数理方程课件-第 1 章 1.1-1.5 方程的导出与定解条件-PPT文档资料
数理方程第1讲-课件

M u 2u x 2 2u
x 2
y 2
L 2 3 x xy y3
与
M
2 x2
x2
2 y2
都称为微分算子。
我们定义具有下列性质的算子为线性算子。
(1)常数c可以从算子中提取出来 LcucL u
9
(2) 算子作用于两个函数之和所得的结果等于算子分 别作用于两个函数所得结果之和。
例如: 书中例1.1、1.2
y2u2xy2uu1
x2
y2
(二阶线性偏微分方程)
否则称之为非线性偏微分方程。 书中例1.5
7
4. 半线性偏微分方程:若非线性方程中未知多元函 数的所有最高阶偏导数都是线性的,而其系数不含 有未知多元函数及其低阶偏导数,则称为半线性偏 微分方程。如书中例1.6
5. 拟线性偏微分方程:若非线性方程中未知多元函 数的所有最高阶偏导数都是线性的,而其系数含有 未知多元函数或其低阶偏导数,则称为拟线性偏微 分方程。如书中例1.8
6. 非齐次项和非齐次方程:在线性偏微分方程中, 不含未知函数及其偏导数的非零项称为非齐次项, 而含有该非齐次项的方程称之为非齐次方程。如书 中例1.1
8
下面简单讨论一下偏微分方程中经常遇到的线性算子。
算子是一种数学法则,把它作用在一个函数上时,便 产生另外一个函数。例如,在下列表达式中:
Lu u 2u 3u
其中 a2 T , f F.
方程(1.4)称为弦的强迫横振动方程。
16
若外力消失F=0,则方程变为
utta2uxx (a2T)
上式称为弦的自由振动方程。
(1.5)
我们虽然称 (1.4)、(1.5)为弦振动方程,但在力学上弹 性杆的纵振动,管道中气体小扰动的传播以及电报方 程等问题,都可以归结为上述偏微分方程的形式。
数理方程第1讲

CDx
v+Dv
x+Dx
10
L—每一回路单位的串联电感; C—每一单位长度的分路电容. i LDx v x CDx i+Di
v+Dv x+Dx
11
i v (v Dv) LDx t v i L x t
i LD x v x CDx i+Di
(1.4)
v+Dv x+Dx
12
div D (1.11) J—传导电流面密度,—电荷的体密度.
26
D rot H J t B rot E t div B 0 div D
(1.8) ( 1.9) (1.10) (1.11) (1.12)
D E B H J E
(1.13) (1.14)
1
第一章 一些典型方程和定解条件的推导 §1.1 基本方程的建立
2
例1 弦的振动 设有一根均匀柔软的细弦, 平衡时沿直线拉紧, 而且除受不随时间而变的张力作用外, 不受外 力影响. 下面研究弦作微小横向振动的规律. 所谓"横向"是指全部运动出现在一个平面上, 而且弦上的点沿垂直于x轴的方向运动. 所谓"微小"是指的振动的幅度及弦在任意位 置处切线的倾角都很小, 以致它们的高于一次 方的项都可略而不计.
