古典概率和几何概型
古典概型与几何概型的异同点

古典概型与几何概型的异同点一、背景和定义1. 古典概型:基于等可能性的最直观概率模型。
若一个试验只有有限个基本事件,且每个基本事件发生的可能性相同,则该试验称为古典概型。
2. 几何概型:当试验的可能结果不是有限可数时,或者每个结果发生的可能性不都是相等的,这时候就需要用到几何概型。
它是基于长度、面积、体积等几何量与概率的结合。
二、相同点1. 两者都是概率模型,用于描述随机试验中各种结果出现的可能性。
2. 在每种模型下,每个基本事件(或样本点)的概率都是非负的,并且它们的和都等于1。
三、不同点1. 试验的基本事件数量:古典概型是有限可数的,而几何概型则可能无限不可数。
2. 概率的定义方式:在古典概型中,概率是基于等可能的假设来定义的。
而在几何概型中,概率是通过与某个几何量(如长度、面积、体积等)的关联来定义的。
3. 概率的计算方法:在古典概型中,概率通常是直接计算基本事件的数量来得到。
而在几何概型中,概率的计算可能需要使用几何知识,如长度、面积或体积等。
4. 适用范围:古典概型适用于具有有限个等可能结果的情况,例如掷骰子、抽签等。
而几何概型适用于试验结果连续且无限的情况,例如在一定范围内的随机落点、随机选择一条线段上的点等。
5. 公平性:古典概型假定每个基本事件的发生是公平的,即每个基本事件的概率都是相等的。
而几何概型中,公平性的概念可能不那么直观,因为基本事件的发生可能与空间的分布有关。
6. 概率的取值:在古典概型中,概率的取值是离散的,通常是0或1。
而在几何概型中,概率的取值是连续的,可以在0到1之间任意取值。
7. 问题的复杂性:对于一些复杂的问题,如复杂的多因素决策问题,可能需要考虑更复杂的概率模型,而不仅仅是古典概型或几何概型。
四、例子1. 古典概型例子:抛掷一枚硬币,正面朝上或反面朝上的概率都是0.5;从一副扑克牌中抽取一张牌,每种花色的概率都是1/4。
这些例子都是基于等可能的假设,每个基本事件的发生概率都是相等的。
概率的两种模型(高三数学精品课件)

19世纪法国著名数学家拉普拉斯说:“对于生活中的大 部分,最重要的问题实际上只是概率问题。你可以说几 乎我们所掌握的所有知识都是不确定的,只有一小部分 我们能确定地了解。甚至数学科学本身,归纳法、类推 法和发现真理的首要手段都是建立在概率论的基础之上。 因此,整个人类知识系统是与这一理论相联系的……”
5
题型一 古典概型问题
设计游戏1:
一个不透明的箱子中有6个除了颜色不同无其他区别的小球, 其中4个蓝球,2位红球。
试设计一时训练 1:
9.在长为 1 的线段上任取两点,则这两点之间的距离小于 1 的概率为( ) 2
A、 1 B、 1 C、 3 D、 7
题型三 古典概型与几何概型的综合问题
已知关于x的一元二次方程9x2+6ax-b2+4=0,a,b∈R. (1)若a是从1,2,3三个数中任取的一个数,b是从0,1,2三个数 中任取的一个数,求已知方程有两个不相等实根的概率;
(2)若a是从区间[0,3]内任取的一个数,b是从区间[0,2]内任 取的一个数,求已知方程有实数根的概率.
第 36 练 概率的两类模型
火眼真睛(区分古典概型和几何概型)
1、古典概型(classical probability model)
一次试验中可能出现的每一 个基本结果称为基本事件
(elementary event).
(1)所有基本事件只有有限个; (2)每个基本事件的发生都是等可能的。
满足上面两个条件的随机实验的概率模 型称为古典概型
2、古典概型的概率计算公式
P( A) m n
其中n是试验中所有基本事件的个数,m是事件A 包含的基本事件的个数(m n).
利用几何概型求概率:
1.几何概型适用条件: (1)基本事件有无限多个(无限性); (2)事件都是等可能发生的(等可能性). 2.适用情况:
概率的古典概型和几何概型

即
P({ei })
1 n
,
i 1, 2,
,n.
