2003考研数学四

合集下载

2003年考研数学试题详解及评分参考

2003年考研数学试题详解及评分参考

相互独立,于是 Z 2 ~ c 2 (1) ,从而
c2 n 1 = : F (n,1) . 故选 (C) . X 2 Z2 1
三、 (本题满分 10 分) 过坐标原点作曲线 y = ln x 的切线, 该切线与曲线 y = ln x 及 x 轴围成平面图形 D . (1) 求 D 的面积 A ; (2) 求 D 绕直线 x = e 旋转一周所得旋转体的体积 V . 解 (1) 设切点的横坐标为 x0 ,则曲线 y = ln x 在点 ( x0 , ln x0 ) 处的切线方程是
2
有 a2 =
p p 2 p 2 1 x cos 2 xdx = [ x 2 sin 2 x - ò 2 x sin 2 xdx] ò 0 0 p 0 p
p 1 p [ x cos 2p 0 - ò cos 2 xdx] = 1 . 0 p æ1 ö æ1 ö æ1ö æ1 ö ÷ ç ÷ ç ÷ ç (4) 从 R 2 的基 a 1 = ç , a = 到基 b = , b = 2 1 2 ç 0÷ ç - 1÷ ç1÷ ç 2÷ ÷ 的过渡矩阵为 è ø è ø è ø è ø æ2 3 ö 【答】 应填 ç ç - 1 - 2÷ ÷. è ø
s s za , X + za ) ,由于 za = z0.025 , 1 - 0.025 = 0.975 = F (1.96 ) ,数据代入, n 2 n 2 2 1 1 得置信区间为 (40 ´1.96, 40 + ´ 1.96) = ( 39.51, 40.49 ) 16 16
(X 二、选择题(本题共 6 小题,每小题 4 分,满分 24 分) (1) 设函数 f ( x) 在 (-¥,+¥) 内连续,其导函数的图形如图所示,则 f ( x) 有 (A) 一个极小值点和两个极大值点 (B) 两个极小值点和一个极大值点 (C) 两个极小值点和两个极大值点 (D) 三个极小值点和一个极大值点 【答】 应选 (C). 【解】 在 y 轴左侧,因 f ¢( x) 由正变负再变正,故 f ( x ) 由增变减再变增,从而有一个极 大值点和一个极小值点;而在 y 轴右侧,因 f ¢( x) 由负变正,故 f ( x) 由减变增,从而有 一个极小值点;又在点 x = 0 左右领域, f ¢( x) 由正变负, f ( x) 由增变减,且 f ( x) 在点

武汉理工大学考研真题数学分析2003

武汉理工大学考研真题数学分析2003

武汉理工大学 2003 年研究生入学考试试题课程 数学分析 (共 页,共 题,答题时不必抄题,标明题目序号)一、计算下列各题(12′×6=72分)1.求极限x t x x t x t sin sin sin sin lim -→⎪⎭⎫ ⎝⎛,记此极限为)(x f ,求函数)(x f 的间断点,并指出其类型。

2.求dx e e x x2arctan ⎰3.计算二重积分dxdy e y x D },max{22⎰⎰,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤≤≤≤=1010),(y x y x D 4.计算曲线积分224y x ydx xdy I L +-=⎰,其中L 是以点(1,0)为中心,R 为半径的圆周(R >1),取逆时针方向。

5.设xdx x I n n cos sin 40⎰=π,n =0,1,2,…,求n n I ∑∞=06.计算dxdy z z ydzdx xdydz )2(2-++⎰⎰∑,∑为曲面22y x z +=介于z =0与z =1之间的部分,取下侧。

二(15分)、设)(x f 在0=x 的某邻域内的二阶导数存在且连续,0))(3sin (lim 230=+→xx f x x x ,求)0(f ,)0(f ',)0(f ''。

三(15分)、假设f 是一可微函数,求曲面)(x y xf z =上任一点)0(),,(0000≠x z y x M 处的切平面方程,并指出该切平面是否过坐标原点。

四(15分)、设),,(z y x F 的一阶偏导数处处存在且连续,且0>≥∂∂+∂∂-∂∂αzF y F x x F y (α为常数),令)0(),sin ,cos ()(≥-=t t t t F t f ,求证+∞=+∞→)(lim t f t 。