32
例4 热传导方程 在物体中任取一闭曲面S, 它所包围的区域记 作V. 假设在时刻t区域V内点M(x,y,z)处的温度 为u(x,y,z,t), n为曲面元素DS的法向(从V内指向 V外). 由传热学中傅里叶实验定律可知, 物体在无穷 小时间段dt内, 流过一个无穷小面积dS的热量 dQ与时间dt, 曲面面积dS, 以及物体温度u沿曲 面dS的法线方向的方向导数三者成正比
《数理方程》第一讲

通过Ω 的边界流出Ω 外的热量为Q2 , Ω 内温度变化所需要的热量为 Q3 。
10
9.1.2 热传导方程的导出
则
Q1
Q1 Q2 Q3
t2 t1
1.6
F ( x, y, z, t )dVdt
1.7
由热力学的Fourier实验定理得:
t2 u u dQ 2 k d dt Q2 k d dt t1 n n
1.13
16
9.1.2 热传导方程的导出
可得
U U 2U R GU C t L G t C t2 2U 2U U LC RC LG RGU 2 2 t x t 2U I 2I I U R L 2 x IR L t t t t x2 I I U 2U U 2 G C GU C x xt x t x
20
9.1 典型方程的建立
三类典型方程: 波动方程 热传导方程 Poisson方程
utt a 2 u f
ut a 2 u f
u g
21
9.2
定解条件与定解问题
utt a2 u f ut a2 u f
u g 三类方程 如果有解,则其解应该不唯一。 在这众多的解中确定出所需要的解,还需要 增加另外的条件,即定解条件,使之成为定 解问题,在此条件下,再来讨论适定性,即 存在性、唯一性和稳定性。
Q3
t2 t1
u u u k ( cos cos cos )dSdt t1 x y z t2 2u 2u 2u Q2 k 2 2 dvdt 2 t1 y z x
数理方程-第1章第2章-研究生ppt课件

示单位长度弦的质量,则长为dx的一小段弦的质量为
d x。u t t 是弦的加速度,及单位长度弦上所受的外力
大小为F(x,t).
16
则根据牛顿第二定律,有
dxuttF T,x dxsin2F T,xsin1F (x,t)dx. F T,xdxcos2F T,xcos10.
uyyuxxA2uxB2uyC2uD2,
双曲型方程的第一标准形和第二标准形。
方程 标准形。
uyy A3uxB3uy C3uD3, 称为抛物型方程的
uxx A4uxB4uy C4uD4,
方程 u x x u y y A 5 u x B 5 u y C 5 u D 5 ,称为椭圆型方程的 标准形。
11
2
2i
变量方程(1)化为标准形 u u A u B u C u D ,
其中A,B,C,D都是 , 的已知函数。
13
第三节 经典方程的导出
一、方程的建立 1、弦振动方程(一维); 2、热传导方程(一维);
14
弦的振动方程的导出
(考察一根均匀柔软的细弦,平衡时沿ox轴绷紧) 考察一根长为l的细弦,给定弦的一个初始位移和初始 速度,弦作横振动,确定弦上各点的运动规律。
未知函数u的偏导数。
5
定义:偏微分方程中未知函数的最高阶偏导数的阶 数称为偏微分方程的阶。
定义:如果一个偏微分方程对于未知函数及其各阶 偏导数都是一次的,其系数仅依赖于自变量,就称 为线性偏微分方程。
二阶线性偏微分方程的一般形式:
i,n j1aijx i2 u xj i n1bi x ui cuf(x1, ,xn).
数理方程课件一

数学物理方程与特殊函数
第1章 典型方程和定解条件的推导
3、拉普拉斯方程
稳定的温度分布导热物体内的热源分布和边界条件不随时间变化 故热传导方程中对时间的偏微分项为零,从而热传导方程 即变为下列拉普拉斯方程和泊松方程.