若事件 A 包含其样本空间 S 中 k 个基本事件,即 A {ei1} {ei2 } {eik },
则事件 A 发生的概率
k
k
P( A) P eij P eij
j1
j1
k n
A包含的基本事件数 S中基本事件的总数
.
例 1.10 将1, 2, 3, 4 四个数随意地排成一行,求下列各事件的概
设试验的样本空间为 S {e1, e2 , , en} .在古典概型的假设下,
试验中每个基本事件发生的可能性相同,即有
P({e1}) P({e2}) P({en}) . 又由于基本事件是两两互不相容的.因而
1 P(S) P({e1} {e2}
{en})
P({e1}) P({e2}) P({en}) nP({ei}) ,
(1)事件 A 中共有 2 种排法,因而
P( A) 2 1 . 24 12
(2)事件 B 中有 2 (3!) 12 种排法,故有
P(B) 12 1 . 24 2
(3)先将数字1和 2 排在任意相邻两个位置,共有 23种排法, 其余两个数可在其余两个位置任意排放,共有 2!种排法,因而事件 C 有 23 2 12种排法,即
出的 n 只球中至少有 m 只红球} , Bm { 取出的 n 只球中恰有 m 只红球
} ,求 P( Am ) 及 P(Bm ) m min(n, M ) .
解 (i)放回抽样
在放回抽样的情况下,从 N 只球中取 n 只,共有 N n 种取法.
事件 Am 相当于从 n 次取球中先选取 m 次,使得这 m 次都取红球, 剩下的 n m 次可以任意取,因而 Am 中总的取法有 Cmn M m N nm 种.
高中数学中几种常见的概率模型

高中数学中几种常见的概率模型高中数学中几种常见的概率模型:古典概型、几何概型、贝努利概型、超几何分布概型1、古典概型:也叫传统概率、其定义是由法国数学家拉普拉斯提出的。
如果一个随机试验所包含的单位事件是有限的,且每个单位事件发生的可能性均相等,则这个随机试验叫做拉普拉斯试验,这种条件下的概率模型就叫古典概型。
在这个模型下,随机实验所有可能的结果是有限的,并且每个基本结果发生的概率是相同的;古典概型是概率论中最直观和最简单的模型,概率的许多运算规则,也首先是在这种模型下得到的。
2、几何概型:是概率模型之一,别名几何概率模型,如果每个事件发生的概率只与构成该事件区域的长度成比例,则称这样的概率模型为几何概率模型。
在这个模型下,随机实验所有可能的结果都是无限的,并且每个基本结果发生的概率是相同的。
一个试验是否为几何概型在于这个试验是否具有几何概型的两个特征,无限性和等可能性,只有同时具备这两个特点的概型才是几何概型。
3、贝努利模型:为纪念瑞士科学家雅各布·贝努利而命名。
对随机试验中某事件是否发生,实验的可能结果只有两个,这个只有两个可能结果的实验被称为贝努利实验;重复进行n次独立的贝努利试验,这里“重复”的意思是指各次试验的条件是相同的,它意味着各次试验中事件发生的概率保持不变。
“独立是指是指各次试验的结果是相互独立的。
基于n重贝努利试验建立的模型,即为贝努利模型。
4、超几何分布:是统计学上一种离散概率分布。
它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。
称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关。
超几何分布中的参数是M,N,n,上述超几何分布记作X~H(n,M,N) 。
1.3古典概型与几何概型

所含的总取法为 aPbi1[(a b i)!] 故
P(B)
a
Pbi
1[(a b (a b)!
i)!]
