新人教版八年级上册《第14章 整式的乘法与因式分解》2013年单元检测训练卷A(一)

合集下载

人教版八年级数学上册《第十四章整式的乘法与因式分解》测试卷及答案

人教版八年级数学上册《第十四章整式的乘法与因式分解》测试卷及答案

人教版八年级数学上册《第十四章整式的乘法与因式分解》测试卷及答案学校:___________班级:___________姓名:___________考号:___________一、选择题(本大题共12小题)1.下列运算正确的是( )A.2a+3b=5abB.a2•a3=a5C.(2a)3=6a 3D.a6+a3=a92.下列各式计算正确的是( )A.a+2a2=3a3B.(a+b)2=a2+ab+b2C.2(a﹣b)=2a﹣2bD.(2ab)2÷ab=2ab(ab≠0)3.下列多项式的分解因式,正确的是( ).A.12xyz-9x2y2=3xyz(4-3xy)B.3a2y-3ay+6y=3y(a2-a+2)C.-x2+xy-xz=-x(x2+y-z)D.a2b+5ab-b=b(a2+5a)4.把多项式2x3y﹣x2y2﹣6x2y分解因式时,应提取公因式为( )A.x2yB.xy2C.2x3yD.6x2y5.计算(﹣2m)2•(﹣m•m2+3m3)的结果是( )A.8m5 B.﹣8m5 C.8m6 D.﹣4m4+12m56.如果(x﹣2)(x+3)=x2+px+q,那么p、q的值为( )A.p=5,q=6B.p=1,q=﹣6C.p=1,q=6D.p=5,q=﹣67.如图所示,从边长为a的大正方形中挖去一个边长是b的小正方形,小明将图a中的阴影部分拼成了一个如图b所示的长方形,这一过程可以验证( )A.a2+b2﹣2ab=(a﹣b)2B.a2+b2+2ab=(a+b)2C.2a2﹣3ab+b2=(2a﹣b)(a﹣b)D.a2﹣b2=(a+b)(a﹣b)8.把多项式m2(a-2)+m(2-a)因式分解等于( )A.(a-2)(m2+m)B.(a-2)(m2-m)C.m(a-2)(m-1)D.m(a-2)(m+1)9.把多项式x2+ax+b分解因式,得(x+1)(x﹣3)则a,b的值分别是()A.a=2,b=3B.a=﹣2,b=﹣3C.a=﹣2,b=3D.a=2,b=﹣310.若4x2+axy+25y2是一个完全平方式,则a=( )A.20B.﹣20C.±20D.±1011.已知x+y=-5,xy=6,则x2+y2的值是( ).A.1B.13C.17D.2512.已知P=8x2-y2+6x-2,N=9x2+4y+13,则P和N的大小关系是( ).A.P>NB.P=NC.P<ND.不能确定二、填空题(本大题共6小题)13.若x n=2,y n=3,则(xy)n=________.14.多项式2x2y﹣6xy2的公因式是 .15.多项式9x2+1加上一个单项式后,成为一个整式的完全平方式,那么加上的单项式可以是.(填上一个你认为正确的即可)16.如果(2x+m)(x﹣5)展开后的结果中不含x的一次项,那么m=.17.若a-b=1,ab=-2,则(a+1)(b-1)= .18.若m+n=3,则代数式m2+2mn+n2﹣6的值为.三、解答题(本大题共8小题)19.计算:a3·a5+(-a2)4-3a820.计算:x(4x+3y)-(2x+y)(2x-y)21.化简:(x+y)2﹣(x+y)(x﹣y)22.化简:(a+b-c)(a+b+c).23.已知x2+4x-1=0,先化简,再求值:(2x+1)2-(x+2)(x-2)-x(x-4).24.(1)在下列横线上用含有a,b的代数式表示相应图形的面积.①②③④(2)通过拼图,你发现前三个图形的面积与第四个图形面积之间有什么关系?请用数学式子表达: .(3)利用(2)的结论计算992+198+1的值.25.已知a,b,c是△ABC的三边长,且满足a2+b2﹣4a﹣8b+20=0,c=3cm,求△ABC的周长.26.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x-y)+(x-y)2=_______________;(2)因式分解:(a+b)(a+b-4)+4;(3)求证:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.答案1.B2.C3.B4.A5.A6.B.7.D8.C9.B10.C11.B12.C13.答案为:6.14.答案为:2xy.15.答案为:答案不唯一,例如6x,﹣6x.16.答案为:10.17.答案为:-4.18.答案为:3.19.原式=-a8;20.原式=3xy+y2;21.原式=x2+2xy+y2﹣x2+y2=2xy+2y2.22.原式=(a+b)2﹣c2=a2+b2﹣c2+2ab.23.解:原式=7.24.解:(1)a2、2ab、b2、(a+b)2;(2)a2+2ab+b2=(a+b)2;(3)992+198+1=(99+1)2=10000.故答案为:a2、2ab、b2、(a+b)2;(a+b)2. 25.解:∵a2+b2﹣4a﹣8b+20=0∴a2﹣4a+4+b2﹣8b+16=0∴(a﹣2)2+(b﹣4)2=0又∵(a﹣2)2≥0,(b﹣4)2≥0∴a﹣2=0,b﹣4=0∴a=2,b=4∴△ABC的周长为a+b+c=2+4+3=9.答:△ABC的周长为9.26.解:(1)(x-y+1)2;(2)令A=a+b则原式变为A(A-4)+4=A2-4A+4=(A-2)2故(a+b)(a+b-4)+4=(a+b-2)2.(3)证明:(n+1)(n+2)(n2+3n)+1=(n2+3n)[(n+1)(n+2)]+1 =(n2+3n)(n2+3n+2)+1=(n2+3n)2+2(n2+3n)+1=(n2+3n+1)2.∵n为正整数∴n2+3n+1也为正整数∴式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.n。

新人教版 八年级数学上册 第14章 整式的乘法与因式分解 单元测试卷 (解析版)

新人教版 八年级数学上册 第14章 整式的乘法与因式分解 单元测试卷 (解析版)