∂2u ∂2u ∂2u + 2 + 2 =0 2 ∂x ∂y ∂z
∂2u ∂2u ∂2u 1 + 2 + 2 = − 2 f (x, y, z) ∂x2 ∂y ∂z a
如果在位移方向上还受外力的作用, 如果在位移方向上还受外力的作用,设单位长度上受 的外力为 f, 则
单位质量所受外 力,力密度
数学物理方程与特殊函数
第1章 典型方程和定解条件的推导
说明: 说明:
• 质点的位移是以t为自变量的函数,其运动是以t为 质点的位移是以t为自变量的函数,其运动是以t 自变量的常微分方程; 自变量的常微分方程; • 弦的位移是x,t的函数,其运动方程是以x,t为自变 弦的位移是x,t的函数,其运动方程是以x,t为自变 x,t的函数 x,t 量的偏微分方程。 量的偏微分方程。 • uxx项反映弦上的各个质点彼此相联 。 • utt项反映弦在各个时刻的运动之间的联系。 项反映弦在各个时刻的运动之间的联系。
第1章 典型方程和定解条件的推导
第一章 一些典型方程和 定解条件的推导
一、 基本方程的建立 二、 定解条件的推导 三、 定解问题的概念
数学物理方程与特殊函数
第1章 典型方程和定解条件的推导
一、 基本方程的建立
导出步骤: 导出步骤:
1、确定物理量,从所研究的系统中划出一小部分,分析邻 确定物理量,从所研究的系统中划出一小部分, 近部分与它的相互作用。 近部分与它的相互作用。 2、根据物理规律,以算式表达这个作用。 根据物理规律,以算式表达这个作用。 3、化简、整理。 化简、整理。
数理方程课件

一阶常微分方程在物理学、工程学、经济学等领域有广泛应用。
一阶常微分方程可以用于描述各种实际问题中变量的变化规律,如物理中的自由落体运动、电路中的电流变化等。在经济学中,一阶常微分方程可以用于描述供求关系的变化、消费和储蓄的动态过程等。在工程学中,一阶常微分方程也广泛应用于控制系统、化学反应动力学等领域。
数理方程可以根据其形式和性质进行分类。
总结词
根据其形式和性质,数理方程可以分为线性与非线性、自治与非自治、常系数与变系数等多种类型。这些分类有助于更好地理解和研究数理方程的性质和应用。
详细描述
数理方程的分类
总结词
数理方程在各个领域都有广泛的应用。
详细描述
数理方程在物理学、工程学、经济学、生物学等许多领域都有重要的应用。例如,在物理学中,描述波动、热传导、引力场等问题的方程都是数理方程。在工程学中,流体动力学、电磁学等领域的问题也都可以通过数理方程来描述和解决。
总结词
一阶常微分方程的定义
一阶常微分方程的解法
求解一阶常微分方程的方法主要有分离变量法、积分因子法、常数变易法和线性化法等。
总结词
分离变量法是将方程中的变量分离出来,使方程变为可求解的形式。积分因子法是通过引入一个因子,使方程变为全微分方程,从而简化求解过程。常数变易法适用于形式为y' = f(x)y的方程,通过代入可求解。线性化法则是将非线性方程转化为线性方程,便于求解。
分离变量法
有限差分法
有限元法
变分法
用离散的差分近似代替连续的微分,适用于求解初值问题和边界问题。
将连续的求解区域离散化为有限个小的子区域,适用于求解复杂的几何形状和边界条件。
通过求某个泛函的极值来求解偏微分方程,适用于求解某些特殊类型的方程。
数学物理方程:第1章 数学物理方程的定解问题

第1章 数学物理方程的定解问题§1.1 数学物理方程的一般概念本节讨论:①数学物理方程的基本概念,②三类基本方程的数学表示,③一些简单解法▲数学物理方程的任务与特点 数学物理方程(亦称数理方程)在数学上为二阶偏微分方程。
它的任务有两个方面:①寻找数学定解问题的求解方法,给出解的表达式和计算方法;②通过理论分析得出问题的通解或某些特解的一般性质。
数学物理方程有如下特点:①它紧密地、直接地联系物理学、力学与工程技术中的许多问题。
②它广泛地运用数学物理中许多的技术成果。
如:数学中的复变函数、积分变换、常微分方程、泛函分析、广义函数等等,物理学中的力学、电学、磁学、热力学、原子物理学、振动与波、空气动力学等等。
⒈ 一些基本概念数学物理方程是物理过程中的一些偏微分方程。
由于物理过程是十分复杂的,故它们的数学表达式也是十分广泛的。