2003考研数四真题及解析

2003考研数四真题及解析

2003年全国硕士研究生入学统一考试数学四试题一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (1) 极限xx x 20)]1ln(1[lim ++→=. (2)dx ex x x⎰--+11)(=.(3) 设0a >,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧== 而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(=.(4) 设,A B 均为三阶矩阵,E 是三阶单位矩阵. 已知2AB A B =+, 202040202B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则 1)(--E A =.(5) 设n 维向量0,),0,,0,(<=a a a Tα;E 为n 阶单位矩阵,矩阵T E A αα-=, T aE B αα1+=,其中A 的逆矩阵为B ,则a = .(6) 设随机变量X 和Y 的相关系数为0.5,0EX EY ==,222==EY EX , 则2)(Y X E += .二、选择题:本题共6小题,每小题4分,共24分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1) 曲线21x xe y = ( )(A) 仅有水平渐近线. (B) 仅有铅直渐近线.(C) 既有铅直又有水平渐近线. (D) 既有铅直又有斜渐近线.(2) 设函数)(1)(3x x x f ϕ-=,其中)(x ϕ在1x =处连续,则0)1(=ϕ是()f x 在1x =处可导的 ( )(A) 充分必要条件. (B)必要但非充分条件.(C) 充分但非必要条件 . (D) 既非充分也非必要条件. (3) 设可微函数(,)f x y 在点),(00y x 取得极小值,则下列结论正确的是 ( )(A) ),(0y x f 在0y y =处的导数等于零. (B)),(0y x f 在0y y =处的导数大于零. (C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在.(4) 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=001010100B .已知矩阵A 相似于B ,则秩(2)A E -与秩()A E -之和等于( )(A) 2. (B) 3. (C) 4. (D) 5. (5) 对于任意二事件A 和B ( )(A) 若φ≠AB ,则,A B 一定独立. (B) 若φ≠AB ,则,A B 有可能独立. (C) 若φ=AB ,则,A B 一定独立. (D) 若φ=AB ,则,A B 一定不独立. (6) 设随机变量X 和Y 都服从正态分布,且它们不相关,则 ( )(A) X 与Y 一定独立. (B) (X ,Y )服从二维正态分布. (C) X 与Y 未必独立. (D) X +Y 服从一维正态分布.三 、(本题满分8分)设 ).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ试补充定义(1)f 使得()f x 在]1,21[上连续.四 、(本题满分8分)设(,)f u v 具有二阶连续偏导数,且满足12222=∂∂+∂∂v f u f ,又)](21,[),(22y x xy f y x g -=,求.2222ygx g ∂∂+∂∂ 五 、(本题满分8分) 计算二重积分.)sin(22)(22dxdy y x e I Dy x+=⎰⎰-+-π其中积分区域22{(,)}.D x y x y π=+≤ 六、(本题满分9分)设1a >,at a t f t-=)(在),(+∞-∞内的驻点为).(a t 问a 为何值时,()t a 最小?并求出最小值.七、(本题满分9分)设()y f x =是第一象限内连接点(0,1),(1,0)A B 的一段连续曲线,(,)M x y 为该曲线上任意一点,点C 为M 在x 轴上的投影,O 为坐标原点. 若梯形OCMA 的面积与曲边三角形CBM 的面积之和为3163+x ,求()f x 的表达式.八、(本题满分8分)设某商品从时刻0到时刻t 的销售量为kt t x =)(,).0(],,0[>∈k T t 欲在T 时将数量为A 的该商品销售完,试求(1) t 时的商品剩余量,并确定k 的值;(2) 在时间段[0,]T 上的平均剩余量. 九、(本题满分13分)设有向量组(I):T )2,0,1(1=α,T)3,1,1(2=α,T a )2,1,1(3+-=α和向量组(II):T a )3,2,1(1+=β,T a )6,1,2(2+=β,.)4,1,2(3T a +=β 试问:当a 为何值时,向量组(I)与(II)等价?当a 为何值时,向量组(I)与(II)不等价? 十、(本题满分13分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a A 11121112可逆,向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11b α是矩阵*A 的一个特征向量,λ是α对应的特征值,其中*A 是矩阵A 的伴随矩阵. 试求,a b 和λ的值. 十一、(本题满分13分)设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x f()F X 是X 的分布函数. 求随机变量()Y F X =的分布函数.十二、(本题满分13分)对于任意二事件A 和B ,1)(0,1)(0<<<<B P A P ,)()()()()()()(B P A P B P A P B P A P AB P -=ρ称作事件A 和B 的相关系数.(1) 证明事件A 和B 独立的充分必要条件是其相关系数等于零;(2) 利用随机变量相关系数的基本性质,证明.1≤ρ2003年全国硕士研究生入学统一考试数学四试题解析一、填空题 (1)【答案】2e【详解】方法1:xx x 2)]1ln(1[lim ++→,属于∞1型未定式极限,可以考虑利用重要极限求解.首先凑成重要极限形式:()200002ln(1)1ln(1)2ln(1)2lim lim 2lim[1ln(1)]lim 1ln(1)xx x x x x x x x xx xx x e e e →→→→+⋅++=++=++==方法2:xx x 20)]1ln(1[lim ++→=2ln[1ln(1)]0lim x x x e++→=002ln[1ln(1)]2ln(1)limlim2x x x x x xe e e →→+++==(注意:l n[1ln(1)]ln(1)x x +++)(2)【答案】)21(21--e【分析】对称区间上的定积分,有0()2()()()0()a a aaaf x dx f x dxf x f x dx f x --⎧=⎪⎨⎪=⎩⎰⎰⎰当为偶函数当为奇函数【详解】dx ex x x⎰--+11)(=dx xedx ex xx⎰⎰----+1111 =dx ex x--⎰11+012x xe dx -=⎰102xxde-=-⎰1102[]xx xee dx --=--⎰=)21(21--e .(3)【答案】2a【详解】本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,则二重积分只需在积分区域与被积函数不为零的区域的公共部分商积分即可,因此实际上只需在满足此不等式的区域内积分即可.⎰⎰-=Ddxdy x y g x f I )()(=20101x y x a dxdy ≤≤≤-≤⎰⎰=1120x x a dx dy +⎰⎰1220[(1)]a x x dx a =+-=⎰(4)【答案】⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100 【详解】 应先化简,从2AB A B =+中确定1)(--E A .2AB A B =+⇒222AB B A E E -=-+⇒E E A B E A 2)(2)(=---⇒E E B E A 2)2)((=--⇒E E B E A =-⋅-)2(21)(,所以 1)(--E A =)2(21E B -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100.(5) 【答案】-1【详解】这里Tαα为n 阶矩阵,而22a T=αα为数,直接通过E AB =进行计算并注意利用乘法的结合律即可.由题设,有)1)((T T a E E AB αααα+-==T T T T a a E αααααααα⋅-+-1111()T T T T E a a αααααααα=-+-=T T T a a E αααααα21-+-1(12)T E a E aαα=+--+=,于是有0121=+--a a ,即0122=-+a a ,解得.1,21-==a a 已知0a <,故1a =-.(6)【答案】6【分析】本题的核心是逆向思维,利用协方差公式()cov(,)()()E XY X Y E X E Y =+. 涉及公式:(1)22()()[()]D X E X E X =-,(2)()()()2cov(,)D X Y D X D Y X Y +=++(3)XY ρ=【详解】方法1:由方差定义的公式和相关系数的定义22()()[()]D X E X E X =-202,=-= 同理()2D Y =,1cov(,)212XY X Y ρ==⨯=.所以 222()()[()]()()E X Y D X Y E X Y D X Y EX EY +=+++=+++()()()2cov(,) 6.D X Y D X D Y X Y =+=++=方法2:由数学期望的线性可加性()()()E aX bY aE X bE Y +=+得:222()(2)E X Y E X XY Y +=++222()EX E XY EY =++42()E XY =+再利用()()()(,)E XY Cov X Y E X E Y =+⋅,得2)(Y X E +()()42[(,)]Cov X Y E X E Y =++⋅由方差定义的公式,有22()()[()]D X E X E X =-202,=-= 同理()2D Y =,再由相关系数的定义XY ρ=得,cov(,)XY X Y ρ=2)(Y X E+42420.52 6.XY ρ=+=+⨯⨯=二、选择题 (1)【答案】()D【分析】按照铅直、水平、斜渐近线三种情况分别考虑:先考虑是否有水平渐近线:lim (),()x f x c c →±∞=为常数,y c =为曲线的一条水平渐近线;若无水平渐近线应进一步考虑是否存在斜渐近线:()()lim,lim [()]x x x x x x yk b f x kx x →∞→∞→+∞→+∞→-∞→-∞==-,y kx b =+为曲线的一条斜渐近线;而是否存在铅直渐近线,应看函数是否存在无定义点,且0lim ,lim x x x x y y +-→→=∞=∞,则0x x =为曲线的一条垂直渐近线.【详解】1.y x ±∞→lim 极限均不存在,故曲线不存在水平渐近线;2.1lim lim 21==∞→∞→x x x e x y ,2221212001lim()lim1lim 0u u x x u u e u xe x u x e u uu -→∞→→--=-=, 所以曲线有斜渐近线y x =.3.在0x =处21xxey =无定义,且1222111ln 0lim lim lim lim xxx e xx xx x x x xe e e e ++++→→→→====∞,故 0x =为铅直渐近线.故曲线21x xe y =既有铅直又有斜渐近线,应选()D .(2)【答案】()A【详解】被积函数中含有绝对值,应当作分段函数看待,利用()f x 在1x =处左右导数定义讨论即可.32111()(1)1lim lim ()lim(1)()3(1)11x x x f x f x x x x x x x ϕϕϕ+++→→→--=⋅=++⋅=--, 32111()(1)1lim lim ()lim(1)()3(1)11x x x f x f x x x x x x x ϕϕϕ---→→→--=-⋅=-++⋅=---, 由于()f x 在1x =处可导的充分必要条件是左、右导数相等,所以.0)1()1(3)1(3=⇔-=ϕϕϕ故应选()A .(3)【答案】()A【详解】由函数(,)f x y 在点),(00y x 处可微,知函数(,)f x y 在点),(00y x 处的两个偏导数都存在,又由二元函数极值的必要条件即得(,)f x y 在点),(00y x 处的两个偏导数都等于零. 从而有000(,)(,)(,)0y y x y x y df x y f dyy==∂==∂选项()A 正确.(4)【答案】(C)【分析】 利用相似矩阵有相同的秩计算,秩(2)A E -与秩()A E -之和等于秩(2)B E -与秩()B E -之和.【详解】因为矩阵A 相似于B , 又1B P AP -=,所以()111222P A E P P AP P EP B E ----=-=-,于是,矩阵(2)A E -与矩阵(2)B E -相似. 同理有()111P A E P P AP P EP B E ----=-=-所以,矩阵A E -与矩阵B E -相似. 又因为相似矩阵有相同的秩,而秩(2)B E -=秩3201010102=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---,秩()B E -=秩1101000101=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--,所以有秩(2)A E -+秩()A E -= 秩(2)B E -+秩()B E -=4,故应选(C).(5)【答案】B【详解】本题考查独立与互斥事件之间的关系,事实上,独立与互斥事件之间没有必然的互推关系.当{}{}0,0P A P B ≠≠时,若,A B 相互独立,则一定有{}{}{}0P AB P A P B =≠,从而有AB ≠∅. 可见,当,A B 相互独立时,往往,A B 并不是互斥的.AB ≠∅推不出{}{}{}P AB P A P B =⋅, 因此推不出,A B 一定独立,排除(A);若AB =∅,则{}0P A B=,但{}{}P A P B 是否为零不确定,{}{}{}P AB P A P B ≠.因此(C),(D) 也不成立,故正确选项为(B).(6)【答案】C .【分析】本题考查正态分布的性质以及二维正态分布与一维正态分布之间的关系.只有(,)X Y 服从二维正态分布时,不相关与独立才是等价的.