第14章整式的乘法与因式分解单元测试卷一、选择题1.下列各运算中,计算正确的是()A.a2+2a2=3a4B.x8﹣x2=x6C.(x﹣y)2=x2﹣xy+y2D.(﹣3x2)3=﹣27x62.计算(a3)2÷a2的结果是()A.a3B.a4C.a7D.a83.下列计算正确的是()A.x2+x=x3B.(﹣3x)2=6x2C.8x4÷2x2=4x2D.(x﹣2y)(x+2y)=x2﹣2y24.把多项式x2﹣4x+4分解因式,所得结果是()A.x(x﹣4)+4B.(x﹣2)(x+2)C.(x﹣2)2D.(z+2)25.两整式相乘的结果为a2﹣a﹣12的是()A.(a﹣6)(a+2)B.(a﹣3)(a+4)C.(a+6)(a﹣2)D.(a+3)(a﹣4)6.x3y2•(﹣xy3)2的计算结果是()A.x5y10B.x5y8C.﹣x5y8D.x6y127.将一个长方形的长减少1%,宽增加1%,则这个长方形的面积()A.不变B.减少1%C.增大1%D.减少0.01% 8.若(x+3)(2x﹣n)=2x2+mx﹣15,则()A.m=﹣1,n=5B.m=1,n=﹣5C.m=﹣1,n=﹣5D.m=1,n=5 9.下列计算:①3x3•(﹣2x2)=﹣6x5;②(a3)2=a5;③(﹣a)3÷(﹣a)=﹣a2;④4a3b÷(﹣2a2b)=﹣2a:⑤(a﹣b)2=a2﹣b2;⑤(x+2)(x﹣1)=x2﹣x﹣2,其中正确的有()A.1个B.2个C.3个D.4个10.若x2+mx﹣18能分解为(x﹣9)(x+n),那么m、n的值是()A.7、2B.﹣7、2C.﹣7、﹣2D.7、﹣211.如果(2x+m)(x﹣5)展开后的结果中不含有x的一次项,那么m等于()A.5B.﹣10C.﹣5D.1012.如果对于不<8的自然数n,当3n+1是一个完全平方数时,n+1能表示成k个完全平方数的和,那么k的最小值为()A.1B.2C.3D.4二、填空题13.分解因式:axy﹣ay2=.14.若x2+4x+m能用完全平方公式因式分解,则m的值为.15.若a m=9,a n=3,则a m﹣n=.16.已知2m=a,32n=b,则23m+10n=.17.多项式3ma2+12mab的公因式是.18.已知|m﹣3|与(2+n)4互为相反数,则(n+m)2020的值为.三、解答题19.用提公因式法将下列各式因式分解:(1)2x2﹣4xy+x;(2)﹣4m3+8m2﹣24m.20.(1)计算:(19.99+4.99)2﹣4×4.99×19.99.(2)分解因式:x3﹣x2+x.(3)利用乘法公式进行计算:(2x+y﹣3)(2x﹣y+3).21.化简求值:[(x+2y)2﹣(x﹣2y)2﹣(x+2y)(x﹣2y)﹣4y2]÷2x,其中x=﹣2,y=.22.欢欢与乐乐两人共同计算(2x+a)(3x+b),欢欢抄错为(2x﹣a)(3x+b),得到的结果为6x2﹣13x+6;乐乐抄错为(2x+a)(x+b),得到的结果为2x2﹣x﹣6.(1)式子中的a、b的值各是多少?(2)请计算出原题的正确答案.参考答案一、选择题1.下列各运算中,计算正确的是()A.a2+2a2=3a4B.x8﹣x2=x6C.(x﹣y)2=x2﹣xy+y2D.(﹣3x2)3=﹣27x6【分析】根据合并同类项法则,完全平方公式,幂的乘方和积的乘方分别求出每个式子的值,再判断即可.解:A、结果是3a2,故本选项不符合题意;B、x8和﹣x2不能合并,故本选项不符合题意;C、结果是x2﹣2xy+y2,故本选项不符合题意;D、结果是﹣27x6,故本选项符合题意;故选:D.2.计算(a3)2÷a2的结果是()A.a3B.a4C.a7D.a8【分析】根据幂的乘方、同底数幂的除法的计算法则进行计算即可.解:(a3)2÷a2=a3×2÷a2=a6﹣2=a4,故选:B.3.下列计算正确的是()A.x2+x=x3B.(﹣3x)2=6x2C.8x4÷2x2=4x2D.(x﹣2y)(x+2y)=x2﹣2y2【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.解:x2+x不能合并,故选项A错误;(﹣3x)2=9x2,故选项B错误;8x4÷2x2=4x2,故选项C正确;(x﹣2y)(x+2y)=x2﹣4y2,故选项D错误;故选:C.4.把多项式x2﹣4x+4分解因式,所得结果是()A.x(x﹣4)+4B.(x﹣2)(x+2)C.(x﹣2)2D.(z+2)2【分析】这个多项式可以用完全平方公式分解因式.完全平方公式:a2±2ab+b2=(a±b)2.解:x2﹣4x+4=x2﹣2•2x+22=(x﹣2)2.故选:C.5.两整式相乘的结果为a2﹣a﹣12的是()A.(a﹣6)(a+2)B.(a﹣3)(a+4)C.(a+6)(a﹣2)D.(a+3)(a﹣4)【分析】把各选项根据多项式的乘法法则展开,然后选取答案即可.解:A、(a﹣6)(a+2)=a2﹣4a﹣12,故本选项错误;B、(a﹣3)(a+4)=a2+a﹣12,故本选项错误;C、(a+6)(a﹣2)=a2+4a﹣12,故本选项错误;D、(a+3)(a﹣4)=a2﹣a﹣12,正确.故选:D.6.x3y2•(﹣xy3)2的计算结果是()A.x5y10B.x5y8C.﹣x5y8D.x6y12【分析】先算乘方,再进行单项式乘法运算,然后直接找出答案.解:x3y2•(﹣xy3)2,=x3y2•x2y3×2,=x3+2y2+6,=x5y8.故选:B.7.将一个长方形的长减少1%,宽增加1%,则这个长方形的面积()A.不变B.减少1%C.增大1%D.减少0.01%【分析】设出原长方形的长为a,宽为b,表示出原长方形的面积,然后根据长方形的长减少1%,宽增加1%,表示出变化后长方形的长与宽,进而表示出变化后长方形的面积,可求出减少的面积,即可求出减少的百分比.解:设原长方形的长为a,宽为b,则原长方形的面积为ab,根据题意得:变化后长方形的长为(1﹣1%)a=0.99a,宽为(1+1%)b=1.01b,∴变化后长方形的面积为0.99a• 1.01b=0.9999ab,∴这个长方形的面积减少ab﹣0.9999ab=0.0001ab,则这个长方形的面积减少的百分数为×100%=0.01%.故选:D.8.若(x+3)(2x﹣n)=2x2+mx﹣15,则()A.m=﹣1,n=5B.m=1,n=﹣5C.m=﹣1,n=﹣5D.m=1,n=5【分析】已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件即可求出m与n的值.解:∵(x+3)(2x﹣n)=2x2+(6﹣n)x﹣3n=2x2+mx﹣15,∴6﹣n=m,﹣3n=﹣15,解得:m=1,n=5.故选:D.9.