滤波器的设计PPT讲解
合集下载
滤波器设计

Ls
r
L1;Cs
r
C1
把ω=1;L1=1和C1=1代入上式,得:
18
L s1 r21 frH e n ry ;C s1 r21 frF a ra d
带通滤波器
ZL=1
其中:
L s1 r21 frH e 中n 止ry 频;C 率s1 r21frF a ra d
fr f1 f2
起始频率
腔体材料产生的损耗(金属材料趋肤效应产生的欧姆损耗和介 质材料tanδ产生的介质损耗)
相邻腔体耦合的能量
1 fr2 2Q 0
与外电路连接的腔:
腔体的损耗也有两部分;
fr2
f0
1 2Q 0
腔体材料产生的损耗(金属材料趋肤效应产生的欧姆损耗和介
质材料tanδ产生的介质损耗)
与外电路和相邻腔耦合的能量
1、确定腔体Q0值; 2、确定中间腔体的几 何尺寸
Q0 2700; Length 114.69mm;
27
相邻腔体的耦合系数
Q0 1108;
QL
1
K
2 01
g1 bw
31.498089
K 23
b w 0 .0 2 1 7 1 1 7 ; g2g3
K 34
b w 0 .0 2 0 6 4 6 5; g 3g 4
ZU L 70m m;
24
L s1
1 2 fr1
;C
s1
1; 2 fr1
R s1
2 fr1L s1 ; Q0
~
K2
j L + K2
ZL
1
j L = K2
ZL
K变换器设计公式
其中, RA是变换后信号源的内阻;La,1是变换后第一个串联电感值 ; La,k是 变换后第k个串联电感值;RB是变换后负载的阻值。
13所滤波器的PPT

DC-100MHz内时延恒定在5.45ns-5.5ns之间,
C4=18.92pF, C5=10.557pF
100MHz和140MHz处衰减分别达到12.7dB和
34.62dB, 明显优于6阶全极点Bessel低通滤波网
特征函数的6个零点(反射为零), 络时的5.09dB和10.98dB。
除DC处都不在虚轴上,且实部
P18
1140MHz和 1241MHz中心 时延对比曲线。
P19
1.4 重要应用事项
● 微波接地很重要 高抑制度依赖于良好的接地(DIP务于根部焊接)
● 信号串绕隔离 尽可能阻断空间串绕。
● 50欧姆匹配 不好的前、后级匹配会导致带内波动增大,抑制变差。
● 级联 A) 滤波器不能直接串联使用(See Next Page) B) 非特殊设计,也不能并联使用,即便通带隔离
● 注意装配温度不要超过180℃
P20
Ind Cap
P21
5MB/C-70/U8-18 50MHz,Att=-70dB: Z=0.31+j12.06 90MHz,Att=-60dB: Z=0.38-j16.4
中间加隔离后可级联
单个
5MB/C-70/T10-18 K60/3=3.68:1 BW60=3.68×10=36.8M
● 带内波动(Passband Riplpe) ● 纹波(Ripple) ● 带内相位线性度 ● 延迟(Td) 一般提相对延时
1.5:1 VSWR带宽与BW3dB典型比例
P14
关于带通滤波器中心时延
中心时延(nSec)=时延系数/(π×BW3dB),
BW3dB单位为MHz。
时延系数:2节 1300; 3节:2100; 4节 3000; 5节:4000; 6节 4800; 7节:5800;
第6章滤波器的设计黄玉兰 104页PPT

通过理查德变换,可以将集总元件的 电感和电容用一段终端短路或终端开路的 传输线等效。
终端短路和终端开路传输线的输入阻
抗具有纯电抗性,利用传输线的这一特性, 可以实现集总元件到分布参数元件的变换。
6.4.2 科洛达规则
科洛达规则是利用附加的传输线段, 得到在实际上更容易实现的滤波器。例如, 利用科洛达规则既可以将串联短截线变换 为并联短截线,又可以将短截线在物理上 分开。