本书不能将众多的数学物理方程一一讨论,仅讨论一些常用的二阶线性微分方程。
一般而言,二阶线性偏微分方程可写为2,11nn ij i i j i i j i u u Lu a b cu f x x x ==∂∂=++=∂∂∂∑∑ (1.1.1) 式中:自变量),,(1n x x x ⋅⋅⋅=,系数ij a 、i b 、c 为x 的函数或为常数,并且ji ij a a =。
由于式中关于未知函数u 的导数最高为二阶导数,故方程称为二阶微分方程;同样,由于x 为n 维向量,方程也称为n 维方程;由于方程中对u 的各阶偏导数为线性的,故称为线性方程,否则就称为非线性方程。
若系数ij a 、i b 、c 均为常数,则称为常系数方程,否则称为变系数方程;若0≡f ,则称为齐次方程,反之称为非齐次方程。
▲方程的数学形式 在所有的自变量i x 中,时间变量t 常常被使用,由于它的独特性,人们常常直接用t 表示而不置于i x 之中,关于t 的导数式为:22u u L u a b t t t∂∂=+∂∂ (1.1.2) 故上述方程可改写为:f Lu u L t += (1.1.3)上述方程习惯上也称为n 维方程。
数理方程第一章典型方程与定解条件共31页文档

第1章 典型方程和定解条件的推导
数学物理方程与特殊函数
☆ 数学和物理的关系 数学和物理从来是没有分开过的
☆ 数学物理方程的定义 用微分方程来描述给定的物理现象和物理规律。
☆ 课程的主要内容
三种方程、 四种求解方法、 二个特殊函数
波动方程 热传导 拉普拉斯方程
1
分离变量法 行波法 积分变换法 格林函数法
例2、时变电磁场
从麦克斯韦方程出发:
v H v E
v Jc
v B
v D t
v
t
D v
v
B 0
在自由空间:Jrc 0,v0
D E
B H
H
E
E
t H
t
E 0
H 0
15
19.05.2020
数学物理方程与特殊函数
第1章 典型方程和定解条件的推导
H
E
E
t H
t
E 0
对第一方程两边取旋度,得:
H (E )
t
根据矢量运算:
r
rr
H ( H ) 2 H
H 0
r
由此得:2H r (H)
即:
t t
2H2H
t2
2tH 2 1 ( 2 x H 2 2 yH 2 2 zH 2) ——磁场的三维波动方程
同理可得:
2E t2
1
2E
——电场的三维波动方程
其中:cos1cos'1
sin tan u(x,t)
x
T
x
M'
ds
T'
'
gds x dx x
sin ' tan ' u(x dx,t)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将实际问题归结为数学模型时,必须作 一些理想化的假设,以便抓住问题的最本 质的特征。 在考察弦振动问题时的基本假设为: 1.弦是均匀的,弦的截面直径与弦的长度 相比可以忽略,弦的线密度 是常数。 2.弦是柔软的,它在形变时不抵抗弯曲, 弦上各质点间的张力方向与弦的切线方向一 致, 而弦的伸长形变与张力的关系服从胡克 (Hooke)定律。(即指在弹性限度内, 物体的形变跟引起形变的外力成正比)
8
u
1
M1
M
2
T2
2
T1
O
x1 x 2
l
x
我们分别把在点 M 1 , M 2 处的张力记作 T 1 , T 2 , 由前所述知它们的方向分别是沿着弦在点 M 1 , M 2 处的切线方向。 由假定,弦只作横向振动,因此张力在 x轴方向分量的代数和为零,即有
9
u
1
M1
M
2
T2
2
T1
O
由于小振动:
第一章 第一章 绪论 绪论
(典型的数学物理方程与基本概念)
1.1 弦振动方程与定解条件 1.2 热传导方程与定解条件 1.3 拉普拉斯方程与定解条件
1.4 基本概念与基本知识
1
1.1 弦振动方程与定解条件
弦振动方程是在18世纪由达朗贝尔等人 首先给予系统研究的。它是一大类偏微分 方程的典型代表。 一、下面先从物理问题出发来导出弦振动 方程。 给定一根两端固定且拉紧的均匀的柔软 的弦,其长度为L。在外力作用下在平衡位 置附近作微小的横振动,求弦上各点的运 动规律。
u
O
弦的平衡位置为
x l
x轴,两端分别固定在
x 0 和 x l 处.