有结论如下:① 若X Y 与均服从正态分布且相互独立,则(,)X Y 服从二维正态分布.如果X Y 与都服从正态分布,甚至X Y 与是不相关,也并不能推出(,)X Y 服从二维正态分布.② 若X Y 与均服从正态分布且相互独立,则bY aX +服从一维正态分布. ③ 若(,)X Y 服从二维正态分布,则X Y 与相互独立⇔X Y 与不相关.【详解】只有当(,)X Y 服从二维正态分布时,X Y 与不相关⇔X Y 与独立,本题仅仅已知X Y 与服从正态分布,因此,由它们不相关推不出X Y 与一定独立,排除(A);若X Y 与都服从正态分布且相互独立,则(,)X Y 服从二维正态分布,但题设并不知道,X Y 是否独立,可排除(B);同样要求X Y 与相互独立时,才能推出X Y +服从一维正态分布,可排除(D).故正确选项为(C).三【详解】为使函数()f x 在1[,1]2上连续,只需求出函数()f x 在1x =的左极限)(lim 1x f x -→,然后定义(1)f 为此极限值即可.11111lim ()lim[]sin (1)x x f x x x x πππ--→→=+-- 1111lim[]sin (1)x x x πππ-→=+--11(1)sin lim (1)sin x x xx xπππππ-→--=+-令1u x =-,则当1x -→时,0u +→,所以1lim ()x f x -→01sin (1)lim sin (1)u u u u u πππππ+→--=+-1sin (1)lim (sin cos cos sin )u u u u u u ππππππππ+→--=+⋅⋅-⋅01sin (1)limsin u u u u uπππππ+→--=+⋅ 2201sin (1)lim u u u u ππππ+→--+等201cos (1)lim 2u u uπππππ+→+-+洛 2201sin (1)lim 2u u ππππ+→-+洛110ππ+== 定义π1)1(=f ,从而有11lim ()(1)x f x f π-→==,()f x 在1x =处连续. 又()f x 在)1,21[上连续,所以()f x 在]1,21[上连续.四【详解】由复合函数[(,),(,)]z f x y x y ϕψ=的求导法则,得221()()2x y g f xy f x u x v x ⎛⎫∂- ⎪∂∂∂∂⎝⎭=+∂∂∂∂∂f f y x u v ∂∂=+∂∂ 221()()2x y g f xy f y u y v x ⎛⎫∂- ⎪∂∂∂∂⎝⎭=+∂∂∂∂∂.f f x y u v∂∂=-∂∂ 从而2222222222222222g f f f f f y y x x y x x u u v v u v v f f f f y xy x u u v v v⎡⎤⎡⎤∂∂∂∂∂∂=⋅+⋅++⋅+⋅⎢⎥⎢⎥∂∂∂∂∂∂∂∂⎣⎦⎣⎦∂∂∂∂=+++∂∂∂∂∂2222222222222222g f f f f f x x y y x y y u u v v u v v f f f f x xy y u u v v v⎡⎤⎡⎤∂∂∂∂∂∂=⋅-⋅--⋅-⋅⎢⎥⎢⎥∂∂∂∂∂∂∂∂⎣⎦⎣⎦∂∂∂∂=-+-∂∂∂∂∂所以 222222222222222222()()()()g g f f f f x y x y x y x y u v u v∂∂∂∂∂∂+=+++=++∂∂∂∂∂∂=.22y x +五【详解】从被积函数与积分区域可以看出,应利用极坐标进行计算.作极坐标变换:设θθsin ,cos r y r x ==,有2222222()22()22222220sin()sin()sin sin sin .2xy xy DDt r rr t I e x y dxdy e e x y dxdyee d r rdr d r dr e e tdt ππππππππθθπ-+--+=---=+=+=⋅==⎰⎰⎰⎰⎰⎰⎰记tdt e A t sin 0⎰-=π,则0000sin cos cos cos t t t t A e tdt e d t e t e tdt ππππ----⎡⎤==-=-+⎢⎥⎣⎦⎰⎰⎰0001sin 1sin sin t t t e e d t e e t e tdt πππππ-----⎡⎤=---+=+--⎢⎥⎣⎦⎰⎰=.1A e -+-π因此 )1(21π-+=e A ,).1(2)1(2πππππe e e I +=+=-六【详解】()f t 的驻点即满足()f t 的一阶导数为零的点,它是关于a 的函数.由0ln )(=-='a a a t f t ,得唯一驻点.ln ln ln 1)(aa a t -= 求()t a 的最小值,即求函数aaa t ln ln ln 1)(-=在1a >时的最小值, 22211111ln ln ln ln ln 1ln ln ln ()0(ln )(ln )(ln )a a aa a a a a a t a a a a a ⋅---'=-=-=-=得唯一驻点.ee a =当ee a >时,lnln 0,1lnln 0a a >-<,从而0)(>'a t ,这时()t a 单调递增;当ee a <时,lnln 0,1lnln 0a a <->,从而0)(<'a t ,这时()t a 单调递减. 因此当e a e =时()t a 为最小值,此时ee t e11)(-=为极小值,也是最小值.七【分析】梯形OCMA 的面积可直接用梯形面积公式计算得到,曲边三角形CBM 的面积可用定积分计算,再由题设,梯形OCMA 的面积与曲边三角形CBM 的面积之和为3163+x ,可得一含有变限积分的等式,两边求导数,可转化为一阶线性微分方程,然后用通解公式计算即可.【详解】由题意得1[1()]2OCMA S x f x =+,1()CBM x S f t dt =⎰ 所以 316)()](1[213+=++⎰x x dt t f x f x . 两边关于x 求导2111[1()]()()222f x xf x f x x '++-=,即21()()2().f x xf x f x x '++-= 化简,当0≠x 时,得211()()x f x f x x x -'-=,即211.dy x y dx x x--⋅= 利用一阶线性非齐次微分方程()()dyP x y Q x dx+=的通解公式 ()()()P x dx P x dx y e Q x e dx C -⎛⎫⎰⎰=⋅+ ⎪⎝⎭⎰ 所以此方程为标准的一阶线性非齐次微分方程,其通解为 y]1[)(121C dx e xx ex f dx x dxx+⎰-⎰=---⎰ =]1[ln 2ln C dx e xx ex x+--⎰ =)1(22C dx x x x +-⎰ O C B x =.12Cx x ++曲线过点(1,0)B ,故0f =(1),代入,故有20C +=,从而2C =-. 所以 .)1(21)(22-=-+=x x x x f八【详解】(1) 在时刻t 的剩余量()y t 可用总量A 减去销量()x t 得到,即)()(t x A t y -==kt A -, ].,0[T t ∈再T 时刻将数量为A 的该商品销售完,得0A kT -=,即Ak T=.因此, ,)(t TAA t y -= ].,0[T t ∈ (2) 由于()y t 随时间连续变化,因此在时间段[0,]T 上的平均剩余量,即函数平均值可用积分⎰T dt t y T 0)(1表示(函数()f x 在[,]a b 上的平均值记为⎰-badx x f a b .)(1).所以,)(t y 在[0,]T 上的平均值为⎰=T dt t y T y 0)(1=2-20011()()()22TT A A A T A t dt At t T T T T T T T -=-=-⎰牛莱公式=.2A 因此在时间段[0,]T 上的平均剩余量为.2A九【分析】两个向量组等价也即两个向量组可以相互线性表示;而两个向量组不等价,只需其中一组有一个向量不能由另一组线性表示即可.而线性表示问题又可转化为对应非齐次线性方程组是否有解的问题,这可通过化增广矩阵为阶梯形来判断.一个向量1β是否可由321,,ααα线性表示,只需用初等行变换化增广矩阵(1321,,βααα)为阶梯形讨论,而一组向量321,,βββ是否可由321,,ααα线性表示,则可结合起来对矩阵(321321,,,,βββααα)同时作初等行变换化阶梯形,然后类似地进行讨论即可. 【详解】矩阵(321321,,,,βββααα)作初等行变换,有),,,,(321321βββααα =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++-463232112110221111a a a a(第一行乘以-1加到第三行,第二行乘以-1 加到第三行)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+--→111100112110111201a a a a .(1) 当1-≠a 时,有行列式12310a ααα=+≠,秩(3),,321=ααα,故线性方程组)3,2,1(332211==++i x x x i βααα均有唯一解. 所以321,,βββ可由向量组(I)线性表示.同样,行列式12360βββ=≠,秩(3),,321=βββ,故321,,ααα可由向量组(II)线性表示.因此向量组(I)与(II)等价.(2) 当1a =-时,有),,,,(321321βββααα ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→202000112110111201 .由于秩(321,,ααα)≠秩(),,1321βααα,线性方程组1332211βααα=++x x x 无解,故向量1β不能由321,,ααα线性表示. 因此,向量组(I)与(II)不等价.【评注1】涉及到参数讨论时,一般联想到利用行列式判断,因此,本题也可这样分析: 因为行列式1,,321+=a ααα,06,,321≠=βββ,可见(1) 当1-≠a 时,秩3),,(),,(321321==βββαααr r ,因此三维列向量组321,,ααα与321,,βββ等价,即向量组(I)与(II)等价.(2) 当1a =-时,秩2),,(321=αααr ,而行列式04,,132≠=βαα,可见2),,(321=αααr ≠1231(,,,)r αααβ=3, 因此线性方程组1332211βααα=++x x x 无解,故向量1β不能由321,,ααα线性表示. 即向量组(I)与(II)不等价.【评注2】 向量组(I)与(II)等价,相当于321,,ααα与321,,βββ均为整个向量组321321,,,,,βββααα的一个极大线性无关组,问题转化为求向量组321321,,,,,βββααα的极大线性无关组,这可通过初等行变换化阶梯形进行讨论.十【分析】 题设已知特征向量,应想到利用定义:λαα=*A . 又与伴随矩阵*A 相关的问题,应利用E A AA =*进行化简.【详解】 矩阵*A 属于特征值λ的特征向量为α,由于矩阵A 可逆,故*A 可逆.于是0≠λ,0≠A ,且λαα=*A .两边同时左乘矩阵A ,得αλαA AA =*⇒αλαAA =,即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111111121112b A b a λ, 由此,得方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=+=+.1,22,3λλλA b a b A b A b )3()2()1( 由式(1),(2)解得1=b 或2-=b ;由式(1),(3)解得 2.a =因此42311121112=-==a aA ,根据(1)式知,特征向量α所对应的特征值.343bbA +=+=λ 所以,当1=b 时,1=λ;当2-=b 时,.4=λ【评注】本题若先求出*A ,再按特征值、特征向量的定义进行分析,则计算过程将非常复杂.一般来说,见到*A ,首先应想到利用公式E A AA =*进行化简.十一【分析】先求出分布函数()F x 的具体形式,从而可确定()Y F X = ,然后按定义求Y 的分布函数即可.注意应先确定()Y F x =的值域范围)1)(0(≤≤X F ,再对y 分段讨论. 【详解】易见,当1x <时,()0F x =; 当8x >时,()1F x =.对于]8,1[∈x ,有.131)(3132-==⎰x dt t x F x设()G y 是随机变量()Y F x =的分布函数. 显然,当0<y 时,()G y =0;当1≥y 时,()G y =1. 对于)1,0[∈y ,有})({}{)(y X F P y Y P y G ≤=≤=31}{(1)}P y P X y =≤=≤+3[(1)].F y y =+=于是,()Y F x =的分布函数为0,0,(),01,1, 1.y G y y y y <⎧⎪=≤<⎨⎪≥⎩若若若十二【分析】A 和B 独立的充要条件是{}{}{}P AB P A P B =⋅,由此可以直接证明问题(1);对于问题(2),应先构造随机变量,不难看出与事件A 和A 联系的应是随机变量1, ,0, .A X A ⎧=⎨⎩若出现若不出现 随机变量X 和Y 的相关系数为XY E XY E X E Y ρ-==,需将P AB P A P B ρ-=转化为用随机变量表示. 显然,若有(){}E XY P AB =,(){}(){},E X P AE Y P B ====即可,这只需定义1,,0, .A X A ⎧=⎨⎩ 若出现若不出现 1,0, .B Y B ⎧=⎨⎩若出现,若不出现 【详解】 (1) 由题给ρ的定义,可见0=ρ当且仅当{}{}{}0P AB P A P B ==,而这恰好是二事件A 和B 独立的定义,即0=ρ是A 和B 独立的充分必要条件.(2) 考虑随机变量X 和Y :1,0,A X A ⎧=⎨⎩若出现若不出现 1,0,B Y B ⎧=⎨⎩若出现若不出现 由条件知,X 和Y 都服从01-分布:{}{}01~X P A P A ⎛⎫ ⎪ ⎪⎝⎭,{}{}01~.Y P B P B ⎛⎫ ⎪⎝⎭ 由离散型随机变量的数字特征,(){}1ni i i i E X x P X x ==⋅=∑,()()()22D X E X EX =-易见 (){}E X P A =,(){}E Y P B =;(){}{}D X P A P A =, (){}{}D Y P B P B =;由协方差的定义()()(){}{}{}(,).Cov X Y E XY E X E Y P AB P A P B =-=-因此,事件A 和B 的相关系数就是随机变量X 和Y 的相关系数.于是由二随机变量相关系数的基本性质1ρ≤,所以题目中定义的 .1≤ρ。