(1)根据需要的衰减或波纹,选择 巴特沃斯或切比雪夫低通滤波器原型 参数。
图6.29 多节耦合微带线带通滤波器
(2)确定上、下边频和归一化带宽。 (3)计算耦合微带线各节偶模和奇 模的特性阻抗。
(4)确定微带线的实际尺寸。
图6.24 平行耦合微带传输线
平行耦合微带传输线可以构建多种类
型的滤波器,这些滤波器的带宽通常不超 过20%。本节首先介绍耦合微带线奇偶模 的概念;然后讨论单个四分之一波长耦合 线段的滤波特性;最后讨论带通耦合微带 线滤波器。用耦合微带线构成的其他类型 滤波器可以查阅相关文献。
6.6.1 奇模和偶模
图6.27 有带通响应的耦合微带线结构
图6.28 有带通响应的耦合微带线输入阻抗实部
6.6.3 级连耦合微带线滤波器
前面讨论的λ/4长耦合微带线单元虽然 具有滤波特性,但其不能提供陡峭的通带 到阻带过渡。如果将多个λ/4长耦合微带线 单元级连,级连后的网络可以具有良好的 滤波特性。
下面给出设计的步骤。
图6.5 低通滤波器原型电路
6.2.2 切比雪夫低通滤波器原 型
如果滤波器在通带内有等波纹的响应, 这种滤波器称为切比雪夫滤波器,也称为 等波纹滤波器。
图6.6 等波纹低通滤波器的响应
1. 切比雪夫多项式
终端短路和终端开路传输线的输入阻
抗具有纯电抗性,利用传输线的这一特性, 可以实现集总元件到分布参数元件的变换。
6.4.2 科洛达规则
科洛达规则是利用附加的传输线段, 得到在实际上更容易实现的滤波器。例如, 利用科洛达规则既可以将串联短截线变换 为并联短截线,又可以将短截线在物理上 分开。
(1)根据需要的衰减或波纹,选择 巴特沃斯或切比雪夫低通滤波器原型 参数。
图6.29 多节耦合微带线带通滤波器
(2)确定上、下边频和归一化带宽。 (3)计算耦合微带线各节偶模和奇 模的特性阻抗。
(4)确定微带线的实际尺寸。
图6.24 平行耦合微带传输线
平行耦合微带传输线可以构建多种类
型的滤波器,这些滤波器的带宽通常不超 过20%。本节首先介绍耦合微带线奇偶模 的概念;然后讨论单个四分之一波长耦合 线段的滤波特性;最后讨论带通耦合微带 线滤波器。用耦合微带线构成的其他类型 滤波器可以查阅相关文献。
6.6.1 奇模和偶模
图6.27 有带通响应的耦合微带线结构
图6.28 有带通响应的耦合微带线输入阻抗实部
6.6.3 级连耦合微带线滤波器
前面讨论的λ/4长耦合微带线单元虽然 具有滤波特性,但其不能提供陡峭的通带 到阻带过渡。如果将多个λ/4长耦合微带线 单元级连,级连后的网络可以具有良好的 滤波特性。
下面给出设计的步骤。
图6.5 低通滤波器原型电路
6.2.2 切比雪夫低通滤波器原 型
如果滤波器在通带内有等波纹的响应, 这种滤波器称为切比雪夫滤波器,也称为 等波纹滤波器。
图6.6 等波纹低通滤波器的响应
1. 切比雪夫多项式
《IIR滤波器设计》PPT课件

数字滤波器的设计
IIR滤波器设计主要内容包括: 巴特沃思、切比雪夫模拟低通滤波器设计; 脉冲响应不变法和双线性变换法的数字化变 换方法; 数字高通、带通和带阻滤波器的设计。 而FIR滤波器是直接采用的数字式设计方法。 针对FIR滤波器特征,首先介绍了其线性相 位的实现条件,然后介绍了窗函数法和频率 抽样法的设计方法。
IIR滤波器及FIR滤波器的系统函数
有限冲激响应滤波器的传输函数为
H z hnz n
n 1 N 1
无限冲激响应滤波器的传输函数为
r b z r M
H z
1 ak z k
k 1
r 0 N
a k不全为零
4.数字滤波器的性能要求
一个理想滤波器,要求所在通频带内幅频响 应是一常数;相位频率相应为零或是频率的 线性函数。但一个实际的滤波器要是不可能 得到上述幅频和相频响应。以低通滤波器为 例,频率响应有通带、过渡带及阻带三个范 围。
x(n)
?