下列计算:①3x3•(﹣2x2)=﹣6x5;②(a3)2=a5;③(﹣a)3÷(﹣a)=﹣a2;④4a3b÷(﹣2a2b)=﹣2a:⑤(a﹣b)2=a2﹣b2;⑤(x+2)(x﹣1)=x2﹣x﹣2,其中正确的有()A.1个B.2个C.3个D.4个【分析】各项计算得到结果,判断即可.解:①3x3•(﹣2x2)=﹣6x5,符合题意;②(a3)2=a6,不符合题意;③(﹣a)3÷(﹣a)=a2,不符合题意;④4a3b÷(﹣2a2b)=﹣2a,符合题意;⑤(a﹣b)2=a2﹣2ab+b2,不符合题意;⑤(x+2)(x﹣1)=x2+x﹣2,不符合题意,故选:B.10.若x2+mx﹣18能分解为(x﹣9)(x+n),那么m、n的值是()A.7、2B.﹣7、2C.﹣7、﹣2D.7、﹣2【分析】将分解因式的结果利用多项式乘以多项式法则计算,合并后根据多项式相等的条件即可求出m与n的值.解:根据题意得:x2+mx﹣18=(x﹣9)(x+n)=x2+(n﹣9)x﹣9n,∴m=n﹣9,﹣18=﹣9n,解得:m=﹣7,n=2.故选:B.11.如果(2x+m)(x﹣5)展开后的结果中不含有x的一次项,那么m等于()A.5B.﹣10C.﹣5D.10【分析】原式利用多项式乘以多项式法则计算,合并后根据结果不含x的一次项,即可确定出m的值.解:(2x+m)(x﹣5)=2x2﹣10x+mx﹣5m=2x2+(m﹣10)x﹣5m,∵结果中不含有x的一次项,∴m﹣10=0,即m=10.故选:D.12.如果对于不<8的自然数n,当3n+1是一个完全平方数时,n+1能表示成k个完全平方数的和,那么k的最小值为()A.1B.2C.3D.4【分析】根据完全平公式计算即可.解:由已知3n+1是一个完全平方数,所以我们就设3n+1=a2,显然a2不是3的倍数,于是a=3x±1,从而3n+1=a2=9x2±6x+1,n=3x2±2x,即n+1=2x2+(x±1)2=x2+x2+(x±1)2,即把n+1写为了x,x,x±1这三个数的平方和,由于当n=8时.8+1=32.所以k的最小值为1,故选:A.二、填空题13.分解因式:axy﹣ay2=ay(x﹣y).【分析】直接提取公因式ay,进而分解因式得出答案.解:axy﹣ay2=ay(x﹣y).故答案为:ay(x﹣y).14.若x2+4x+m能用完全平方公式因式分解,则m的值为4.【分析】利用完全平方公式可得答案.解:x2+4x+4=(x+2)2,故答案为:4.15.若a m=9,a n=3,则a m﹣n=3.【分析】同底数幂的除法法则:同底数幂相除,底数不变,指数相减.解:∵a m=9,a n=3,∴a m﹣n=a m÷a n=9÷3=3.故答案为:3.16.已知2m=a,32n=b,则23m+10n=a3b2.【分析】根据幂的乘方和同底数幂的乘法运算规则进行计算.解:∵32n=b,∴25n=b,∴23m+10n,=23m•210n,=(2m)3•(25n)2,=a3b2.17.多项式3ma2+12mab的公因式是3ma.【分析】根据公因式的定义,即找出两式中公共的因式即可.解:3ma2+12mab中,3与12的公因式是:3,ma2与mab的公因式是:ma,∴多项式3ma2+12mab的公因式是:3ma,故答案为:3ma.18.已知|m﹣3|与(2+n)4互为相反数,则(n+m)2020的值为1.【分析】根据相反数的概念列出算式,根据非负数的性质求出m、n的值,计算即可.解:由题意得,|m﹣3|+(2+n)4=0,则m﹣3=0,2+n=0,解得,m=3,n=﹣2,则(n+m)2020=1,故答案为:1.三、解答题19.用提公因式法将下列各式因式分解:(1)2x2﹣4xy+x;(2)﹣4m3+8m2﹣24m.【分析】(1)直接提取公因式x,进而得出答案;(2)直接提取公因式﹣4m,进而得出答案.解:(1)2x2﹣4xy+x=x(2x﹣4y+1);(2)﹣4m3+8m2﹣24m=﹣4m(m2﹣2m+6).20.(1)计算:(19.99+4.99)2﹣4×4.99×19.99.(2)分解因式:x3﹣x2+x.(3)利用乘法公式进行计算:(2x+y﹣3)(2x﹣y+3).【分析】(1)原式利用完全平方公式化简,合并后再利用完全平方公式变形,计算即可求出值;(2)原式提取公因式,再利用完全平方公式分解即可;(3)原式利用平方差公式,以及完全平方公式分解即可.解:(1)原式=19.992+2×19.99×4.99+4.992﹣4×4.99×19.99=19.992﹣2×19.99×4.99+4.992=(19.99﹣4.99)2=152=225;(2)原式=x(x2﹣x+)=x(x﹣)2;(3)原式=(2x)2﹣(y﹣3)2=4x2﹣y2+6y﹣9.21.化简求值:[(x+2y)2﹣(x﹣2y)2﹣(x+2y)(x﹣2y)﹣4y2]÷2x,其中x=﹣2,y=.【分析】先根据完全平方公式,平方差公式,多项式除单项式的法则去括号,合并同类项,将整式化为最简式,然后把x、y的值代入即可.解:[(x+2y)2﹣(x﹣2y)2﹣(x+2y)(x﹣2y)﹣4y2]÷2x,=[(x2+4xy+4y2)﹣(x2﹣4xy+4y2)﹣(x2﹣4y2)﹣4y2]÷2x,=(x2+4xy+4y2﹣x2+4xy﹣4y2﹣x2+4y2﹣4y2)÷2x,=(﹣x2+8xy)÷2x,=﹣x+4y,当x=﹣2,y=时,原式=﹣×(﹣2)+4×=1+2=3.22.欢欢与乐乐两人共同计算(2x+a)(3x+b),欢欢抄错为(2x﹣a)(3x+b),得到的结果为6x2﹣13x+6;乐乐抄错为(2x+a)(x+b),得到的结果为2x2﹣x﹣6.(1)式子中的a、b的值各是多少?(2)请计算出原题的正确答案.【分析】(1)根据由于欢欢抄错了第一个多项式中的a符号,得出的结果为6x2﹣13x+6,可知(2x﹣a)(3x+b)=6x2+(2b﹣3a)x﹣ab=6x2﹣13x+6,于是2b﹣3a=﹣13①;再根据乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为2x2﹣x﹣6,可知常数项是﹣6,可知(2x+a)(x+b)=2x2﹣x﹣6,可得到2b+a=﹣1②,解关于①②的方程组即可求出a、b的值;(2)把a、b的值代入原式求出整式乘法的正确结果.解:(1)根据题意可知,由于欢欢抄错了第一个多项式中的a的符号,得到的结果为6x2﹣13x+6,那么(2x﹣a)(3x+b)=6x2+(2b﹣3a)x﹣ab=6x2﹣13x+6,可得2b﹣3a=﹣13 ①乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为2x2﹣x﹣6,可知(2x+a)(x+b)=2x2﹣x﹣6即2x2+(2b+a)x+ab=2x2﹣x﹣6,可得2b+a=﹣1 ②,解关于①②的方程组,可得a=3,b=﹣2;(2)正确的式子:(2x+3)(3x﹣2)=6x2+5x﹣6。