2003年考研数学四试题答案与解析

2003年考研数学四试题答案与解析
……如上解法,应注意计算 ∫∫ dxdy 时,最 D1
好的办法是利用二重积分的几何意义,直 接判断该积分的值就是区域 D1 的面积,可
由图直接得到 D1 的面积为 1。
本题考查了函数的复合以及简单二重积 分的计算。 【陈白皮】确定被积函数 f(x)g(y-x)的具体 表达式,是计算二重积分的关键。 【评注】 若被积函数只在某区域内不为零,则二重积分的计算只需在积分区域 与被积函数不为零的区域的公共部分上积分即可. 完全类似例题见《数学复习指南》P.191【例 8.16-17】 .
其中 A 的逆矩阵为 B ,则 a = -1
.
【分析】 本题考查了矩阵的运算性质(分配律、结合律),逆矩阵等知识点。
这里αα T 为 n 阶矩阵,而α Tα = 2a 2 为数,直接通过 AB = E 进行计算并注
意利用乘法的结合律即可. 【详解】 由题设,有
AB = (E − αα T )(E + 1 αα T ) a
0⎥⎥ . 0⎥⎦
【评注】 本题实质上是已知矩阵等式求逆的问题,应先分解出因式 A-E, 写成逆矩阵的定义形式,从而确定(A-E) 的逆矩阵.
【陈白皮】当 n 阶矩阵 A 满足某个矩阵等式时,要计算 A 的逆矩阵,总是
将这个矩阵等式分解为 AC=E,得到 A−1 = C 。
完全类似例题见《数学最后冲刺》P.92【例 7】. 【二李】本题恒等变形的方法早已出现,见 91 年 10 题。
x→∞ x
x→∞
a = lim y 及 b = lim ( y − ax) 。
x x→+∞
( x→−∞)
x→+∞ ( x→−∞)
本题为常规题型,完全类似例题见《数学复习指南》P.153 【例 6.30-31】.

2003年数学四试题 考研数学真题及解析

2003年数学四试题 考研数学真题及解析

2003年考研数学(四)试题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)极限xx x 20)]1ln(1[lim ++→= - . (2)dx e x x x ⎰--+11)(= - .(3)设a>0,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(= - .(4)设A,B 均为三阶矩阵,E 是三阶单位矩阵. 已知AB=2A+B,B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡202040202,则 1)(--E A = - .(5)设n 维向量0,),0,,0,(<=a a a T α;E 为n 阶单位矩阵,矩阵T E A αα-=, T aE B αα1+=, 其中A 的逆矩阵为B ,则a= - .(6)设随机变量X 和Y 的相关系数为0.5, EX=EY=0,222==EY EX , 则2)(Y X E += .二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)曲线21x xe y =(A) 仅有水平渐近线. (B) 仅有铅直渐近线.(C) 既有铅直又有水平渐近线. (D) 既有铅直又有斜渐近线. [ ](2)设函数)(1)(3x x x f ϕ-=,其中)(x ϕ在x=1处连续,则0)1(=ϕ是f(x)在x=1处可导的(A) 充分必要条件. (B )必要但非充分条件.(C) 充分但非必要条件 . (D) 既非充分也非必要条件. [ ](3)设可微函数f(x,y)在点),(00y x 取得极小值,则下列结论正确的是(A) ),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零.(C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在.[ ](4)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=001010100B . 已知矩阵A 相似于B ,则秩(A-2E)与秩(A-E)之和等于(A) 2. (B) 3. (C) 4. (D) 5. [ ](5)对于任意二事件A 和B(A) 若φ≠AB ,则A,B 一定独立. (B) 若φ≠AB ,则A,B 有可能独立.(C) 若φ=AB ,则A,B 一定独立. (D) 若φ=AB ,则A,B 一定不独立.[ ](6)设随机变量X 和Y 都服从正态分布,且它们不相关,则(A) X 与Y 一定独立. (B) (X,Y)服从二维正态分布.(C) X 与Y 未必独立. (D) X+Y 服从一维正态分布. [ ]三 、(本题满分8分)设],21,0(,)1(11sin 1)(∈---=x x x x x f πππ 试补充定义f(0),使得f(x)在]21,0[上连续.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂vf u f ,又)](21,[),(22y x xy f y xg -=,求.2222yg x g ∂∂+∂∂ 五 、(本题满分8分)计算二重积分.)sin(22)(22dxdy y x e I D y x +=⎰⎰-+-π其中积分区域D=}.),{(22π≤+y x y x六、(本题满分9分)设a>1,at a t f t -=)(在),(+∞-∞内的驻点为).(a t 问a 为何值时,t(a)最小?并求出最小值.七、(本题满分9分)设y=f(x) 是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C 为M 在x 轴上的投影,O 为坐标原点. 若梯形OCMA 的面积与曲边三角形CBM的面积之和为3163+x ,求f(x)的表达式. 八、(本题满分8分)设某商品从时刻0到时刻t 的销售量为kt t x =)(,).0(],,0[>∈k T t 欲在T 时将数量为A 的该商品销售完,试求(1) t 时的商品剩余量,并确定k 的值;(2) 在时间段[0,T]上的平均剩余量.九、(本题满分13分)设有向量组(I ):T )2,0,1(1=α,T )3,1,1(2=α,Ta )2,1,1(3+-=α和向量组(II ):T a )3,2,1(1+=β,T a )6,1,2(2+=β,.)4,1,2(3T a +=β 试问:当a 为何值时,向量组(I )与(II )等价?当a 为何值时,向量组(I )与(II )不等价?十、(本题满分13分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a A 11121112可逆,向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11b α是矩阵*A 的一个特征向量,λ是α对应的特征值,其中*A 是矩阵A 的伴随矩阵. 试求a,b 和λ的值.十一、(本题满分13分)设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x f F(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.十二、(本题满分13分)对于任意二事件A 和B ,1)(0,1)(0<<<<B P A P ,)()()()()()()(B P A P B P A P B P A P AB P -=ρ称做事件A 和B 的相关系数.(1) 证明事件A 和B 独立的充分必要条件是其相关系数等于零;(2) 利用随机变量相关系数的基本性质,证明.1≤ρ。

2003考研数学真题+答案

2003考研数学真题+答案

1 x 与 x 轴及直线 x e 所围成的三角形绕直线 x e 旋转所得的圆锥体积 e
1 e 2 ;曲线 y ln x 与 x 轴及直线 x e 所围成的图形绕直线 x e 旋转所得的旋 3
2003 年 • 第 2 页
郝海龙:考研数学复习大全·配套光盘·2003 年数学试题参考解答及评分标准
即汽锤击打 3 次后,可将桩打进地下
1 r r 2 a
n 1
m.
„„ 6 分
(2) 用归纳法:设 xn 1 r ... r
a ,则
2003 年 • 第 4 页
郝海龙:考研数学复习大全·配套光盘·2003 年数学试题参考解答及评分标准
k k „„ 8 分 kxdx ( x2n1 x 2n ) [ x2n1 (1 r r n1 )a 2 ] xn 2 2 2 n1 由于 Wn1 rWn r 2Wn1 r nW ,故得 xn )a2 r n a2 , 1 (1 r r Wn1
sin x
dx
„„ 6 分 „„ 8 分
(2) 由于 esin x e sin x 2,
2003 年 • 第 3 页
郝海龙:考研数学复习大全·配套光盘·2003 年数学试题参考解答及评分标准
故由(1)得 xe
L

sin y
dy ye sin x dx (e sin x e sin x )dx 2 2
0

„„ 10 分
证法 2
(1) 根据格林公式, 得 xe
L
sin x

sin y
dy ye sin x dx (e sin y e sin x )d „„ 2 分

2003年考研数学真题与答案

2003年考研数学真题与答案

⎜⎜⎝⎛
1 0
⎟⎟⎠⎞,
β
2
=
⎜⎜⎝⎛
0 1
⎟⎟⎠⎞

α
1
可由
β1
,
β
2
线性表示,但
α1
线性无
关,排除(C). 故正确选项为(D).
3. 设有齐次线性方程组 Ax=0 和 Bx=0, 其中 A,B 均为 m × n 矩阵,现有 4 个命题:
① 若 Ax=0 的解均是 Bx=0 的解,则秩(A) ≥ 秩(B);
5. 已知平面上三条不同直线的方程分别为
l1 : ax + 2by + 3c = 0 ,
l2 : bx + 2cy + 3a = 0 ,
l3 : cx + 2ay + 3b = 0 .
试证这三条直线交于一点的充分必要条件为 a + b + c = 0.
【详解】 :必要性
设三条直线 l1, l2 , l3 交于一点,则线性方程组
可排除(A),(C);但反过来,若秩(A)=秩(B), 则不能推出
Ax=0