a Pbi 1 Pai b
例115 一个袋子中装有ab个球 其中a个黑球 b个白球 随意地每次从中取出一球(不放回) 求下列各事件的概率
(1)第i次取到的是黑球 (2)第i次才取到黑球 (3)前i次中能取到黑球
及两个球全是黑球的概率
解 (2) 已知 在 10 个球中任取两球的取法有C120 种 在 10 个球中取到一个白球和一个黑球的取法有C13C17 种 在 10 个球中取两个球均是黑球的取法有C32种 记B为事件“刚好取到一个白球一个黑球” C为事件
“两个球均为黑球” 则
P(B)
C13 C17 C120
P(D)
Ckn
(N 1)nk Nn
例115 一个袋子中装有ab个球 其中a个黑球 b个白球 随意地每次从中取出一球(不放回) 求下列各事件的概率
(1)第i次取到的是黑球 (2)第i次才取到黑球 (3)前i次中能取到黑球
解 (ab)次取球的总取法为(ab)! 记(1) (2) (3)中的事件 分别为A B C
总数为24 记(1) (2) (3) (4)的事件分别为A B C D
(1) A有两种排法 故有
P(A)
2 24
1 12
(2) B有2(3!)12种排法 故有
P(B)
12 24
1 12
例113 将标号为1 2 3 4的四个球随意地排成一行 求下 列各事件的概率
(1)各球自左至右或自右至左恰好排成1 2 3 4的顺序 (2)第1号球排在最右边或最左边 (3)第1号球与第2号球相邻
等价于将n个球全部放到其余N1个箱子中 共有(N1)n种放
古典概型与几何概型

古典概型与几何概型古典概型和几何概型是概率论中的两个重要概念,它们被广泛应用于统计学、数学和其他科学领域。
本文将从古典概型和几何概型的定义、特点和应用等方面进行阐述,以帮助读者更好地理解和应用这两个概念。
1. 古典概型古典概型是指在确定试验中,每个基本事件发生的概率相等的情况。
简单来说,就是试验的结果可以列举出来,并且每个结果发生的可能性相同。
比如,投掷一个均匀的骰子,每个点数出现的概率都是1/6,这就是一个典型的古典概型。
古典概型的特点是简单明确,适用于具有确定结果的试验。
它可以用于求解事件的概率、计算期望值等问题。
古典概型在实际应用中有着广泛的应用,比如扑克牌、硬币、骰子等常见的游戏和赌博问题都可以用古典概型进行分析和计算。
2. 几何概型几何概型是指试验的结果在几何空间中的分布情况。
与古典概型不同的是,几何概型中的基本事件并不一定具有相等的概率。
几何概型常用于描述连续型随机变量的分布情况,比如长度、面积、体积等。
几何概型的特点是可以用几何图形来表示,更加直观直观形象。
在几何概型中,我们可以通过计算几何形状的面积、体积等来求解概率和期望值。
几何概型在实际应用中有着广泛的应用,比如连续型随机变量的概率密度函数和分布函数的计算等。
3. 古典概型与几何概型的联系与区别古典概型和几何概型都是概率论中常用的概念,它们都可以用于描述试验结果的概率分布情况。
但是古典概型强调的是试验结果具有相等的概率,而几何概型则不一定具有相等的概率。
古典概型适用于离散型随机变量的分析,一般用于计算排列组合、事件概率等问题。
而几何概型适用于连续型随机变量的分析,一般用于计算几何空间的面积、体积等问题。
古典概型和几何概型在实际应用中常常结合使用。
例如,在计算连续型随机变量的概率时,可以先用几何概型计算几何形状的面积或体积,然后再根据总体积或面积计算概率。
4. 古典概型与几何概型的应用举例古典概型和几何概型在实际应用中有着广泛的应用。
古典概率与几何概率的区别

古典概型和几何概型的意义和主要区别在初中阶段的教学过程中,作为教师,理解古典概型和几何概型的意义和主要区别,有利于从事相应的教学。
几何概型是在学习了古典概型之后,将等可能事件的概念从有限向无限的延伸,这两种概型,在初中阶段都呈现了出来,作为教师,理解古典概型和几何概型的意义和主要区别,有利于培养学生的建模能力、逻辑推理能力和空间观念,下面我就两种概型的意义、两种概型的主要区别以及怎样应用它们发展学生的诸多能力加以简单介绍。
一、古典概型和几何概型的意义(一).几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.1.几何概型的特点:(1)试验中所有可能出现的基本事件有无限多个.(2)每个基本事件出现的可能性相等.2.几何概型求事件A的概率公式:P(A)=构成事件A的区域长度(面积或体积)/ 实验的全部结果所构成的区域长度(面积或体积)(二)古典概型的意义大家都很熟知,此处不在介绍1. 古典概型的特点:(1)试验中所有可能出现的基本事件只有有限个.(2)每个基本事件出现的可能性相等.2. 古典概型求事件A的概率公式:P(A)=事件A可能发生的结果数/实验发生的所有等可能的结果数二. 古典概型与几何概型的主要区别几何概型是另一类等可能概型,它与古典概型的区别在于试验的结果不是有限个,利用几何概型可以很容易举出概率为0的事件不是不可能事件的例子,概率为1的事件不是必然事件的例子。