人教版八年级上册第14章《整式的乘法与因式分解》单元测试卷 含答案

人教版八年级上册第14章《整式的乘法与因式分解》单元测试卷   含答案

人教版八年级上册第14章《整式的乘法与因式分解》单元测试卷满分120分姓名:___________班级:___________考号:___________题号一二三总分得分一.选择题(共10小题,满分30分,每小题3分)1.计算a5•a3正确的是()A.a2B.a8C.a10D.a152.下列说法正确的是()A.多项式乘以单项式,积可以是多项式也可以是单项式B.多项式乘以单项式,积的次数等于多项式的次数与单项式次数的积C.多项式乘以单项式,积的系数是多项式系数与单项式系数的和D.多项式乘以单项式,积的项数与多项式的项数相等3.下列多项式中,不能进行因式分解的是()A.﹣a2+b2B.﹣a2﹣b2C.a3﹣3a2+2a D.a2﹣2ab+b2﹣14.下列多项式中,在实数范围内能进行因式分解的是()A.a﹣1B.a2﹣1C.x2﹣4y D.a2+15.若2x=a,2y=b,则2x+y=()A.a+b B.ab C.a b D.b a6.若a+b=3,ab=2,则a2+b2的值是()A.2.5B.5C.10D.157.已知:(2x+1)(x﹣3)=2x2+px+q,则p,q的值分别为()A.5,3B.5,﹣3C.﹣5,3D.﹣5,﹣38.比较355,444,533的大小,正确的是()A.444>355>533B.533>444>355C.355>444>533D.355>533>4449.请你观察图形,依据图形面积之间的关系,不需要添加辅助线,便可以得到一个你熟悉的公式,这个公式是()A.(x+y)(x﹣y)=x2﹣y2B.(x+y)2=x2+2xy+y2C.(x﹣y)2=x2﹣2xy+y2D.(x+y)2=x2+xy+y210.如果,则=()A.4B.2C.0D.6二.填空题(共7小题,满分28分,每小题4分)11.20200=.12.计算:xy(x﹣y)=.13.多项式8a2b3+6ab2的公因式是.14.分解因式:16x4﹣81=.15.=.16.若代数式x2+kx+25是一个完全平方式,则k=.17.若2x+m与x+2的乘积中不含的x的一次项,则m的值为.三.解答题(共8小题,满分62分)18.(6分)计算:(1)(5mn2﹣4m2n)(﹣2mn)(2)(x+7)(x﹣6)﹣(x﹣2)(x+1)19.(6分)把下列各式分解因式:(1)2a2﹣4ab+2b2 (2)(2x﹣1)2﹣(2﹣x)2.20.(6分)[(2x﹣y)2﹣(2x+3y)(2x﹣3y)]÷(﹣2y),其中x=﹣,y=.21.(8分)利用完全平方公式或平方差公式计算(1)20192﹣2018×2020 (2)(3+2a+b)(3﹣2a+b)22.(8分)已知:x+y=5,xy=3.求:①x2+5xy+y2;②x4+y4.23.(8分)如果a c=b,那么我们规定(a,b)=c,例如:因为23=8,所以(2,8)=3(1)根据上述规定,填空:(3,27)=,(4,1)=(2,0.25)=;(2)记(3,5)=a,(3,6)=b,(3,30)=c.求证:a+b=c.24.(9分)常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如x2﹣4y2﹣2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2﹣4y2﹣2x+4y=(x+2y)(x﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式x2﹣2xy+y2﹣16;(2)△ABC三边a,b,c满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.25.(11分)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是.(请选择“A”、“B”、“C”)A.a2﹣2ab+b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.a2+ab=a(a+b)(2)应用你从(1)中选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.②计算:.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:a5•a3=a5+3=a8.故选:B.2.解:A、多项式乘以单项式,单项式不为0,积一定是多项式,单项式为0,积是单项式,故本选项正确;B、多项式乘以单项式,积的次数等于多项式的次数与单项式次数的和,故本选项错误;C、多项式乘以单项式,积的系数是多项式系数与单项式系数的积,故本选项错误;D、由选项A知错误.故选:A.3.解:A、两个平方项异号,可用平方差公式进行因式分解,故A正确;B、两个平方项同号,不能运用平方差公式进行因式分解,故B错误;C、可先运用提公因式法,再运用十字相乘法,原式=a(a2﹣3a+2)=a(a﹣1)(a﹣2),故C正确;D、可先分组,再运用公式法,原式=(a﹣b)2﹣1=(a﹣b+1)(a﹣b﹣1),故D正确.故选:B.4.解:A、a﹣1不能分解,不符合题意;B、原式=(a+1)(a﹣1),符合题意;C、原式不能分解,不符合题意;D、原式不能分解,不符合题意,故选:B.5.解:当2x=a,2y=b时,2x+y=2x•2y=ab,故选:B.6.解:a2+b2=(a+b)2﹣2ab=32﹣2×2=5.故选:B.7.解:(2x+1)(x﹣3)=2x2﹣6x+x﹣3=2x2﹣5x﹣3,∵(2x+1)(x﹣3)=2x2+px+q,∴p=﹣5,q=﹣3,。