u(x, t) 表示弦上横坐标为 x的点在时刻 t 时沿垂直于 x 轴方向的位移。
5
为了求弦上任意一点的运动规律,必须对 弦上任取一小弦弧 M1M2 进行考察。
u
M1
M
2
O x1 x 2
x l
我们首先证明张力为常数(即与位置和时间 无关)。假设小弦弧 M1M2 的弧长为 s ,
这个方程称为弦的横向振动方程。
14
u
1
M1
M
T0
2
2
T0
若还有外力作用到弦上,其方向垂直于 x轴, 设其力密度为 F(x, t), 由于弦段 (x1, x2 )很小, 其上各点处的外力近似相等, 因此作用在该段上的外力近似地等于
F ( , t )( x x )( x x ). 2 1 1 2
6
u
M1
M
2
O x1 x 2
利用弧长公式可知:
s x l
2 x
u 1 u dx , u x . x
与1相比可以
7
s x x . 忽略不计,从而 2 1
u
M1
M
2
O
x1 x 2
l
x
这样我们可以认为这段弦在振动过程中 并未伸长,因此由胡克定律知道, 弦上每一点所受的张力在运动过程中保 持不变,即张力与时间无关。 接下来, 我们只须说明张力与位置 x无关
15
O
x1 x 2
l
x
u
1
M1
M
T0
2
2
T0
O
x1 x 2
l
x
同样应用牛顿第二定律,得
2 2 u u | ( x x ) T | ( x x ) F ( , t )( x x ). 2 1 0 2 2 1 2 1 2 t x x 消去 x2 x1,并令 x2 则得弦的强迫横振动方程 1,
2 2 u2 u F ( x , t ) 2 T 0 a2 f ( x , t ),其中 a ,f ( x , t ) . 2 t x
16
弦振动方程中只含有两个自变量 x 和t, 其中 t 表示时间, 表示位置。 x
由于它们描述的是弦的振动或波动现象, 因而又称它为一维波动方程。 类似地可导出二维波动方程(例如薄膜 振动)和三维波动方程(例如电磁波、 它们的形式分别为 声波的传播),
加速度相差也不会太大, 因此可用其中一点 2 处的加速度 u | 代替,
t2
12
u
1
M1
M
T0
2
2
T0
O
x1 x 2
2 u ( x x ) |( x x ). 2 1 2 2 1 t
l
x
于是该小段弦的质量与加速度的乘积为 当弦不受外力作用时,应用牛顿第二定律,得
2 2 u u 2| ( x x ) T | x x ). 2 1 0 2 ( 2 1 t x
x 消去 x2 x1, 并令 x2 1,
13
u
1
M1
M
T0
2
2
T0
上式化为
O
x1 x 2
T 其中 a 0.
2
l
x
2 2 u 2 u a 2, 2 t x
2 2 2 u 2 u u a( 2 2) f( x ,y , t ), 2 t x y
3
3.弦在某一平面内作微小横振动 即弦的位置始终在一直线段附近(平衡位 置),而弦上各点均在同一平面内垂直于该 直线的方向上作微小振动。(“微小”是指 弦振动的幅度及弦上任意点切线的倾角都很 小) 我们将在上述假定下来导出弦振动方程。 先讨论振动过程中不受外力作用时弦 振动的情形
4
为此,选择坐标系如下
T0
O
x1 x 2
l
x
现在来导出弦的横振动方程. 张力在 u轴方向 分量的代数和为 由于小振动:
T sin T sin T (sin sin ). 0 2 0 1 0 2 1
u sin tan | 1 1 x , 1 x
11
u sin tan | 2 2 x , 2 x
u
1
M1
M
T0
2
2
T0
应用微分中值定理:
O
x1 x 2
l
x
另一方面,由于弦段 (x1, x2 ) 很小,其上每点的
2 u u u T [ | | ] T | ( x x )( x x ). 0 x x 0 2 2 1 1 2 2 1 x x x
T cos T cos 0 . 2 2 1 1
2 1
x1 x 2
l
x
0 , 0 , cos 1 , cos 1 .
1 2
于是上式可以写成 T1 T2. 这就是说,张力也不随地点而异,综上所 述,张力是常数,以下记作 T 0
10
u
1
M1
M
T0
2
2