三.利用不同概率模型,培养学生的建模能力及实际应用能力(一)结合实例进行建模题组一:情境1、抛掷两颗骰子,求出现两个“6点”的概率情景2、1号口袋中装有两只红球一只白球,2号口袋中装有一只红球一只白球,这些球处颜色不同外,其他都相同,小明从两个袋各摸一球,问摸出的两球异色的概率是多少?情景3、一口袋中装有3只红球2只白球,小明从口袋里摸出一球放回去,摇匀后,在摸出一球,问两次摸出的球为异色的概率是多少?情景4、一口袋中装有3只红球2只白球,小明从口袋里一次摸出2球,问两球异色的概率是多少?说明:第一组题是古典概型,(1)通过解题让学生从多角度理解古典概型的特征;(2)通过作树状图,让学生领略各题之间存在的不同;(3)体会应用古典概型解决实际问题时应注意的事项(如:元素是否重复利用、元素间有无顺序;实验出现的结果确保等可能性)。
几何概型与古典概型的区别

编辑课件
6
与长度有关的几何概型 [例 1] (2012·辽宁高考)在长为 12 cm 的线段 AB 上任取
一点 C.现作一矩形,邻边长分别等于线段 AC,CB 的长,则
该矩形面积大于 20 cm2 的概率为
1
1
A.6
B.3
()
2
4
C.3
D.5
编辑课件
7
1.在区间-π2,π2上随机取一个数 x,则 cos x 的值介于 0 到12之 间的概率为________.
编辑课件
11
3.如图所示,边长为 2 的正方形中有一封
闭曲线围成的阴影区域,在正方形中随
机撒粒豆子,它落在阴影区域内的概
率为23,则阴影区域的面积为
4
8
2
A.3
B.3
C.3
() D.无法计算
编辑课件
12
x2-4x≤0, 4.若不等式组-1≤y≤2,
x-y-1≥0
表示的平面区域为 M,(x-4)2
编辑课件
2
2.几何概型和古典概型有什么区别? 提示:几何概型和古典概型中基本事件发生的可能 性都是相等的,但古典概型的基本事件有有限个,而几 何概型的基本事件则有无限个. 2.几何概型的概率公式
构成事件A的区域长度面积或体积 P(A)=_试__验__的__全__部__结__果__所__构__成__的__区__域__长__度___面__积__或__体__积___.
[例 2] (1)已知平面区域 U={(x,y)|x+y≤6,x≥0,
y≥0},A={(x,y)|x≤4,y≥0,x-2y≥0},若向区域 U 内
随机投一点 P,则点 P 落入区域 A 的概率为________. (2)(2012·湖北高考)如图所示,在圆心角
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1页
§1.3 古典概率和几何概型
1.3.1 古典概型
1.3.2 几何概型
第一章 §1.3 古典概型和几何概型
第 2页
1.3.1 古典概型
1. 古典概型 若试验E具有以下两个特征: (1) 所有可能的试验结果(基本事件)为有限个, 即Ω={ω1,ω2,…,ωn}; (2) 每个基本事件发生的可能性相同, 即 P(ω1)=P(ω2)=…=P(ωn)。 则称这类试验的数学模型为等可能概型(古典概型)。 2. 古典概型中事件概率的计算公式 设随机试验E为古典概型,其样本空间Ω及事件A分别为: Ω={ω1,ω2,…,ωn} A={ωi1,ωi2,…,ωik} 则随机事件 A 的概率为:
10 1 P ( A) 40 4
第一章 §1.3 古典概型和几何概型
例2 在110这10个自然数中任取一数,求: (1)取到的数能被2或3整除的概率,
第 5页
(2)取到的数即不能被2也不能被3整除的概率,
(3)取到的数能被2整除而不能被3整除的概率。 解: 设 A =“取到的数能被2整除”; B =“取到的数能被3整除” 1 3 1 P ( A) P(B) P ( AB ) 2 10 10 故 (1) P ( A
(2) P( A B) 1 P( A B)
7 B) P( A) P( B) P ( AB) 10
3 10
2 (3) P ( A B) P ( A) P ( AB) 5
第一章 §1.3 古典概型和几何概型
第 6页
例3 设有n个人,每个人都等可能地被分配到N个房间的任意 一间去住(n≤N),求下列事件的概率. (1)指定的n个房间各住1人; (2)恰好有n个房间,其中各住1人 解 因为每一个人有N个房间可供选择,所以n个人住在N个房 间的方式共有Nn种,它们是等可能的. (1)指定的n个房间各住1人,其可能总数为n的全排列n!,于 是,所求概率为 P n! 1 Nn n (2)n个房间可以在N个房间中任意选取,其选法总数有 C N 种, 对每一选定的n个房间,按(1)的讨论可知又有n!种分配方式, n 所以恰有n个房间其中各住1人的住法数为 C N n!, 故所求概率 n CN n! 为 P2 Nn 这个例子常称为“分房问题”.