人教版八年级上册第14章《整式的乘法与因式分解》单元练习卷 含答案

人教版八年级上册第14章《整式的乘法与因式分解》单元练习卷   含答案

人教版八年级上册第14章《整式的乘法与因式分解》单元练习卷一.选择题1.下列计算正确的是()A.(﹣2x)3=﹣8x3B.(x3)3=x6C.x3+x3=2x6D.x2•x3=x62.下列从左到右的变形,错误的是()A.(y﹣x)2=(x﹣y)2B.﹣a﹣b=﹣(a+b)C.(m﹣n)3=﹣(n﹣m)3D.﹣m+n=﹣(m+n)3.y3n+1可写成()A.(y3)n+1B.(y n)3+1C.y•y3n D.(y n)n+14.下列多项式中,能用平方差公式进行因式分解的是()A.a2﹣b2B.﹣a2﹣b2C.a2+b2D.a2+2ab+b2 5.若3x=15,3y=5,则3x﹣y等于()A.5B.3C.15D.106.如果x2+(m﹣1)x+9是一个完全平方式,那么m的值是()A.7B.﹣7C.﹣5或7D.﹣5或57.下列因式分解错误的是()A.3ab﹣6ac=3a(b﹣2c)B.m(x2+y2)﹣n(x2+y2)=(m﹣n)(x2+y2)C.9x2﹣4y2=(3x+2y)(3x﹣2y)D.a2﹣4a+4=(a+2)(a﹣2)8.若(x+2)(x﹣3)=x2+mx﹣6,则m等于()A.﹣2B.2C.﹣1D.19.若(x2+px+8)(x2﹣3x+1)乘积中不含x2项,则p的值为()A.p=0B.p=3C.p=﹣3D.p=﹣110.请你观察图形,依据图形面积之间的关系,不需要添加辅助线,便可以得到一个你熟悉的公式,这个公式是()A.(x+y)(x﹣y)=x2﹣y2B.(x+y)2=x2+2xy+y2 C.(x﹣y)2=x2﹣2xy+y2D.(x+y)2=x2+xy+y2二.填空题11.计算:5+(﹣3)0=.12.x2•x5=,(103)3=.13.(8a3b﹣4a2b2)÷2ab=.14.计算:﹣32021×(﹣)2020=.15.分解因式:6xy2﹣8x2y3=.16.因式分解:﹣8ax2+16axy﹣8ay2=.17.若x﹣y=3,xy=2,则x2+y2=.18.已知x﹣y=7,xy=5,则(2﹣x)(y+2)的值为.三.解答题19.计算:(a+5b)(a﹣5b)﹣(a+2b)2.20.计算下列各式(1)x(2x2y﹣3y);(2)(x+2y)(x﹣3y)+xy.21.因式分解:(1)4x2y﹣2xy2;(2)x2(y﹣4)+9(4﹣y).22.利用乘法公式进行简算:(1)2019×2021﹣20202;(2)972+6×97+9.23.已知(x2+mx﹣3)(2x+n)的展开式中不含x2项,常数项是﹣6.(1)求m,n的值.(2)求(m+n)(m2﹣mn+n2)的值.24.【阅读理解】如何将x2+(p+q)x+pq型式子分解因式呢?我们知道(x+p)(x+q)=x2+(p+q)x+pq,所以根据因式分解与整式乘法是互逆变形,可得;x2+(p+q)x+pq=(x+p)(x+q).例如:∵(x+1)(x+2)=x2+3x+2,∴x2+3x+2=(x+1)(x+2).上述过程还可以形象的用十字相乘的形式表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项的系数,如图:这样,我们可以得到:x2+3x+2=(x+1)(x+2).【迁移运用】利用上述的十字相乘法,将下列多项式分解因式:(1)x2+7x+12.(2)﹣2x2﹣2x+12.25.数学活动课上,张老师用图①中的1张边长为a的正方形A、1张边长为b的正方形B 和2张宽和长分别为a与b的长方形C纸片,拼成了如图②中的大正方形.观察图形并解答下列问题.(1)由图①和图②可以得到的等式为(用含a,b的代数式表示);并验证你得到的等式;(2)嘉琪用这三种纸片拼出一个面积为(2a+b)(a+2b)的大长方形,求需要A、B、C 三种纸片各多少张;(3)如图③,已知点C为线段AB上的动点,分别以AC、BC为边在AB的两侧作正方形ACDE和正方形BCFG.若AB=6,且两正方形的面积之和S1+S2=20,利用(1)中得到的结论求图中阴影部分的面积.参考答案一.选择题1.解:A、(﹣2x)3=﹣8x3,故原题计算正确;B、(x3)3=x9,故原题计算错误;C、x3+x3=2x3,故原题计算错误;D、x2•x3=x5,故原题计算错误;故选:A.2.解:A、(y﹣x)2=y2﹣2xy+x2=(x﹣y)2,故本选项不合题意;B、﹣a﹣b=﹣(a+b),故本选项不合题意;C、(m﹣n)3=(m﹣n)(n﹣m)2=﹣(n﹣m)(n﹣m)2=﹣(n﹣m)3,故本选项不合题意;D、﹣m+n=﹣(m﹣n),故本选项符合题意.故选:D.3.解:A、(y3)n+1=y3n+3,故本选项错误;B、(y n)3+1=y4n,故本选项错误;C、y•y3n=y3n+1,故本选项正确;D、(y n)n+1=y n(n+1),故本选项错误.故选:C.4.解:A、a2﹣b2符合平方差公式的特点,能用平方差公式进行因式分解;B、﹣a2﹣b2两平方项符号相同,不能用平方差公式进行因式分解;C、a2+b2两平方项符号相同,不能用平方差公式进行因式分解;D、a2+2ab+b2是三项,不能用平方差公式进行因式分解.故选:A.5.解:3x﹣y=3x÷3y=15÷5=3,故选:B.6.解:∵x2+(m﹣1)x+9是一个完全平方式,∴(m﹣1)x=±2•x•3,∴m﹣1=±6,∴m=﹣5或7,故选:C.7.解:A、原式=3a(b﹣2c),不符合题意;B、原式=(m﹣n)(x2+y2),不符合题意;C、原式=(3x+2y)(3x﹣2y),不符合题意;D、原式=(a﹣2)2,符合题意.故选:D.8.解:∵(x+2)(x﹣3)=x2﹣x﹣6,又∵(x+2)(x﹣3)=x2+mx﹣6,∴x2﹣x﹣6=x2+mx﹣6.∴m=﹣1.故选:C.9.解:(x2+px+8)(x2﹣3x+1)=x4+px3+8x2﹣3x3﹣3px2﹣24x+x2+px+8=x4+(p﹣3)x3+(9﹣3p)x2+(p﹣24)x+8.∵(x2+px+8)(x2﹣3x+1)乘积中不含x2项,∴9﹣3p=0.∴p=3.故选:B.10.解:根据图形可得出:大正方形面积为:(x+y)2,大正方形面积=4个小图形的面积和=x2+y2+xy+xy,∴可以得到公式:(x+y)2=x2+2xy+y2.故选:B.二.填空题11.解:5+(﹣3)0=5+1=6;故答案为:6.12.解:x2•x5=x2+5=x7;(103)3=103×3=109.故答案为:x7;109.13.解:(8a3b﹣4a2b2)÷2ab=8a3b÷2ab﹣4a2b2÷2ab=4a2﹣2ab.故答案为:4a2﹣2ab.14.解:﹣32021×(﹣)2020=﹣32020×3×(﹣)2020=﹣[3×(﹣)]2020×3=﹣1×3=﹣3,故答案为:﹣3.15.解:6xy2﹣8x2y3=2xy2(3﹣4xy).故答案为:2xy2(3﹣4xy).16.解:原式=﹣8a(x2﹣2xy+y2)=﹣8a(x﹣y)2.17.解:∵x﹣y=3,∴(x﹣y)2=9,∴x2+y2﹣2xy=9,∵xy=2,∴x2+y2﹣2×2=9,∴x2+y2=13,故答案为:13.18.解:(2﹣x)(y+2)=2y+4﹣xy﹣2x=﹣xy﹣2(x﹣y)+4,把x﹣y=7,xy=5代入,原式=﹣5﹣2×7+4=﹣15.故答案为:﹣15.三.解答题19.解:(a+5b)(a﹣5b)﹣(a+2b)2=(a2﹣25b2)﹣(a2+4ab+4b2)=a2﹣25b2﹣a2﹣4ab﹣4b2=﹣29b2﹣4ab.20.解:(1)x(2x2y﹣3y)=x•2x2y﹣x•3y=x3y﹣xy;(2)(x+2y)(x﹣3y)+xy=x2﹣xy﹣6y2+xy=x2﹣6y2.21.解:(1)原式=2xy(2x﹣y);(2)原式=x2(y﹣4)﹣9(y﹣4)=(y﹣4)(x2﹣9)=(y﹣4)(x﹣3)(x+3).22.解:(1)2019×2021﹣20202=(2020﹣1)(2020+1)﹣20202=20202﹣1﹣20202=﹣1;(2)972+6×97+9=972+2×3×97+32=(97+3)2=1002=10000.23.解:(1)原式=2x3+2mx2﹣6x+nx2+mnx﹣3n =2x3+2mx2+nx2+mnx﹣6x﹣3n=2x3+(2m+n)x2+(mn﹣6)x﹣3n,由于展开式中不含x2项,常数项是﹣6,则2m+n=0且﹣3n=﹣6,解得:m=﹣1,n=2;(2)由(1)可知:m=﹣1,n=2,∴原式=m3+n3=(﹣1)3+23,=﹣1+8=7.24.解:(1)x2+7x+12=(x+3)(x+4).(2)﹣2x2﹣2x+12=﹣2(x2+x﹣6)=﹣2(x+3)(x﹣2).25.解:(1)(a+b)2=a2+2ab+b2,验证:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2,(2)∵(2a+b)(a+2b)=2a2+5ab+2b2,∴所需A、B两种纸片各2张,C种纸片5张,(3)设AC=a,BC=CF=b则a+b=6,∵S1+S2=20,∴a2+b2=20,∵(a+b)2=a2+2ab+b2,∴a2+b2=(a+b)2﹣2ab,∴20=62﹣2ab,∴ab=8,∴S阴影=ab=4.。

人教版八年级数学上册第14章整式的乘法与因式分解单元测试卷(有答案)

人教版八年级数学上册第14章整式的乘法与因式分解单元测试卷(有答案)