数字信 号处理
y(n)
IIR系统与FIR系统
从系统函数的构造来区分
0 H ( z ) mN m b z m k a z k k 0 M
1 ak z k
k 1
m0 N
m b z m
M
1.
2.
IIR系统:至少有一个极点。包括全极点系统(分 子只有常数项)和零极点系统(分子不止常数 项);有反馈环路,采用递归型结构。 FIR系统:收敛域内无极点,是全零点系统。无反 馈环路,多采用非递归结构。
p / 10
Nmin应取向上取整。
2)如技术指标未给出 c ,则可由下式计算:
c p (10
或
无源电力滤波器设计38页PPT文档

GN24-10D/400 LAJ-10Q
FDDC-1.7/ 6/√3
AFM4100-1W
LKDGKL-6 ―165—3.03
Y5WR-10/27 FDDC-1.7/ 6/√3 AFM4100-1W
LKDGKL-6 ―75—3.54
Y5WR-10/27
Y5WR-10/27 Y5WR-10/27
TCR
H5滤波器
实际应用中常用几组单调谐滤波器和一组高通滤波器组成滤波装置。
10/22/2019
6
无源电力滤波器基础知识
单调谐滤波器
滤波器对n次谐波(n nS )的阻抗为:
二阶高其通阻滤抗波为器:Z Z nf njn R1 fnS C j( n(R 1 SL jn n 1 1S SC L)) 1
Zfn
Zn
R
R
n S )
0
1
2
10/22/2019
7
无源电力滤波器基础知识
双调谐滤波器
有两个谐振频率,同时吸收这两个频率的谐波,其作用等效于 两个并联的单调谐滤波器。
阻抗频率特性:
阻 抗
优点:双调谐滤波器投资较小,且基波损耗较频 小率 ; 缺点:其结构相对比复杂,调谐困难,故应用还较少。
在频漂及参数漂移下的滤波效果。
Z fn
最佳Q值为 Q opt ctg(2 m m /2)2 cos m sim n 1 m
25 20
( 一般约在30~60内)
15
AB PB
10
C
5
D
0
(% )
-6 -4 -2 0 2 4 6
10/22/2019
12
无源电力滤波器设计方法
二阶高通滤波器(共7张PPT)

设图3.4.1中,Y1=SC1, Y2=R1, Y3=0, Y4= SC2,Y5=R2,将它们代入式〔3.4.5〕,可得到二阶 压控电压源高通滤波器的传递函数如下:
A (S ) U U O i((S S ))S 2S R 1 C 1 〔 R 31 R C .1 5R 22 . C 1A R 1 〕C U 2 C 2 s 2 2 F (1 A U)F R 1 R 2 1 C 1 C 2
令
AO
AUF1
Rb Ra
n
1 R1R2C1C2
Q
R1R2C1C2
C1R1C2R1R2C2(1AUF )
式 其那( 中么3ω有.n5为A.2(S特))征为U U 角二((频阶sS))率高通,S 滤而波A QQ则S器S称传为递等函效数品的质典(因型3数.5表。.2达)式。 一利22启1其55一512225〔1251启2(5〔(22一1二 〕 〕 〕中 二 〕 中 〕 中 〕 二一一一一一一一一个用动中个3动333个阶,,, ,阶,.,,,.,..