Bx=0
同解,如
A
=
⎡1 ⎢⎣0
0⎤ 0⎥⎦

B
=
⎡0 ⎢⎣0
0⎤ 1⎥⎦
,则秩(A)=秩(B)=1,但
Ax=0

Bx=0
不同解,可见命题④不成立,排除(D),
故正确选项为(B).
⎡3 2 2⎤
⎡0 1 0⎤
4. 设矩阵 A = ⎢⎢2 3 2⎥⎥ , P = ⎢⎢1 0 1⎥⎥ , B = P −1 A*P ,求 B+2E 的特征值与特征向
(A) 当 r < s 时,向量组 II 必线性相关. (B) 当 r > s 时,向量组 II 必线性相关. (C) 当 r < s 时,向量组 I 必线性相关. (D) 当 r > s 时,向量组 I 必线性相关.

考研数四真题及解析

考研数四真题及解析

2003年全国硕士研究生入学统一考试数学四试题一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(1)极限xx x 20)]1ln(1[lim ++→=. (2)dx e x x x ⎰--+11)(=.(3)设0a >,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(=.(4)设,A B均为三阶矩阵,E 是三阶单位矩阵.已知2AB A B =+,202040202B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则 1)(--E A =.(5)设n 维向量0,),0,,0,(<=a a a T Λα;E 为n 阶单位矩阵,矩阵T E A αα-=,T aE B αα1+=,其中A 的逆矩阵为B ,则a =.(6)设随机变量X 和Y 的相关系数为0.5,0EX EY ==,222==EY EX ,则2)(Y X E +=.二、选择题:本题共6小题,每小题4分,共24分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)曲线21x xe y =()(A)仅有水平渐近线.(B)仅有铅直渐近线.(C)既有铅直又有水平渐近线.(D)既有铅直又有斜渐近线. (2)设函数)(1)(3x x x f ϕ-=,其中)(x ϕ在1x =处连续,则0)1(=ϕ是()f x 在1x =处可导的()(A)充分必要条件.(B)必要但非充分条件.(C)充分但非必要条件.(D)既非充分也非必要条件. (3)设可微函数(,)f x y 在点),(00y x 取得极小值,则下列结论正确的是()(A)),(0y x f 在0y y =处的导数等于零.(B)),(0y x f 在0y y =处的导数大于零.(C)),(0y x f 在0y y =处的导数小于零.(D)),(0y x f 在0y y =处的导数不存在.(4)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=001010100B .已知矩阵A 相似于B ,则秩(2)A E -与秩()A E -之和等于()(A)2.(B)3.(C)4.(D)5. (5)对于任意二事件A 和B ()(A)若φ≠AB ,则,A B 一定独立.(B)若φ≠AB ,则,A B 有可能独立.(C)若φ=AB ,则,A B 一定独立.(D)若φ=AB ,则,A B 一定不独立.(6)设随机变量X 和Y 都服从正态分布,且它们不相关,则()(A)X 与Y 一定独立.(B)(X ,Y )服从二维正态分布. (C)X 与Y 未必独立.(D)X +Y 服从一维正态分布. 三、(本题满分8分) 设).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ试补充定义(1)f 使得()f x 在]1,21[上连续. 四、(本题满分8分)设(,)f u v 具有二阶连续偏导数,且满足12222=∂∂+∂∂vfu f ,又)](21,[),(22y x xy f y x g -=,求.2222yg x g ∂∂+∂∂ 五、(本题满分8分)计算二重积分其中积分区域22{(,)}.D x y x y π=+≤ 六、(本题满分9分)设1a >,at a t f t -=)(在),(+∞-∞内的驻点为).(a t 问a 为何值时,()t a 最小?并求出最小值.七、(本题满分9分)设()y f x =是第一象限内连接点(0,1),(1,0)A B 的一段连续曲线,(,)M x y 为该曲线上任意一点,点C 为M 在x 轴上的投影,O 为坐标原点.若梯形OCMA 的面积与曲边三角形CBM 的面积之和为3163+x ,求()f x 的表达式.八、(本题满分8分)设某商品从时刻0到时刻t 的销售量为kt t x =)(,).0(],,0[>∈k T t 欲在T 时将数量为A 的该商品销售完,试求 (1) t 时的商品剩余量,并确定k 的值; (2) 在时间段[0,]T 上的平均剩余量. 九、(本题满分13分)设有向量组(I):T )2,0,1(1=α,T)3,1,1(2=α,T a )2,1,1(3+-=α和向量组(II):T a )3,2,1(1+=β,T a )6,1,2(2+=β,.)4,1,2(3T a +=β试问:当a 为何值时,向量组(I)与(II)等价?当a 为何值时,向量组(I)与(II)不等价? 十、(本题满分13分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a A 11121112可逆,向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11b α是矩阵*A 的一个特征向量,λ是α对应的特征值,其中*A 是矩阵A 的伴随矩阵.试求,a b 和λ的值.十一、(本题满分13分)设随机变量X 的概率密度为()F X 是X 的分布函数.求随机变量()Y F X =的分布函数.十二、(本题满分13分)对于任意二事件A 和B ,1)(0,1)(0<<<<B P A P , 称作事件A 和B 的相关系数.(1) 证明事件A 和B 独立的充分必要条件是其相关系数等于零;(2) 利用随机变量相关系数的基本性质,证明.1≤ρ2003年全国硕士研究生入学统一考试数学四试题解析一、填空题 (1)【答案】2e【详解】方法1:xx x 20)]1ln(1[lim ++→,属于∞1型未定式极限,可以考虑利用重要极限求解.首先凑成重要极限形式:方法2:xx x 20)]1ln(1[lim ++→=2ln[1ln(1)]0lim x xx e ++→=002ln[1ln(1)]2ln(1)lim lim2x x x x x xe e e →→+++==(注意:l n[1ln(1)]ln(1)x x +++:)(2)【答案】)21(21--e【分析】对称区间上的定积分,有【详解】dx e x x x ⎰--+11)(=dx xe dx e x x x ⎰⎰----+1111=dx e x x --⎰11+0102x xe dx -=⎰102x xde -=-⎰1102[]xx xe e dx --=--⎰=)21(21--e . (3)【答案】2a【详解】本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,则二重积分只需在积分区域与被积函数不为零的区域的公共部分商积分即可,因此实际上只需在满足此不等式的区域内积分即可.⎰⎰-=Ddxdyx y g x f I )()(=20101x y x a dxdy≤≤≤-≤⎰⎰=1120x xa dx dy+⎰⎰1220[(1)]a x x dx a =+-=⎰(4)【答案】⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100 【详解】应先化简,从2AB A B =+中确定1)(--E A .⇒EE B E A 2)2)((=--⇒E E B E A =-⋅-)2(21)(,所以1)(--E A =)2(21E B -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100. (5)【答案】-1【详解】这里T αα为n 阶矩阵,而22a T =αα为数,直接通过E AB =进行计算并注意利用乘法的结合律即可.由题设,有)1)((T T a E E AB αααα+-==T T T T a a E αααααααα⋅-+-1111()T T T T E a a αααααααα=-+-=T T T a a E αααααα21-+-1(12)T E a E aαα=+--+=,于是有0121=+--a a ,即0122=-+a a ,解得.1,21-==a a 已知0a <,故1a =-. (6)【答案】6【分析】本题的核心是逆向思维,利用协方差公式()cov(,)()()E XY X Y E X E Y =+.涉及公式:(1)22()()[()]D X E X E X =-,(2)()()()2cov(,)D X Y D X D Y X Y +=++(3)XYρ=【详解】方法1:由方差定义的公式和相关系数的定义22()()[()]D XE X E X=-202,=-=同理()2D Y=,1cov(,)212XYX Yρ==⨯=.所以222()()[()]()()E X Y D X Y E X Y D X Y EX EY+=+++=+++方法2:由数学期望的线性可加性()()()E aX bY aE X bE Y+=+得:再利用()()()(,)E XY Cov X Y E X E Y=+⋅,得由方差定义的公式,有22()()[()]D XE X E X=-202,=-=同理()2D Y=,再由相关系数的定义XYρ=得,cov(,)XYX Yρ=二、选择题(1)【答案】()D【分析】按照铅直、水平、斜渐近线三种情况分别考虑:先考虑是否有水平渐近线:lim(),()xf x c c→±∞=为常数,y c=为曲线的一条水平渐近线;若无水平渐近线应进一步考虑是否存在斜渐近线:()()lim,lim[()]x xx xx xyk b f x kxx→∞→∞→+∞→+∞→-∞→-∞==-,y kx b=+为曲线的一条斜渐近线;而是否存在铅直渐近线,应看函数是否存在无定义点,且00lim,limx x x xy y+-→→=∞=∞,则0x x=为曲线的一条垂直渐近线.【详解】1.yx±∞→lim极限均不存在,故曲线不存在水平渐近线;2.1lim lim 21==∞→∞→x x x e x y ,2221212001lim()lim 1lim 0u u x x u u e u xe x u x e u u u-→∞→→--=-=:, 所以曲线有斜渐近线y x =.3.