第一章 §1.3 古典概型和几何概型
4. 古典概型的概率计算举例
第 4页
例1 设有编号为1,2,…,40的四十张考签,一学生任意抽一张 进行考试,求“抽到前10号考签”这一事件的概率. 解 记A={抽到前10号考签}.显然,学生抽到任一考签 的可能性是一样的,这是一个古典概型,基本事件总数n=40, A中所含的基本事件数k=10,故所求概率为
故
( N 1) n1 P( A) 1 P( A) 1 . n N
第一章 §1.3 古典概型和几何概型 例6
第 9页
有三个子女的家庭,设每个孩子是男是女的概率相等,
则至少有一个男孩的概率是多少? 解:设A=“至少有一个男孩”,以H表示某个孩子是男孩 以T表示某个孩子是女孩. N()={HHH,HHT,HTH,THH,HTT,TTH,THT,TTT}
N(A)={HHH,HHT,HTH,THH,HTT,TTH,THT}
所求的概率为
N ( A) 7 P ( A) N ( ) 8
第一章 §1.3 古典概型和几何概型
第10页
例7 将3个球随机放入4个杯子中,问杯子中的球的个数最 多为1、2、3的概率各是多少? 解 设 Ak = “杯子中的最多球数为k个”, k=1、2、3
k n k n P(A)= CM CN / C M N
摸球模型是概率论与数理统计中常用的模型,许多实际问 题都可用它来描述,例如,例3就可以把黑球解释为次品,白 球为合格品,欲求的是“抽查n个产品,查到k个次品”的概 率,经常使用摸球模型也正是由于这些原因.
第一章 §1.3 古典概型和几何概型
第11页
4 1 P ( A3 ) 3 4 16
(3) 由于三个球放在4个杯子中的可能放法为 事件 A1 A2 A3 ,显然 A1 A2 A3 ,且 A1 , A2 , A3 是互不相容,故
k 事件A中包含的基本事件数 P( A) n 中的基本事件总数
第一章 §1.3 古典概型和几何概型
3. 古典概型的概率计算步骤 (1) 计算样本空间中基本事件(样本点)总数n; (2) 指出事件A;
第 3页
(3) 计算事件A中基本事件(样本点)总数k;
(4) 计算事件A的概率P(A)。
Байду номын сангаас
k 事件A中包含的基本事件数 P( A) n 中的基本事件总数
第 8页
例5 一袋中共有N个球,其中一个黑球,N-1个白球,今从袋中 依次取球,每次一个,取后不放回,并且还加进去一个白球.求 第n次取到一个白球的概率 解 每次取球时球的总数均是N,样本总数为 N n 记A=“第n次取到白球,求 P( A). 由于
( N 1) n1 P( A) . n N
第一章 §1.3 古典概型和几何概型
第 7页
例4 一个袋中装有N个球,其中M个是黑球,其余是白球, 从袋中任取n个球,求取到k(≤min(n, M))个黑球的概率.
n 解 从N个球中取n个,样本点数是 CN ,我们关心的只是黑球 和白球的个数,不存在球的排列问题,故而用组合数,这样取 样本点是能保证等可能的.设A表示取到k个黑球这一事件,注 意到在取出k个黑球的同时也取出了n-k个白球,它们是分别从 M个黑球与N-M个白球中取出的,因此,A中的基本事件数 k nk 为 CM CN M ,所以
放球过程的所有可能结果数为 N(Ω) = 43
(1) A1所含的基本事件数:从4个杯子中任选3个杯 3 子,每个杯子有一球,有 C 4 种,球的放法有3! 种,故
3 C4 3! 3 P ( A1 ) 3 4 8
第一章 §1.3 古典概型和几何概型 (2) A3所含的基本事件数:3个球同时放在一个 杯子中,有4种方法,故