阶阶阶阶阶阶阶阶阶二 A仿 ω二 仿 二有可可可 Y有可Y可Y可有Cn有 有有有有有有有阶真阶真阶111为源得得得 源得得得源A===源 源源源源源源源压,压,压n特高到到到 高到到到高SSS低 低低低低低低低a控点控点控征lCCC通二二二 通二二二通y通 通通通通通通通电击电击电s111角滤阶阶阶 滤阶阶阶滤i,,,s滤 滤滤滤滤滤滤滤压波压波压〔频波压压压 波压压压波波 波波波波波波波YYY源特源特源交率器控控控 器控控控器222器 器器器器器器器高图高图高===流,特 电 电 电特 电 电 电 特的 的的的的的的的通仪通仪通RRR分而性压压压 性压压压性AAAAAAAA111滤,滤,滤析Q,,,CCCCCCCC源源源 分源源源波可波可波则〕AAAAAAAA高高高 析高高高YYY器以器以器nnnnnnnn称可333通通通 通通通aaaaaaaa===电看电看电为llllllll以yyyyyyyy滤滤滤 滤滤滤000ssssssss路见路见路等分iiiiiiii,,,波波波 波波波ssssssss如二如二如效〔 〔〔〔〔〔〔〔析器器器 器器器YYY图阶图阶图品交 交交交交交交交二444的的的 的的的===压压333质流 流流流流流流流阶传传传 传传传... SSS控控因分 分分分分分分分压递递递 递递递CCCO 电电数析 析析析析析析析控i222函函函 函函函,,,压压。〕 〕〕〕〕〕〕〕电数数数 数数数YYY源源分 分分分分分分分压如如如 如如如555高高===析 析析析析析析析源下下下 下下下通通RRR步 步步步步步步步高::::::222滤滤骤 骤骤骤骤骤骤骤通,,,波波。 。。。。。。。滤将将将器器2波它它它的的器们们们幅幅电代代代频频路入入入O 特特n的式式式性性频〔〔〔如如2率333...图图特33性.. 如n2图3.
滤波电路详细解析ppt课件

常见低通滤波电路
L 一阶滤波
+
CL 二阶滤波
+
LC 二阶滤波
+
LCL T型三阶滤波
+
+
CLC π三阶滤波
D1
L
+ C1
D2
DLC 型二阶滤波器
+
C 一阶滤波
+
RC 二阶滤波
+
RCR T型三阶滤波
+
+
CRC π三阶滤波
X 0.1
8mH
X
L 0.1
8mH
Y 2.2
Y 2.2
开关电源 单级低通滤波回路
8mH
8mH
X 0.2
L
Y 2.2
X
L
பைடு நூலகம்
0.2
Y 2.2
8mH
8mH
开关电源 双级串联式低通滤波回路
1
1、工作原理介绍
CLC П型滤波器
LL
正 脉 冲
+
+ RL
输 入
iC1
iC2
iRL
图1: CLC П型 滤波器正脉冲输入电流方向
a.输入正脉冲时,先给C1充电,充电电流为ic1,迅速充到脉冲的峰值电压Vi,同时电 感器L中也有线性增长的电流,并在L中储存了磁能,随着电流的增长,储存的磁 能越来越多,电容器C2通过电感L也充上了电压,充电电流为ic2,C2和C1上的电
求输出电压脉动较小的场合。
3.弱点:用在没有稳压电路的电源中,负载能力差。
2
4. CLC П型滤波器常用在脉幅式开关稳压电源,电容和电感值越大,滤波效果越好
1、工作原理介绍
L 一阶滤波
+
CL 二阶滤波
+
LC 二阶滤波
+
LCL T型三阶滤波
+
+
CLC π三阶滤波
D1
L
+ C1
D2
DLC 型二阶滤波器
+
C 一阶滤波
+
RC 二阶滤波
+
RCR T型三阶滤波
+
+
CRC π三阶滤波
X 0.1
8mH
X
L 0.1
8mH
Y 2.2
Y 2.2
开关电源 单级低通滤波回路
8mH
8mH
X 0.2
L
Y 2.2
X
L
பைடு நூலகம்
0.2
Y 2.2
8mH
8mH
开关电源 双级串联式低通滤波回路
1
1、工作原理介绍
CLC П型滤波器
LL
正 脉 冲
+
+ RL
输 入
iC1
iC2
iRL