8241. 计算(一川)2的结果是()A. a5B. 一消C. a6D. -a62. 计算(一3。

3)2.。

2的结果为()A.9a4B.一9a4 D. 9a33. 运用乘法公式计算。

- 3)2的结果是(A.%2 - 9B.%2 + 9C.%2 - 6% + 9D.%2 - 3% + 94. F列各式中,能用完全平方公式计算的是()A.(3a — 5b)(—5b — 3a)B.(一3。

- 5b)(5a + 5b)C (一3a — 5b)(5b + 3a) D. (3a —5b)(3a + 5b)5. 若a〃 = 3,贝IJ/九=()A. 9B.6C. 27D. 186. 计算。

一 5/=(A.”一 25B.X2+25C. x2- 5x + 25D. X2-10X +257. 设 a = x — 2017t b = x-2019, c = x-2018t若d + b2 = 34,则的值是()A. 16B. 12C. 8D.48.若a,仇c是三角形三边的长,则代数式(。

2一2油+ 62)-°2的值()A.大于零B,小于零 C.大于或等于零 D.小于或等于零二、填空题(本大题共7小题,共21分)9.分解因式:ma2— mb2 = .10.根据里氏震级的定义,若地震所释放的相对能量E与地震级数,?的关系为:E = 10”,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍.11.因式分解:a2 + 2ab = .12.因式分解:2a2 —4Q=.13.已知(m + n)2=7, (m — n)2 = 3,贝Ijm2 + n2=.14.分解因式:9x2-6x + 1 = .15.分解因式:%3 - xy2 =.第1贞,共9贞三、解答题(本大题共4小题,共55分)16.分解因式:%2— y2— z2—2yz.17.分解因式:%2— y2— 4% + 6y — 5.18.利用因式分解说明257 -5号能被60整除.19. 21 .因式分解:(l)4a2b 一60从(2)9。

人教版八年级数学上册第十四章《整式的乘法与因式分解》单元同步检测试题(含答案)

人教版八年级数学上册第十四章《整式的乘法与因式分解》单元同步检测试题(含答案)

第十四章《整式的乘法与因式分解》单元检测题题号 一 二三 总分21 22 23 24 25 26 27 28 分数一、选择题:(每小题3分,共30分)1.若3x =15,3y =5,则3x -y 等于( ).A .5B .3C .15D .10 2.若(x -3)(x+4)=x 2+px+q,那么p 、q 的值是( )A .p=1,q=-12B .p=-1,q=12C .p=7,q=12D .p=7,q=-12 3.下列各式从左到右的变形,正确的是( ).A.-x -y=-(x -y)B.-a+b=-(a+b)C.22)()(y x x y -=-D.33)()(a b b a -=- 4.下列多项式能因式分解的是( )A.m 2+n B .m 2-m+1 C .m 2-2m+1 D .m 2-n 5.把多项式x 2+ax+b 分解因式,得(x+1)(x ﹣3)则a ,b 的值分别是( ) A .a=2,b=3B .a=﹣2,b=﹣3C .a=﹣2,b=3D .a=2,b=﹣36.如果x 2+10x+ =(x+5)2,横线处填( )A .5B .10C .25D .±107.下列从左边到右边的变形,因式分解正确的是( ) A .2a 2﹣2=2(a+1)(a ﹣1)B .(a+3)(a ﹣3)=a 2﹣9C.﹣ab 2+2ab ﹣3b=﹣b(ab ﹣2a ﹣3) D .x 2﹣2x ﹣3=x(x ﹣2)﹣3 8.若m 2+m-1=0,则m 3+2m 2+2016的值为( ) A .2020B .2017C .2016D .20159.在边长为a 的正方形中挖去一个边长为b 的小正方形(a>b)(如图甲),把余下的部分拼成一个长方形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a-b) D.(a+2b)(a-b)=a2+ab-2b210.若m=2200,n=2550,则m,n的大小关系是( )A.m>n B.m<n C.m=n D.无法确定二、填空题:(每小题3分,共30分)11.(1)计算:(2a)3·(-3a2)=____________;(2)若a m=2,a n=3,则a m+n=__________,a m-n=__________.12.已知x+y=5,x-y=1,则式子x2-y2的值是________.13.若(a2-1)0=1,则a的取值范围是________.14.计算:(16x3-8x2+4x)÷(-2x)= .15.已知x2+y2=10,xy=3,则x+y=16.已知长方形的面积为4a2-4b2,如果它的一边长为a+b,则它的周长为 .17.若二次三项式x2+(2m-1)x+4是一个完全平方式,则m= .18.已知2a2+2b2=10,a+b=3,则ab的值为________.19.若3m=2,3n=5,则32m+3n-1的值为________.20.请看杨辉三角①,并观察下列等式②:11 112 1133 11464 1…①(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4②根据前面各式的规律,则(a+b)6=______________________.三、解答题:(共60分)21.计算:(1)x·x7; (2)a2·a4+(a3)2;(3)(-2ab3c2)4; (4)(-a3b)2÷(-3a5b2).22.化简:(1)(a+b-c)(a+b+c);(2)(2a+3b)(2a-3b)-(a-3b)2.23.若关于x的多项式(x2+x-n)(mx-3)的展开式中不含x2和常数项,求m,n的值.24.分解因式:(1)4x3y+xy3-4x2y2; (2)y2-4-2xy+x2.25.观察下列关于自然数的等式:32-4×12=5; ①52-4×22=9; ②72-4×32=13; ③……根据上述规律解决下列问题:(1)完成第四个等式:92-4×________2=________;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.26.(10分)小红家有一块L形菜地,要把L形菜地按如图所示的那样分成面积相等的两个梯形种上不同的蔬菜.已知这两个梯形的上底都是a米,下底都是b 米,高都是(b-a)米.(1)请你算一算,小红家的菜地面积共有多少平方米;(2)当a=10,b=30时,菜地面积是多少?27.(10分)(1)填空:(a-b)(a+b)=____________________;(a-b)(a2+ab+b2)=____________________;(a-b)(a3+a2b+ab2+b3)=____________________.(2)猜想:(a-b)(a n-1+a n-2b+…+ab n-2+b n-1)=____________________(其中n为正整数,且n≥2).(3)利用(2)猜想的结论计算:29-28+27-…+23+22+2.参考答案一、选择题:(每小题3分,共30分)二、填空题:(每小题3分,共24分)11.(1)-24a5(2)6;2 312.513.a≠±114.答案为:-8x2+4x-215.答案为:±416.答案为:10a-6b17.答案为:2.5或-1.5.18.219.500320.a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6三、解答题:21.解:(1)原式=x 8.(2分)(2)原式=a 6+a 6=2a 6.(4分) (3)原式=16a 4b 12c 8.(6分)(4)原式=a 6b 2÷(-3a 5b 2)=-13a .(8分)22.解:(1)原式=(a +b )2-c 2=a 2+2ab +b 2-c 2.(4分)(2)原式=4a 2-9b 2-(a 2-6ab +9b 2)=3a 2+6ab -18b 2.(8分)23.解:原式=mx 3+(m -3)x 2-(3+mn )x +3n .(3分)∵展开式中不含x 2和常数项,得到m -3=0,3n =0,(6分)解得m =3,n =0.(8分) 24.解:(1)原式=xy (2x -y )2.(4分)(2)原式=(x -y )2-4=(x -y +2)(x -y -2).(8分) 25.解:(1)4 17(3分)(2)第n 个等式为(2n +1)2-4n 2=4n +1.(5分)左边=(2n +1)2-4n 2=4n 2+4n +1-4n 2=4n +1.右边=4n +1.左边=右边,∴(2n +1)2-4n 2=4n +1.(10分) 26. 解:(1)小红家的菜地面积共有:2×12(a +b)(b -a)=b 2-a 2 (2)当a =10,b=30时,原式=302-102=900-100=800(平方米)27. 解:(1)a 2-b 2,a 3-b 3,a 4-b 4 (2)a n -b n (3)29-28+27-…+23-22+2=13[2-(-1)][29+28×(-1)+27×(-1)2+…+21×(-1)8+(-1)9+1]=13[2-(-1)][29+28×(-1)+27×(-1)2+…+21×(-1)8+(-1)9]+1=13(210-1)+1=342。