在x =处21xxe y =无定义,且1222111ln 00lim lim lim lim xx x e xx xx x x x xee e e ++++→→→→====∞,故0x =为铅直渐近线.故曲线21xxe y =既有铅直又有斜渐近线,应选()D .(2)【答案】()A【详解】被积函数中含有绝对值,应当作分段函数看待,利用()f x 在1x =处左右导数定义讨论即可.32111()(1)1lim lim ()lim(1)()3(1)11x x x f x f x x x x x x x ϕϕϕ+++→→→--=⋅=++⋅=--, 32111()(1)1lim lim ()lim(1)()3(1)11x x x f x f x x x x x x x ϕϕϕ---→→→--=-⋅=-++⋅=---, 由于()f x 在1x =处可导的充分必要条件是左、右导数相等,所以 故应选()A . (3)【答案】()A【详解】由函数(,)f x y 在点),(00y x 处可微,知函数(,)f x y 在点),(00y x 处的两个偏导数都存在,又由二元函数极值的必要条件即得(,)f x y 在点),(00y x 处的两个偏导数都等于零.从而有选项()A 正确. (4)【答案】(C)【分析】利用相似矩阵有相同的秩计算,秩(2)A E -与秩()A E -之和等于秩(2)B E -与秩()B E -之和.【详解】因为矩阵A 相似于B ,又1B P AP -=,所以()111222P A E P P AP P EP B E ----=-=-,于是,矩阵(2)A E -与矩阵(2)B E -相似.同理有所以,矩阵A E -与矩阵B E -相似.又因为相似矩阵有相同的秩,而秩(2)B E -=秩3201010102=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---,秩()B E -=秩1101000101=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--, 所以有秩(2)A E -+秩()A E -=秩(2)B E -+秩()B E -=4,故应选(C).(5)【答案】B【详解】本题考查独立与互斥事件之间的关系,事实上,独立与互斥事件之间没有必然的互推关系.当{}{}0,0P A P B ≠≠时,若,A B相互独立,则一定有{}{}{}0P AB P A P B =≠,从而有AB ≠∅.可见,当,A B 相互独立时,往往,A B 并不是互斥的.AB ≠∅推不出{}{}{}P AB P A P B =⋅,因此推不出,A B 一定独立,排除(A);若AB =∅,则{}0P AB =,但{}{}P A P B 是否为零不确定,{}{}{}P AB P A P B ≠.因此(C),(D)也不成立,故正确选项为(B).(6)【答案】C .【分析】本题考查正态分布的性质以及二维正态分布与一维正态分布之间的关系.只有(,)X Y 服从二维正态分布时,不相关与独立才是等价的.有结论如下:①若X Y 与均服从正态分布且相互独立,则(,)X Y 服从二维正态分布.如果X Y 与都服从正态分布,甚至X Y 与是不相关,也并不能推出(,)X Y 服从二维正态分布.②若X Y 与均服从正态分布且相互独立,则bY aX +服从一维正态分布.③若(,)X Y 服从二维正态分布,则X Y 与相互独立⇔X Y 与不相关.【详解】只有当(,)X Y 服从二维正态分布时,X Y 与不相关⇔X Y 与独立,本题仅仅已知X Y 与服从正态分布,因此,由它们不相关推不出X Y 与一定独立,排除(A);若X Y 与都服从正态分布且相互独立,则(,)X Y 服从二维正态分布,但题设并不知道,X Y 是否独立,可排除(B);同样要求X Y 与相互独立时,才能推出X Y +服从一维正态分布,可排除(D).故正确选项为(C).三【详解】为使函数()f x 在1[,1]2上连续,只需求出函数()f x 在1x =的左极限)(lim 1x f x -→,然后定义(1)f 为此极限值即可.令1u x =-,则当1x -→时,0u +→,所以定义π1)1(=f ,从而有11lim ()(1)x f x f π-→==,()f x 在1x =处连续.又()f x 在)1,21[上连续,所以()f x 在]1,21[上连续.四【详解】由复合函数[(,),(,)]z f x y x y ϕψ=的求导法则,得 从而所以222222222222222222()()()()g g f f f f x y x y x y x y u v u v∂∂∂∂∂∂+=+++=++∂∂∂∂∂∂=.22y x +五【详解】从被积函数与积分区域可以看出,应利用极坐标进行计算.作极坐标变换:设θθsin ,cos r y r x ==,有 记tdt e A t sin 0⎰-=π,则0001sin 1sin sin t t t e e d t e e t e tdtπππππ-----⎡⎤=---+=+--⎢⎥⎣⎦⎰⎰=.1A e -+-π因此)1(21π-+=e A ,).1(2)1(2πππππe e e I +=+=- 六【详解】()f t 的驻点即满足()f t 的一阶导数为零的点,它是关于a 的函数.由0ln )(=-='a a a t f t ,得唯一驻点求()t a 的最小值,即求函数aa a t ln ln ln 1)(-=在1a >时的最小值,得唯一驻点.e e a =当e e a >时,lnln 0,1lnln 0a a >-<,从而0)(>'a t ,这时()t a 单调递增;当e e a <时,lnln 0,1lnln 0a a <->,从而0)(<'a t ,这时()t a 单调递减.因此当e a e =时()t a 为最小值,此时ee t e 11)(-=为极小值,也是最小值.七【分析】梯形OCMA 的面积可直接用梯形面积公式计算得到,曲边三角形CBM 的面积可用定积分计算,再由题设,梯形OCMA 的面积与曲边三角形CBM 的面积之和为3163+x ,可得一含有变限积分的等式,两边求导数,可转化为一阶线性微分方程,然后用通解公式计算即可. 【详解】由题意得1[1()]2OCMA S x f x =+,1()CBM x S f t dt =⎰ 所以316)()](1[213+=++⎰x x dt t f x f x .两边关于x 求导2111[1()]()()222f x xf x f x x '++-=,即21()()2().f x xf x f x x '++-= 化简,当0≠x 时,得211()()x f x f x x x -'-=,即211.dy x y dx x x--⋅=利用一阶线性非齐次微分方程()()dy P x y Q x dx+=的通解公式所以此方程为标准的一阶线性非齐次微分方程,其通解为y]1[)(121C dx e xx ex f dx x dxx+⎰-⎰=---⎰ A=]1[ln 2ln C dx e xx ex x+--⎰M=)1(22C dx xx x +-⎰OCBx=.12Cx x ++曲线过点(1,0)B ,故0f =(1),代入,故有20C +=,从而2C =-.所以八【详解】(1)在时刻t 的剩余量()y t 可用总量A 减去销量()x t 得到,即)()(t x A t y -==kt A -,].,0[T t ∈再T 时刻将数量为A 的该商品销售完,得0A kT -=,即A k T=.因此,(2)由于()y t 随时间连续变化,因此在时间段[0,]T 上的平均剩余量,即函数平均值可用积分⎰Tdt t y T0)(1表示(函数()f x 在[,]a b 上的平均值记为⎰-ba dx x f ab .)(1). 所以,)(t y 在[0,]T 上的平均值为⎰=T dt t y T y 0)(1=2-20011()()()22TT A A A T A t dt At t T T T T T T T -=-=-⎰牛莱公式=.2A 因此在时间段[0,]T 上的平均剩余量为.2A九【分析】两个向量组等价也即两个向量组可以相互线性表示;而两个向量组不等价,只需其中一组有一个向量不能由另一组线性表示即可.而线性表示问题又可转化为对应非齐次线性方程组是否有解的问题,这可通过化增广矩阵为阶梯形来判断.一个向量1β是否可由321,,ααα线性表示,只需用初等行变换化增广矩阵(1321,,βααα)为阶梯形讨论,而一组向量321,,βββ是否可由321,,ααα线性表示,则可结合起来对矩阵(321321,,,,βββααα)同时作初等行变换化阶梯形,然后类似地进行讨论即可. 【详解】矩阵(321321,,,,βββααα)作初等行变换,有),,,,(321321βββαααM =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++-463232112110221111a a a a M M M (第一行乘以-1加到第三行,第二行乘以-1加到第三行)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+--→111100112110111201a a a a M M M .(1)当1-≠a 时,有行列式12310a ααα=+≠,秩(3),,321=ααα,故线性方程组)3,2,1(332211==++i x x x i βααα均有唯一解.所以321,,βββ可由向量组(I)线性表示.同样,行列式12360βββ=≠,秩(3),,321=βββ,故321,,ααα可由向量组(II)线性表示.因此向量组(I)与(II)等价.(2)当1a =-时,有),,,,(321321βββαααM ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→202000112110111201M M M . 由于秩(321,,ααα)≠秩(),,1321βαααM ,线性方程组1332211βααα=++x x x 无解,故向量1β不能由321,,ααα线性表示.因此,向量组(I)与(II)不等价.【评注1】涉及到参数讨论时,一般联想到利用行列式判断,因此,本题也可这样分析:因为行列式1,,321+=a ααα,06,,321≠=βββ,可见(1)当1-≠a 时,秩3),,(),,(321321==βββαααr r ,因此三维列向量组321,,ααα与321,,βββ等价,即向量组(I)与(II)等价.