图1: CLC П型 滤波器正脉冲输入电流方向
a.输入正脉冲时,先给C1充电,充电电流为ic1,迅速充到脉冲的峰值电压Vi,同时电 感器L中也有线性增长的电流,并在L中储存了磁能,随着电流的增长,储存的磁 能越来越多,电容器C2通过电感L也充上了电压,充电电流为ic2,C2和C1上的电
求输出电压脉动较小的场合。
3.弱点:用在没有稳压电路的电源中,负载能力差。
2
4. CLC П型滤波器常用在脉幅式开关稳压电源,电容和电感值越大,滤波效果越好
1、工作原理介绍
现代滤波器设计讲座

际
谐1振 m频ii 率F2BW
2
mii
FBW 2
第44页/共121页
用什么表示 J 变换器?
K
Zin
ZL
Z0
ZL
Z = K2
l
IN
ZL
在电路中用电长度为 90度,特性阻抗值 为J的理想传输线段 表示J变换器。
第45页/共121页
串联谐振等效电路模型
• 4阶交叉耦合滤波器
• 中心频率:7.5GHz
wi/w0=1.0
i
0
1
mii
FBW 2
2
mii
FBW 2
第16页/共121页
归一化阻抗矩阵
• 归一化阻抗矩阵可以写成下面的形式,
p
[Z
]
0
0 p
0
0
Rs
r1
j 0
0 r2
0 0
m11 m21
m12 m22
m13
m23
0 0 p
0
0
RL
r3
m31
m32
m33
0
RL
rn
mn1
mn2
m1( n 1) m2 ( n 1)
m( n 1)( n 1) mn ( n 1)
m1n
m2n
m(
n1)
n
mnn
第18页/共121页
低通原型和带通滤波器之间的变 换
• 低通到带通的频率变换式为:
1 FBW
0
0
• 其中,0 12
FBW 2 1 0
1 , 2
计算结果
• S参数:
第29页/共121页
计算结果
• 群时延
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.带通滤波器
功能:让有限带宽( wL w wH )内的交流信号 顺利通过,让频率范围之外的交流信号受到衰减。
wL ——下限频率, wH ——上限频率,
带宽:Bw wH wL
中心角频率:
w0 wn wH wL
A0 s n / 2 带通滤波器传递函数的一般表达式为: A((s) D( s )
A0 为常数, D ( s ) 为多项式, s
jw
A((s ) 的零点在 w 处。 二阶低通滤波器传递 2 A w 0 n 函数的典型表达式为: A( s) wn 2 2 s s wn wn 为特征角频率,Q 为等效品质因数。 Q
2.高通滤波器(HPF) 让高于截止频率 wc 的高频信号通过, 而对从0到阻带频率 ws 的低频频率受到衰减。
三、参数
3、阻尼系数与品质因数
– 阻尼系数是表征滤波器对角频率为w0信号的阻尼作用, 是滤波器中表示能量衰耗的一项指标。 –阻尼系数的倒数称为品质因数,是评价带通与带阻滤波器 频率选择特性的一个重要指标,Q= w0/△w。式中的△w为 带通或带阻滤波器的3dB带宽, w0为中心频率。
4、灵敏度
–滤波电路由许多元件构成,每个元件参数值的变化都会影 响滤波器的性能。滤波器某一性能指标y对某一元件参数x 变化的灵敏度记作Sxy,定义为: Sxy=(dy/y)/(dx/x)。 –该灵敏度与测量仪器或电路系统灵敏度不是一个概念,该 灵敏度越小,标志着电路容错能力越强,稳定性也越高。
A0 A( S ) n S an1 S n1 a1 S a0