人教版数学八年级上册第十四章《整式的乘法与因式分解》单元检测卷(Word版 含答案)

人教版数学八年级上册第十四章《整式的乘法与因式分解》单元检测卷(Word版 含答案)

人教版数学八上《整式的乘法与因式分解》单元检测卷一、选择题1.计算(-a 3)2的结果是( )A.-a 5B.a 5C.a 6D.-a 62.边长为a ,b 的长方形的周长为10,面积为6,则a 3b+ab 3的值为( )A.15B.30C.60D.783.下列各式中计算正确的是( )A.(a+b)(b ﹣a)=a 2﹣b 2B.(﹣m ﹣n)2=m 2+2mn+n 2C.2m 3÷m 3=2mD.(﹣bc)4÷(﹣bc)2=﹣b 2c 24.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a.b 的值分别是( )A.a=2,b=3B.a=-2,b=-3C.a=-2,b=3D.a=2,b=-35.将下列多项式因式分解,结果中不含有因式(a+1)的是( )A.a 2-1B.a 2+aC.a 2+a-2D.(a+2)2-2(a+2)+16.计算(-×103) 2×(1.5×104) 2的值是 ( )A.-1.5×1011B.1014C.-4×1014D.-10147.已知x a =3,x b =4,则x 3a-2b 的值是( )A. B. C.11 D.198.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A.3B.5C.4或5D.3或4或59.已知a ,b ,c 是三角形的三边,那么代数式a 2-2ab+b 2-c 2的值( )A.大于零B.等于零C.小于零D.不能确定10.已知多项式x-a 与x 2+2x-1的乘积中不含x 2项,则常数a 的值是( )A.-1B.1C.2D.-211.已知x=3y+5,且x 2﹣7xy+9y 2=24,则x 2y ﹣3xy 2的值为( )A.0B.1C.5D.1212.已知a=2025x+2024,b=2025x+2025,c=2025x+2026,那么a 2+b 2+c 2—ab -bc -ca 的值等于( )A.0B.1C.2D.38271627二、填空题13.已知a m=3,a n=2,则a2m﹣n的值为_____.14.已知x2+2x=3,则代数式(x+1)2﹣(x+2)(x﹣2)+x2的值为_____.15.若64×83=2x,则x=_______.16.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:a2+3ab+2b2=______.17.如图,现有A,C两类正方形卡片和B类长方形卡片各若干张,用它们可以拼成一些新的长方形.如果要拼成一个长为(3a+b),宽为(a+2b)的长方形,那么需要B类长方形卡片__张.18.已知:x2+y2-4x+6y+13=0,则x+y= .三、解答题19.计算:[(ab+1)(ab-1)-2a2b2+1]÷(-ab).20.计算:[-(a2)3]2·(ab2)3·(-2ab)21.分解因式:9(a-b)2-16(a+b)2.22.分解因式:-14abc-7ab+49ab2c.23.如图1所示,边长为a的正方形中有一个边长为b的小正方形,如图2中阴影部分剪裁后拼成的一个长方形.(1)设如图1中阴影部分面积为S1,如图2中阴影部分面积为S2,请直接用含a,b的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+124.阅读:已知a+b=﹣4,ab=3,求a2+b2的值.解:∵a+b=﹣4,ab=3,∴a2+b2=(a+b)2﹣2ab=(﹣4)2﹣2×3=10.请你根据上述解题思路解答下面问题:(1)已知a﹣b=﹣3,ab=﹣2,求(a+b)(a2﹣b2)的值.(2)已知a﹣c﹣b=﹣10,(a﹣b)•c=﹣12,求(a﹣b)2+c2的值.25.阅读理解:下面的图象表示2m的个位数字随m(m为正整数)变化的规律.请解答下列问题:(1)根据图象回答下列问题:当m=4n(n为正整数)时,2m的个位数字是;当m=4n+1(n为正整数)时,2m的个位数字是;当m=4n+2(n为正整数)时,2m的个位数字是;当m=4n+3(n为正整数)时,2m的个位数字是;(2)求:(2+1)(22+1)(24+1)(28+1)+1的个位数字.(3)求:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)的个位数字.参考答案1.答案为:C2.答案为:D3.答案为:B4.答案为:B;5.答案为:C6.答案为:B7.答案为:B8.答案为:C9.答案为:C10.答案为:C11.答案为:C12.答案为:D13.答案为:4.5.14.答案为:815.答案为:B16.答案为:(a+2b)(a+b).17.答案为:7.18.答案为:-119.原式=ab.20.原式=-2a16b7;21.原式=-7(7a+b)(a+7b).22.原式=-7ab(2c-7bc+1).23.解:(1)S1=a2-b2,S2=(a+b)(a﹣b);(2)(a+b)(a﹣b)=a2﹣b2;(3)原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1=(22﹣1)(22+1)(24+1)(28+1)+1=(24﹣1)(24+1)(28+1)+1=(28﹣1)(28+1)+1=(216﹣1)+1=216.24.解:原式=(a+b)(a+b)(a-b)=(a+b)2(a-b)=[(a-b)2+4ab](a-b)=-3.(2)已知a-c-b=-10,(a-b)c=-12,求(a-b)2+c2的值.解:原式=[(a-b)-c]2+2(a-b)c=76.25.解:由图象观察可得:当m=4n(n为正整数)时,2m的个位数字是6;当m=4n+1(n为正整数)时,2m的个位数字是2;当m=4n+2(n为正整数)时,2m的个位数字是4;当m=4n+3(n为正整数)时,2m的个位数字是8;故答案为: 6;2;4;8;(2)解:(2+1)(22+1)(24+1)(28+1)+1=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1=(22﹣1)(22+1)(24+1)(28+1)+1=(24﹣1)(24+1)(28+1)+1=216.因为16=4×4,所以由(1)得,216的个位数字是6,即(2+1)(22+1)(24+1)(28+1)+1的个位数字是6.(3)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)=(2﹣1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)=(22﹣1)(22+1)(24+1)(28+1)(216+1)(232+1)=(24﹣1)(24+1)(28+1)(216+1)(232+1)=(28﹣1)(28+1)(216+1)(232+1)=(216﹣1)(216+1)(232+1)=(232﹣1)(232+1)=264﹣1因为64=4×16,所以264的个位数字是6,所以264﹣1的个位数字是5,即(2+ 1)(22+1)(24+1)(28+1)(216+1)(232+1)的个位数字是5.。