(2)当1a =-时,秩2),,(321=αααr ,而行列式04,,132≠=βαα,可见2),,(321=αααr ≠1231(,,,)r αααβ=3,因此线性方程组1332211βααα=++x x x 无解,故向量1β不能由321,,ααα线性表示.即向量组(I)与(II)不等价.【评注2】向量组(I)与(II)等价,相当于321,,ααα与321,,βββ均为整个向量组321321,,,,,βββααα的一个极大线性无关组,问题转化为求向量组321321,,,,,βββααα的极大线性无关组,这可通过初等行变换化阶梯形进行讨论.十【分析】题设已知特征向量,应想到利用定义:λαα=*A .又与伴随矩阵*A 相关的问题,应利用E A AA =*进行化简.【详解】矩阵*A 属于特征值λ的特征向量为α,由于矩阵A 可逆,故*A 可逆.于是0≠λ,0≠A ,且λαα=*A .两边同时左乘矩阵A ,得αλαA AA =*⇒αλαAA =,即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111111121112b A b a λ, 由此,得方程组由式(1),(2)解得1=b 或2-=b ;由式(1),(3)解得 2.a = 因此42311121112=-==a aA ,根据(1)式知,特征向量α所对应的特征值 所以,当1=b 时,1=λ;当2-=b 时,.4=λ【评注】本题若先求出*A ,再按特征值、特征向量的定义进行分析,则计算过程将非常复杂.一般来说,见到*A ,首先应想到利用公式E A AA =*进行化简.十一【分析】先求出分布函数()F x 的具体形式,从而可确定()Y F X =,然后按定义求Y 的分布函数即可.注意应先确定()Y F x =的值域范围)1)(0(≤≤X F ,再对y 分段讨论.【详解】易见,当1x <时,()0F x =;当8x >时,()1F x =.对于]8,1[∈x ,有设()G y 是随机变量()Y F x =的分布函数.显然,当0<y 时,()G y =0;当1≥y 时,()G y =1.对于)1,0[∈y ,有于是,()Y F x =的分布函数为十二【分析】A 和B 独立的充要条件是{}{}{}P AB P A P B =⋅,由此可以直接证明问题(1);对于问题(2),应先构造随机变量,不难看出与事件A 和A 联系的应是随机变量随机变量X和Y的相关系数为XY E XY E X E Y ρ-==,需将P AB P A P B ρ-=转化为用随机变量表示.显然,若有(){}E XY P AB =,(){}(){},E X P A E Y P B ==以及=,=即可,这只需定义【详解】(1)由题给ρ的定义,可见0=ρ当且仅当{}{}{}0P AB P A P B ==,而这恰好是二事件A 和B 独立的定义,即0=ρ是A 和B 独立的充分必要条件.(2)考虑随机变量X 和Y : 由条件知,X 和Y 都服从01-分布:{}{}01~X P A P A ⎛⎫ ⎪ ⎪⎝⎭,{}{}01~.Y P B P B ⎛⎫ ⎪⎝⎭ 由离散型随机变量的数字特征,(){}1ni i i i E X x P X x ==⋅=∑,()()()22D X E X EX =-易见(){}E X P A =,(){}E Y P B =;(){}{}D X P A P A =,(){}{}D Y P B P B =;由协方差的定义因此,事件A 和B 的相关系数就是随机变量X 和Y 的相关系数.于是由二随机变量相关系数的基本性质1ρ≤,所以题目中定义的.1≤ρ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2003年全国硕士研究生入学统一考试经济数学四试题详解及评析一、填空题(1)极限xx x 20)]1ln(1[lim ++→= .【答】 2e【详解】 xx x 20)]1ln(1[lim ++→=)]1ln(1ln[2lim x xx e++→=.2)1ln(2lim)]1ln(1ln[2lim 00e ee x x x x x x ==+++→→(2)dx e x x x∫−−+11)(= .【答】 )21(21−−e 【详解】dx ex x x∫−−+11)(=dx xedx ex xx∫∫−−−−+1111=dx ex x−−∫111122x x xe dx xde −−+=−∫∫=1102()xx xe e dx −−−−∫ =)21(21−−e .(3)设a>0,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则∫∫−=Ddxdy x y g x f I )()(= .【答】2a 【详解】 ∫∫−=Ddxdy x y g x f I )()(=dxdy ax y x ∫∫≤−≤≤≤10,102=.])1[(212112a dx x x a dy dx ax x=−+=∫∫∫+(4)设A,B 均为三阶矩阵,E 是三阶单位矩阵. 已知AB=2A+B,B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡202040202,则 1)(−−E A = .【答】 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100 【详解】 由AB=2A+B, 知 AB-B=2A-2E+2E, 即有 E E A B E A 2)(2)(=−−−, E E B E A 2)2)((=−−, E E B E A =−⋅−)2(21)(, 可见 1)(−−E A =)2(21E B −=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100.(5)设n 维向量0,),0,,0,(<=a a a T"α;E 为n 阶单位矩阵,矩阵 TE A αα−=, T aE B αα1+=, 其中A 的逆矩阵为B ,则a= . 【答】 -1【详解】 由题设,有)1)((T Ta E E AB αααα+−= =TT T T a a E αααααααα⋅−+−11=TT T T a a E αααααααα)(11−+−=TT T a a E αααααα21−+−=E aa E T=+−−+αα)121(,于是有 0121=+−−a a ,即 0122=−+a a ,解得 .1,21−==a a 由于a<0 ,故a=-1.(6)设随机变量X 和Y 的相关系数为0.5, EX=EY=0,222==EY EX, 则2)(Y X E += .【答】 6 【详解】 因为2)(Y X E +=22)(2EY XY E EX ++ =4+]),([2EY EX Y X Cov ⋅+=4+2.625.024=××+=⋅⋅DY DX XY ρ二、选择题(1)曲线21x xe y =(A) 仅有水平渐近线. (B) 仅有铅直渐近线.(C) 既有铅直又有水平渐近线. (D) 既有铅直又有斜渐近线. 【答】 [ D]【详解】 当±∞→x 时,极限y x ±∞→lim 均不存在,故不存在水平渐近线;又因为 1lim lim 21==∞→∞→x x x e x y ,0)(lim 1=−∞→x xe x x ,所以有斜渐近线y=x.另外,在 x=0 处21x xe y =无定义,且∞=→1lim x x xe ,可见 x=0为铅直渐近线.故曲线21x xe y =既有铅直又有斜渐近线,应选(D).(2)设函数)(1)(3x x x f ϕ−=,其中)(x ϕ在x=1处连续,则0)1(=ϕ是f(x)在x=1处可导的(A) 充分必要条件. (B )必要但非充分条件.(C) 充分但非必要条件 . (D) 既非充分也非必要条件. 【答】 [ A ] 【详解】 因为)1(3)(11lim 1)1()(lim 311ϕϕ=⋅−−=−−++→→x x x x f x f x x , )1(3)(11lim 1)1()(lim 311ϕϕ−=⋅−−−=−−−−→→x x x x f x f x x , 可见,f(x)在x=1处可导的充分必要条件是 .0)1()1(3)1(3=⇔−=ϕϕϕ 故应选(A).(3)设可微函数f(x,y)在点),(00y x 取得极小值,则下列结论正确的是(A) ),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零. (C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在. 【答】 [ A ]【详解】 可微函数f(x,y)在点),(00y x 取得极小值,根据取极值的必要条件知0),(00=′y x f y ,即),(0y x f 在0y y =处的导数等于零, 故应选(A).(4)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=001010100B . 已知矩阵A 相似于B ,则秩(A-2E)与秩(A-E)之和等于(A) 2. (B) 3. (C) 4. (D) 5. 【答】 [ C ]【详解】 因为矩阵A 相似于B ,于是有矩阵A-2E 与矩阵B-2E 相似,矩阵A-E 与矩阵B-E 相似,且相似矩阵有相同的秩,而秩(B-2E)=秩3201010102=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−,秩(B-E)=秩1101000101=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−, 可见有 秩(A-2E)+秩(A-E)= 秩(B-2E)+秩(B-E)=4,故应选(C). (5)对于任意二事件A 和B(A) 若φ≠AB ,则A,B 一定独立. (B) 若φ≠AB ,则A,B 有可能独立. (C) 若φ=AB ,则A,B 一定独立. (D) 若φ=AB ,则A,B 一定不独立. 【答】 [ B ]【详解】 φ≠AB 推不出P(AB)=P(A)P(B), 因此推不出A,B 一定独立,排除(A); 若φ=AB ,则P(AB)=0,但P(A)P(B)是否为零不确定,因此(C),(D) 也不成立,故正确选项为(B).(6)设随机变量X 和Y 都服从正态分布,且它们不相关,则 (A) X 与Y 一定独立. (B) (X,Y)服从二维正态分布. (C) X 与Y 未必独立. (D) X+Y 服从一维正态分布. 