多项式系数 an1 , a1 , a0 可根据不同的 次n查表得到 。
和阶
3. 贝赛尔滤波器:
这种滤波器的相位响应较平坦,但其幅频响应衰 减过早,对阶跃响应过冲极少,有最小的时间延迟特 性,下降陡度差,适用于传递脉冲型的波形信号,能 把过冲或振铃现象抑制到最小,常用于要求波形和、 失真小的传递系统中,也可用于相敏信号处理 。
3.3常用有源滤波器的设计
1. 低通滤波器的设计:
(1). 压控电压源低通滤波器:
R1 C
R3
R4
R2 C
运放为同相输入接法,因此滤波器的输入 阻抗很高,输出阻抗很低,相当于一个电压源, 故称之,其优点是电路性能稳定,增益容易调 节。
图为二阶压控电压源低通滤波器 其传递函数为:
A0Wn2 A( s ) Wn 2 s s Wn2 Q
n阶巴特沃思低通滤波器的传递函数可写为:
A0 A0 A(S ) n B(S ) S an1 S n1 a1 S a0
jw S 为归一化复频率 S wc
;B ( S ) 为巴特沃思多项式;
an1 , 行选择,过滤掉 噪声和干扰信号,保留下有用信号。工程上常 用来进行信号处理、数据传递和抑制干扰。
通带:能够通过的信号频率范围。 阻带:受阻的信号频率范围。 截止频率:通带和阻带的界限频率。
滤波器的用途
滤波器主要用来滤除信号中无用的频率成 分,例如,有一个较低频率的信号,其中包含 一些较高频率成分的干扰。
R4 // R3 2 R R3 183.299k, R4 107.413k
(2)无限增益多路负反馈二阶 低通滤波电路
R2 V0 ( s) R1 A( s) R2 R3 R1 R2 R1 R3 C 2 s Vi ( s) 2 C1C 2 R2 R3 s 1 R1 s 令: ,上式可写为: S R2 wc
5、群时延函数
–当滤波器幅频特性满足设计要求时,为保证输出信号失真 度不超过允许范围,对其相频特性∮(w)也应提出一定要 求。在滤波器设计中,常用群时延函数d∮(w)/dw评价信 号经滤波后相位失真程度。群时延函数d∮(w)/dw越接近 常数,信号相位失真越小。
理想幅频特性
3.1 滤波器的分类:
1
幅频特性:
A
2 1 ( ) H
幅频特性: A
1
2 1 ( ) H
+
+
+
ui +
R
+
|A|
1 0.707
C uo +
此电路的缺点: 1、带负载能力差。
0
H
截止频率
2、无放大作用。 3、特性不理想,边沿不陡。
1. 一阶RC高通滤波器(无源) 传递函数:
1 jC jRC 1 L 1 jRC 1 j R uO A ui R
A0 R1 A( s) 2 1 a S b S R R 1 1 2 3 wc2 C1C 2 R2 R3 S 2 wc C 2 R R S 1 3 2 R 1
R2 R3 R2 2 式中:A0 , a1 wc C 2 R R , b w 2 3 1 c C1C 2 R2 R3 R1 R1
指用放大器、电阻、电容组成的滤波电路,具有 信号放大功能,且输入、输出阻抗容易匹配。 缺点:使用电源、功耗大,集成运放的带宽有限, 工作频率难以做得很高,一般不能用于高频场合。
二.按通带和阻带的相互位置不同分为:
低通滤波器(LPF) 高通滤波器(HPF) 带通滤波器(BPF) 带阻滤波器(BEF)
一. 按是否使用有源器件分:无源滤波器、有源滤波器
有源滤波器实际上是一种具有特定频率响应的放大器。
(一). 无源滤波器
1. 一阶RC低通滤波器(无源)
1 uO j C A 1 ui R j C 1 1 1 jRC 1 j
传递函数:
