,cos2x x 均可以用cos x 进行表示,确定核心项为cos x ,解析式变形为()()227cos 1cos 2cos 14y x x x =----+,化简后为2271cos cos cos 242y x x x ⎛⎫=-++=--+ ⎪⎝⎭,当1cos 2x =时,max 2y =答案:2小炼有话说:当解析式无法化成()sin y A x ωϕ=+的形式时,要考虑是否是三角函数与其他函数的复合函数,进而要将某个三角函数作为核心变量,并将其余的三角函数用核心变量进行表示,再将核心变量进行换元求出值域即可 例4:设函数()sin cos2f x x x =+,若,62x ππ⎡⎤∈-⎢⎥⎣⎦,则函数()f x 的最小值是______ 思路:同例4考虑将解析式中的项统一,22cos212sin 12sin x x x =-=-,进而可将sin x 作为一个整体,通过换元来求值域。

解:()2sin cos2sin 12sin f x x x x x =+=+- 设sin t x =,由,62x ππ⎡⎤∈-⎢⎥⎣⎦可得:1sin ,12x ⎡⎤∈-⎢⎥⎣⎦,从而[]0,1t ∈ 221921248y t t t ⎛⎫∴=-++=--+ ⎪⎝⎭,所以90,8y ⎡⎤∈⎢⎥⎣⎦所以最小值为0y = 答案:0例5:函数()3sin 2sin xf x x-=+的值域为___________思路:可将sin x 视为研究对象,令[]sin ,1,1t x t =∈-,进而只需求32ty t-=+的值域即可。

解:令sin t x =,可得[]1,1t ∈-35122t y t t -∴==-+++ []1,1t ∈- []21,3t ∴+∈55,523t ⎡⎤∴=⎢⎥+⎣⎦ 521,423y t ⎡⎤∴=-+∈⎢⎥+⎣⎦答案:2,43⎡⎤⎢⎥⎣⎦小炼有话说:要注意在x R ∈时sin x 自身带范围,即[]sin 1,1x ∈-例6:函数()2sin cos xf x x-=的值域为____________思路:可变形为()2sin 0cos x f x x -=--,且2sin 0cos xx--可视为()0,2与()cos ,sin x x 连线的斜率k的取值范围,()cos ,sin x x 为单位圆上的一点,所以问题转化为直线:2l y kx =+与圆221x y +=有公共点的k 的范围。

所以1O l d -=≤,解得:k ≥k ≤以()(),3,f x ⎡∈-∞+∞⎣答案:(),3,⎡-∞+∞⎣小炼有话说:(1)对比例5和例6,尽管都是同一个角的分式值域,但是例5的三角函数名相同,所以可视为同一个量,利用换元求解,而例6的三角函数名不同,所以不能视为同一个量。

要采取数形结合的方式。

(2)本题还可利用方程与函数的关系求得值域,解法如下:2sin cos sin 2cos xy y x x x-=⇒+=()()2sin x x ϕϕ+=⇒+=所以y 的取值范围(即值域)要能保证存在x 使得等式成立1≤2∴≤(),3,y ⎡∈-∞+∞⎣例7:设函数()sin 2,,66f x x x a ππ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎝⎭⎣⎦的值域是1,12⎡⎤-⎢⎥⎣⎦,则实数a 的取值范围是_____________思路:本题是已知值域求参数,所以考虑先带着a 计算角26x π+的范围为,266a ππ⎡⎤-+⎢⎥⎣⎦,可知162f π⎛⎫-=- ⎪⎝⎭,值域中最大值为1,所以说明,266a ππ⎡⎤-+⎢⎥⎣⎦经过2π,同时范围不能超过76π(否则最小值就要小于12-),从而可得72266a πππ≤+≤,解得:62a ππ≤≤ 答案:62a ππ≤≤例8:已知函数()2cos sin cos 2a f x a x b x x =--的最大值为12,且34f π⎛⎫= ⎪⎝⎭,则3f π⎛⎫-= ⎪⎝⎭( ) A.12 B.4- C. 12-或4 D. 12-或4思路:观察到()f x 的项具备齐二次的特点,所以想到将解析式化为()sin A x ωϕ+的形式,通过变形可得:()()2f x x ϕ=+,所以最大值为12=,即221a b +=①,再利用34f π⎛⎫= ⎪⎝⎭可得:1444a --=②,通过①②可解得:02,112a ab b ⎧=⎪=⎧⎪⎨⎨=-⎩⎪=-⎪⎩,进而求出3f π⎛⎫- ⎪⎝⎭的值为12-或4解:()21cos21cos sin cos sin22222a x af x a x b x x a b x +=--=⋅-- ()()1cos2sin222a x b x x ϕ=-=+所以可得:()max 12f x ==另一方面:21cos sin cos 33332444a f a b a ππππ⎛⎫=--=--=⎪⎝⎭整理可得:221a b a ⎧+=⎪⎨+=⎪⎩,解得:02,112a ab b ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=-⎪⎩ 当01a b =⎧⎨=-⎩时,sin cos 3334f πππ⎛⎫⎛⎫⎛⎫-=--=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭当212a b ⎧=-⎪⎪⎨⎪=-⎪⎩时,21sin cos 033233f ππππ⎛⎫⎛⎫⎛⎫⎛⎫-=-+--+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ∴ 3f π⎛⎫- ⎪⎝⎭的值为12-或4例9:当02x π<<时,函数()21cos28sin sin 2x xf x x ++=的最小值为__________思路一:考虑将所有项转变为关于2x 的三角函数,即()()5cos21cos241cos253cos233sin2sin20sin2x x x xf x x x x -++--===-⋅-,从而想到分式与斜率的关系,5cos23sin 2xx -可视为()50,,sin 2,cos23x x ⎛⎫⎪⎝⎭,结合02x π<<可得()sin2,cos2x x 为单位圆半圆上的点,通过数形结合可得:最小值为4思路二:考虑将所有项转变为关于x 的三角函数,则()222221cos28sin 2cos 8sin cos 4sin sin 22cos sin cos sin x x x x x x f x x x x x x ++++===,观察到分子分母为齐二次式,从而上下同时除以2cos x ,可得:()214tan 14tan tan tan x f x x x x+==+,因为0,2x π⎛⎫∈ ⎪⎝⎭,所以()tan 0,x ∈+∞,所以利用均值不等式可得:()14tan 4tan f x x x =+≥答案:4例10:求函数()sin cos sin cos 1f x x x x x =+-+的值域思路:本题很难转化为同名三角函数解析式,解题的关键在于了解sin cos x x +与sin cos x x 之间的联系:()21sin cos sin cos 12x x x x ⎡⎤=+-⎣⎦,从而将解析式的核心变量转化为sin cos x x +,通过换元求出值域即可解:()()()222211sin cos sin cos sin cos sin cos 122x x x x x x x x ⎡⎤⎡⎤=+-+=+-⎣⎦⎣⎦()()21sin cos sin cos 112f x x x x x ⎡⎤∴=+-+-+⎣⎦()()21sin cos 2sin cos 122x x x x ⎡⎤=-+-+++⎣⎦()21sin cos 122x x =-+-+⎡⎤⎣⎦因为sin cos 4x x x π⎛⎫⎡+=+∈ ⎪⎣⎝⎭sin cos 1x x ∴+=时,()max 2f x =当sin cos x x +=时,()min 12f x =-所以可得:()f x 的值域为12⎡⎤-⎢⎥⎣⎦。

相关文档
最新文档