【答】 [ C ]【详解】 只有当(X,Y) 服从二维正态分布时,X 与Y 不相关⇔X 与Y 独立,本题仅仅已知X 和Y 服从正态分布,因此,由它们不相关推不出X 与Y 一定独立,排除(A); 若X 和Y 都服从正态分布且相互独立,则(X,Y)服从二维正态分布,但题设并不知道X,Y 是否独立,可排除(B); 同样要求X 与Y 相互独立时,才能推出X+Y 服从一维正态分布,可排除(D).故正确选项为(C).三 、(本题满分8分) 设 21,0(,)1(11sin 1)(∈−−−=x x x x x f πππ 试补充定义f(0),使得f(x)在]21,0[上连续.【详解】)(lim 0x f x +→= -.1π+xx xx x ππππsin sin lim 0−+→= -220sin lim 1ππππx x x x −++→= -xxx 202cos lim 1πππππ−++→= -2202sin lim 1ππππxx +→+ = -.1π由于f(x)在]21,0(上连续,因此定义π1)0(−=f ,使f(x)在]21,0[上连续.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂vfu f ,又)](21,[),(22y x xy f y x g −=,求.2222ygx g ∂∂+∂∂ 【详解】v f x u f y x g ∂∂+∂∂=∂∂,.vfy u f x y g ∂∂−∂∂=∂∂ 故 v f v f x v u f xy u f y x g ∂∂+∂∂+∂∂∂+∂∂=∂∂2222222222, .2222222222v f v f y u v f xy u f x y g ∂∂−∂∂+∂∂∂−∂∂=∂∂所以 222222222222)()(vf y x u f y x yg x g ∂∂++∂∂+=∂∂+∂∂ =.22y x +五 、(本题满分8分) 计算二重积分 .)sin(22)(22dxdy y x e I Dy x+=∫∫−+−π其中积分区域D=}.),{(22π≤+y x y x【详解】 作极坐标变换:θθsin ,cos r y r x ==,有 dxdy y x e e I Dy x)sin(22)(22+=∫∫+−π=.sin 2022dr r re d e r ∫∫−πππθ令2r t =,则 tdt e e I t sin 0∫−=πππ.记 tdt e A t sin 0∫−=π,则t t de e A −−∫−=int 0π=]cos sin [0∫−−−−ππtdt e te t t=∫−−πcos t tde =]sin cos [0tdt e te t t ∫−−+−ππ=.1A e −+−π因此 )1(21π−+=e A , ).1(2)1(2πππππe e e I +=+=−六、(本题满分9分)设a>1,at a t f t−=)(在),(+∞−∞内的驻点为).(a t 问a 为何值时,t(a)最小?并求出最小值.【详解】 由0ln )(=−=′a a a t f t,得唯一驻点.ln ln ln 1)(aaa t −= 考察函数aaa t ln ln ln 1)(−=在a>1时的最小值. 令 0)(ln ln ln 1)(ln ln ln 11)(22=−−=−−=′a a aa aa a a t ,得唯一驻点 .ee a =当ee a >时,0)(>′a t ;当ee a <时,0)(<′a t ,因此ee t e11)(−=为极小值,从而是最小值.七、(本题满分9分)设y=f(x) 是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C 为M 在x 轴上的投影,O 为坐标原点. 若梯形OCMA 的面积与曲边三角形CBM的面积之和为3163+x ,求f(x)的表达式.【详解】 根据题意,有316)()](1[213+=++∫x x dt t f x f x .两边关于x 求导,得.21)()(21)](1[212x x f x f x x f =−′++当0≠x 时,得.1)(1)(2xx x f x x f −=−′ 此为标准的一阶线性非齐次微分方程,其通解为 ]1[)(121C dx e xx ex f x dxx+∫−∫=−−−∫=]1[ln 2ln C dx e xx ex x+−−∫=)1(22C dx xx x +−∫ =.12Cx x ++ 当x=0时,f(0)=1.由于x=1时,f(1)=0 ,故有2+C=0,从而C=-2. 所以 .)1(21)(22−=−+=x x x x f八、(本题满分8分)设某商品从时刻0到时刻t 的销售量为kt t x =)(,).0(],,0[>∈k T t 欲在T 时将数量为A 的该商品销售完,试求(1) t 时的商品剩余量,并确定k 的值; (2) 在时间段[0,T]上的平均剩余量.【详解】 (1) 在时刻t 商品的剩余量为 )()(t x A t y −==kt A −, ].,0[T t ∈ 由kt A −=0,得 TA k =, 因此 ,)(t TAA t y −= ].,0[T t ∈ (2) 依题意,)(t y 在[0,T]上的平均值为∫=Tdt t y T y 0)(1 =∫−T dt t T A A T 0)(1=.2A因此在时间段[0,T] 上的平均剩余量为.2A九、(本题满分13分)设有向量组(I ):T)2,0,1(1=α,T)3,1,1(2=α,Ta )2,1,1(3+−=α和向量组(II ):T a )3,2,1(1+=β,T a )6,1,2(2+=β,.)4,1,2(3T a +=β 试问:当a 为何值时,向量组(I )与(II )等价?当a 为何值时,向量组(I )与(II )不等价?【详解】 作初等行变换,有),,,,(321321βββααα#=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++−463232112110221111a a a a ###⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−+−+−−→111100112110111201a a a a ###.(1) 当1−≠a 时,有行列式[]01321≠+=a ααα,秩(3),,321=ααα,故线性方程组)3,2,1(332211==++i x x x i βααα均有唯一解. 所以,321,,βββ可由向量组(I )线性表示.同样,行列式[]06321≠=βββ,秩(3),,321=βββ,故321,,ααα可由向量组(II )线性表示. 因此向量组(I )与(II )等价.(2) 当a=-1时,有),,,,(321321βββααα#⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−−→202000112110111201###. 由于秩(321,,ααα)≠秩(),,1321βααα#,线性方程组1332211βααα=++x x x 无解,故向量1β不能由321,,ααα线性表示. 因此,向量组(I )与(II )不等价.十、(本题满分13分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a A 11121112可逆,向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11b α是矩阵*A 的一个特征向量,λ是α对应的特征值,其中*A 是矩阵A 的伴随矩阵. 试求a,b 和λ的值.【详解】 矩阵*A 属于特征值λ的特征向量为α, 由于矩阵A 可逆,故*A 可逆.于是0≠λ,0≠A ,且 λαα=*A.两边同时左乘矩阵A ,得 αλαA AA =*, αλαAA =,即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111111121112b A b a λ, 由此,得方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=+=+.1,22,3λλλA b a b A b A b (1)(2)(3) 由式(1),(2)解得1=b或2−=b ;由式(1),(3)解得 a=2. 由于 42311121112=−==a aA ,根据(1)式知,特征向量α所对应的特征值.343bb A+=+=λ 所以,当1=b 时,1=λ;当2−=b 时,.4=λ十一、(本题满分13分)设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x f F(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.【详解】 易见,当x<1时,F(x)=0; 当x>8 时,F(x)=1.对于]8,1[∈x ,有.131)(3132−==∫x dt t x F x设G(y)是随机变量Y=F(X)的分布函数.显然,当0<y 时,G(y)=0;当1≥y 时,G(y)=1.对于)1,0[∈y ,有})({}{)(y X F P y Y P y G ≤=≤==})1({}1{33+≤=≤−y X P y X P=.])1[(3y y F =+于是,Y=F(X)的分布函数为 0,0,(),01,1, 1.y G y y y y <⎧⎪=≤<⎨⎪≥⎩十二、(本题满分13分)对于任意二事件A 和B ,1)(0,1)(0<<<<B P A P ,)()()()()()()(B P A P B P A P B P A P AB P −=ρ称做事件A 和B 的相关系数.(1) 证明事件A 和B 独立的充分必要条件是其相关系数等于零;(2) 利用随机变量相关系数的基本性质,证明.1≤ρ【详解】 (1) 由ρ的定义,可见0=ρ当且仅当P(AB)-P(A)P(B)=0,而这恰好是二事件A 和B 独立的定义,即0=ρ是A 和B 独立的充分必要条件.(2) 考虑随机变量X 和Y:A A X 不出现若出现若⎩⎨⎧=,0,1 .,0,1不出现若出现若B B Y ⎩⎨⎧= 由条件知,X 和Y 都服从0—1分布:⎟⎟⎠⎞⎜⎜⎝⎛)((10~A P A P X ,.)((10~⎟⎟⎠⎞⎜⎜⎝⎛B P B P Y 易见)(A P EX =, )(B P EY =;)()(A P A P DX =, )()(B P B P DY =;).()()(),cov(B P A P AB P EXEY EXY Y X −=−= 因此,事件A 和B 的相关系数就是随机变量X 和Y 的相关系数.于是由二随机变量相关系数的基本性质,可见 .1≤ρ。

相关文档
最新文档