+
+
+
ui +
R
+
C uo +
H
1 截止频率: H RC
N与巴特沃思多项式的关系
B(S )
S 1
n 1
2
3 4
S 2 2S 1
(S 2 S 1) (S 1)
1 2.613S 3.414S 2.613S S
2 3
4
2.切比雪夫滤波器:
这种滤波器在通带内存在等纹波动,而衰减度比 同阶数的巴特沃思滤波器大,但相位响应畸变较大, 适用于需快速衰减的场合,如信号调制解调电路。 在设计切比雪夫滤波器时,需指定通带内的纹波 值 和决定阶次n的衰减要求,低通切比雪夫滤波器 传递函数可写为:
D ( s ) 为n次多项式,n为偶数。
A((s ) 的零点位于 w 0 及
w
处。
wn A0 s Q 二阶带通滤波器传递函数 A( s ) 的典型表达式为: wn 2 2 s s wn Q
式中 wn 既是特征角频率,也是带通滤波器的中心频率。
w0 wn f0 Q 2 Bw 2 Bw Bw
各种滤波器理想的幅频特性:
(1)低通 |A| A0 0 通带 阻带 ωC ω (2)高通 |A| A0 0 通带 阻带 ωC ω
(1)带通 |A| A0 阻 阻 通 ωC2 0 ωC1 ω
(1)带阻 |A| A0 通 阻 通 ωC2 0 ωC1 ω
1.低通滤波器(LPF) 让从零到某一截止频率 wc 的低频信号通过, 而对于大于阻带频率 ws 的所有频率全部衰减。 设计时,可根据通带里幅频响应、衰减率的不同 要求,选择不同类型的衰减函数,如巴特沃思、切比 雪夫、贝赛尔函数等。 A0 A((s) 低通滤波器传递函数的一般形式为: D( s )
式中:
R C
R3
R4
R
A C
1 Wn RC
R4 A0 1 R3
1 3 A0 Q
故当 wn , Q 已知时,有: RC 1 , A0 3 1 wn Q
例:用上述方法设计一截止频率fc=3.4kHz, Q=2的滤波器。
解:因为-3dB截止角频率 wc wn ,则
1 1 1 5 RC 4.683 10 , A0 3 3 2.5 wc Q 2
C
+
U i
+
R
U O
_ RC 高通电路
_
1 截止频率: L RC
1
幅频特性:
A
L 2 1 ( )
C
幅频特性: A
1
L 2 1 ( )
+
U i
+
R
U O
_ RC 高通电路 此电路的缺点: 1、带负载能力差。 2、无放大作用。
_
3、特性不理想,边沿不陡。
(二). 有源滤波器
A0 s 高通滤波器传递函数的一般形式为: A((s) D( s ) D ( s ) 为n次多项式, A((s ) 的零点在w=0处。
二阶高通滤波器传递函数 的典型表达式为:
n
A0 s A( s) wn 2 2 s s wn Q
2
A0 为 w 处的增益, 在 w 0 处,A(0)=0。
若选C=0.01uF,则R=468.3Ω≈470 Ω 取R3=50k Ω,则R4=75k Ω
例:已知fc=100Hz,设计一如图所示电路形式的 巴特沃思低通滤波器。
例:已知fc=100Hz,设计一如图所示电路形式的 巴特沃思低通滤波器。 解:通常C的容量宜在微法数量级以下,R的值一般 约为几百千欧以内,选C=0.047uF,则: 1 1 R 33.863k 6 wc C 0.047 10 2 100
④固有频率f0=w0/(2)为电路没有损耗时,滤波器的谐振频率,复杂 电路往往有多个固有频率。 2、增益与衰耗 ①对低通滤波器通带增益Kp一般指w=0时的增益;高通指w→∞时的增 益;带通则指中心频率处的增益。