人教版八年级上册数学第十四章 整式的乘法与因式分解单元测试卷附解析

人教版八年级上册数学第十四章 整式的乘法与因式分解单元测试卷附解析

人教版八年级上册数学第十四章整式的乘法与因式分解单元测试卷附解析一、单选题(共10题;共30分)1.(3分)计算(a3)2•a2的结果是()A.a7B.a8C.a10D.a112.(3分)若x n=2,则x3n的值为()A.6B.8C.9D.123.(3分)计算(-2a2b)3的结果是()A.-6a6b3B.-8a6b3C.8a6b3D.-8a5b34.(3分)如果(a-1)0=1成立,则()A.a≠1B.a=0C.a=2 D.a=0或a=2 5.(3分)计算(2+1)(22+1)(24+1)(28+1)+1的值是()A.1024B.28+1C.216+1D.2166.(3分)已知a+1a=3,则a2+1a2的值为()A.5B.6C.7D.87.(3分)下列由左到右的变形,属于因式分解的是()A.(x+2)(x-2)=x2-4B.x2+4x-2=x(x+4)-2C.x2-4=(x+2)(x-2)D.x2-4+3x=(x+2)(x-2)+3x8.(3分)若4x2+5x+k有一个因式为(x−3),则k的值为()A.17B.51C.-51D.-579.(3分)如图,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一个矩形,通过计算两个图形阴影部分的面积,验证了一个等式,则这个等式是()A.a2−ab=a(a−b)B.(a+b)2=a2+2ab+b2C.(a−b)2=a2−2ab+b2D.a2−b2=(a+b)(a−b)10.(3分)如图,大正方形与小正方形的面积之差为S,则图中阴影部分的面积是()A.2S B.S C.12S D.14S 二、填空题(共5题;共15分)11.(3分)已知2n=3,则4n+1的值是.12.(3分)设4x2+mx+121是一个完全平方式,则m=13.(3分)计算(x−y)(−y−x)的结果是.14.(3分)已知a+10=b+12=c+15,则a2+b2+c2﹣ab﹣bc﹣ac=.15.(3分)若√a2−3a+1+b2+2b+1=0,则a2+1a2−|b|=.三、计算题(共3题;共21分)16.(8分)计算:(1)(2分)(5ab-3x)(-3x-5ab).(2)(2分)(-y2+x)(x+y2).(3)(2分)x(x+5)-(x-3)(x+3).(4)(2分)(-1+a)(-1-a)(1+b2).17.(8分)因式分解:(1)(2分)am−an+ap(2)(2分)2a(b+c)−3(b+c)(3)(2分)4x4−4x3+x2(4)(2分)x4−1618.(5分)已知(x+a)(x 2﹣x+c)的乘积中不含x 2和x 项,求a ,c 的值.四、解答题(共7题;共54分)19.(6分)仔细阅读下面例题,解答问题:例题:已知二次三项式 x 2 - 4x + m 有一个因式是(x+3),求另一个因式以及 m 的值. 解:设另一个因式为(x+n),得 x 2 - 4x + m = ( x + 3)( x + n) 则 x 2 - 4x + m = x 2 + (n + 3) x + 3n ∴{n +3=−4m =3n 解得:n=-7,m=-21∴另一个因式为(x -7),m 的值为-21. 问题:仿照以上方法解答下面问题:已知二次三项式 2x 2 + 3x - k 有一个因式是(2x -3),求另一个因式以及 k 的值.20.(6分)阅读下面解题过程,然后回答问题.分解因式: x 2+2x −3 .解:原式= x 2+2x +1−1−3 = (x 2+2x +1)−4 = (x +1)2−4 = (x +1+2)(x +1−2) = (x +3)(x −1) 上述因式分解的方法称为”配方法”.请你体会”配方法”的特点,用“配方法”分解因式: y 2−4y +3 .21.(6分)已知a,b,c是△ABC的三边长,且满足a2c2−b2c2=a4−b4,试判断△ABC的形状。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版八年级上册《第14章整式的乘法与因式分解》2013年单元检测训练卷A(一)
新人教版八年级上册《第14章整式的乘法与因式分解》2013年单元检测训练卷A(一)
一、选择题(本题共8小题,每小题4分,共32分)
32
2
85
6.(4分),则等于()
.C D.
22242
8.(4分)(2007•临夏州)从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()
二、填空题(本题共7小题,每小题4分,共28分)
9.(4分)计算:(﹣a)5÷a2•a3=_________.
10.(4分)﹣3x2y+15xy﹣12x=_________×(xy﹣5y+4).
11.(4分)已知10m=3,10n=2,则10m﹣n=_________.
12.(4分)两个边长分别为a,b的正方形拼成如图所示的形状,连接A,E,则阴影部分的面积为_________.
13.(4分)若(x+t)(x+6)的积中不含x的一次项,则t的值为_________.
14.(4分)一个矩形的面积为a3﹣2ab+a,宽为a,则其周长为_________.
15.(4分)若4x2+kx+25是完全平方式,则k=_________.
三、解答题(本题共3小题,16题10分,17、18题每小题10分,共40分)
16.(10分)请同学们来做一个游戏:计算下列各题,把所求的答案和下面圆中的答案比较,相同的用线连起来.
17.(15分)如图,在一个边长为acm的正方形木板上,挖掉四个边长为bcm()的小正方形.
(1)试用a,b表示出剩余部分的面积.
(2)当a=14.5,b=2.75时,求剩余部分的面积.
18.(15分)给出三个多项式x=a2+3ab+b2,y=3a2+ab,z=a2+ab,请你任选两个进行加法(或减法)运算,再将结果分解因式.
新人教版八年级上册《第14章整式的乘法与因式分解》2013年单元检测训练卷A(一)
参考答案与试题解析
一、选择题(本题共8小题,每小题4分,共32分)
32
2
85
6.(4分),则等于()
.C D.
的值,进而得出

x x
x+﹣﹣
22242
8.(4分)(2007•临夏州)从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()
二、填空题(本题共7小题,每小题4分,共28分)
9.(4分)计算:(﹣a)5÷a2•a3=﹣a6.
10.(4分)﹣3x2y+15xy﹣12x=﹣3x×(xy﹣5y+4).
11.(4分)已知10m=3,10n=2,则10m﹣n=.
=
故答案为:
12.(4分)两个边长分别为a,b的正方形拼成如图所示的形状,连接A,E,则阴影部分的面积为a2+b2﹣ab.
a a ab
故答案为:ab
13.(4分)若(x+t)(x+6)的积中不含x的一次项,则t的值为﹣6.
14.(4分)一个矩形的面积为a3﹣2ab+a,宽为a,则其周长为2a+2a2﹣4b+2.
15.(4分)若4x2+kx+25是完全平方式,则k=±20.
三、解答题(本题共3小题,16题10分,17、18题每小题10分,共40分)
16.(10分)请同学们来做一个游戏:计算下列各题,把所求的答案和下面圆中的答案比较,相同的用线连起来.
17.(15分)如图,在一个边长为acm的正方形木板上,挖掉四个边长为bcm()的小正方形.
(1)试用a,b表示出剩余部分的面积.
(2)当a=14.5,b=2.75时,求剩余部分的面积.
18.(15分)给出三个多项式x=a2+3ab+b2,y=3a2+ab,z=a2+ab,请你任选两个进行加法(或减法)运算,再将结果分解因式.。

相关文档
最新文档