2015年高考数学全国卷2(超完美)

合集下载

2015年高考全国新课标卷Ⅱ理科数学真题含答案解析(超完美版)

2015年高考全国新课标卷Ⅱ理科数学真题含答案解析(超完美版)

2015年高考全国新课标卷Ⅱ理科数学真题(青海;西藏;甘肃;贵州;内蒙古;新疆;宁夏;吉林;黑龙江;云南;辽宁;广西;海南)一、选择题1.已知集合A={-2,-1,0,1,2},B={X|(X-1)(X+2)<0},则AB=( ) A .{-1,0} B .{0,1} C .{-1,0,1} D .{0,1,2}2.若a 为实数,且(2+ai )(a-2i )= - 4i ,则a=( )A .-1B .0C .1D .23.根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫排放量呈减少趋势D .2006年以来我国二氧化硫排放量与年份正相关4.已知等比数列{a n } 满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( )A .21B .42C .63D .845.设函数f (x )=f (x )={1+log 2,(2−x ),x <12x−1,x ≥1则f (-2)+f (log 212)=( )A .3B .6C .9D .12 6.一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A .18B .17C .16D .157.过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M ,N 两点,则IMNI=( )A .2√6B .8C .4√6D .108.下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”。

执行该程序框图,若输入的a , b 分别为14 ,18,则输出的a=( )A .0B .2C .4D .149.已知A,B 是球O 的球面上两点,∠AOB=90o ,C 为该球上的动点,若三棱锥O-ABC 的体积最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π10.如图,长方形ABCD 的边2AB =,1BC =,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠=,将动点P 到,A B 两点距离之和表示为x 的函数,则()y f x =的图像大致为( )A .B .C .D .11.已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )A B .2 C D 12.设函数f ’(x)是奇函数f(x)(x ∈R)的导函数,f(-1)=0,当x>0时,x f ’(x)- f(x)<0,则使得f(x)>0成立的x 的取值范围是( )A .(−∞,-1)∪(0,1)B .(−1,0)∪(1,+∞)C .(−∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)二、填空题13.设向量a,b 不平行,向量λ a+b 与a+2b 平行,则实数 λ =14.若x ,y 满足约束条件,则z=x+y 的最大值为 15.4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a=16.设S n 是数列{a n }的前n 项和,且1111,n n n a a s s ++=-=,则S n =三、解答题17.△ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍(I )求Csin B sin ∠∠ (II )若AD=1,DC=22,求BD 和AC 的长18.某公司为了了解用户对其产品的满意度,从A ,B 两地区分别随机抽查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C :“A 地区用户的满意等级高于B 地区用户的满意度等级”.假设两地区用户的评价结果互相独立。

2015年高考全国2卷文科数学试题(含解析)

2015年高考全国2卷文科数学试题(含解析)
,
,
,
,

,
,
,
,

,
,
,
,

,
,
,
,
_
_
_
_
_
_
_
_
_
_
_



_
_
_
_
_
_
____源自_:级班
_
_
_
_
_
_
_
_
_
_
_



_
_
_
_
_
_
_
_
_
_
_
:



,
,
,
,
,
,
,
,

,
,
,
,
线
,
,
,
,

,
,
,
,

,
,
,
,

,
,
,
,

,
,
,
,
14.若x,y满足约束条件
2xy10
x2y10
,则z=2x+y的最大值为.
,



,
,
(Ⅱ)若
C与C2相交于点A,C1与C3相交于点B,求
1
AB
最大值.
,



,

,
24.(本小题满分10分)选修4-5:不等式证明选讲
设a,b,c,d均为正数,且abcd.证明:
,
,

2015年全国统一高考(理科)数学试卷2

2015年全国统一高考(理科)数学试卷2
78 86 95 66 97 78 88 82 76 89 B地区:73 83 62 51 91 46 53 73 64 82
93 48 65 81 74 56 54 76 65 79
• (1)根据两组数据完成两地区用户满意 度评分的茎叶图,并通过茎叶图比较两地 区满意度评分的平均值及分散程度(不要 求计算出具体值,给出结论即可);
• 【解答】解:如图所示,当点C位于垂直 于面AOB的直径端点时,三棱锥O﹣ABC 的体积最大,设球O的半径为R,此时 VO﹣ABC= VC﹣AOB=1/3×1/2×R^2×R=1/6 R^3=36, 故R=6,则球O的表面积为4πR2=144π,
• 故选:C.
二、填空题(共4小题,每小题5分,满分20分)
(a2﹣4)i=﹣4i, • 4a=0,并且a2﹣4=﹣4, • 所以a=0; • 故选:B.
3.(5分)根据如图给出的2004年至2013年我国二氧化硫年 排放量(单位:万吨)柱形图,以下结论中不正确的是 ()
A.逐年比较,2008年减少二氧化硫排放量的效果最显著 B.2007年我国治理二氧化硫排放显现成效 C.2006年以来我国二氧化硫年排放量呈减少趋势 D.2006年以来我国二氧化硫年排放量与年份正相关
• 【分析】(1)根据茎叶图的画法,以及 有关茎叶图的知识,比较即可;
• 【解答】解:(1)两地区用户满意度评 分的茎叶图如下
• 通过茎叶图可以看出,A地区用户 满意评分的平均值高于B地区用户 满意评分的平均值;A地区用户满 意度评分比较集中,B地区用户满 意度评分比较分散;
19.(12分)如图,长方体ABCD﹣A1B1C1D1中, AB=16,BC=10,AA1=8,点E,F分别在A1B1, D1C1上,A1E=D1F=4,过点E,F的平面α与此 长方体的面相交,交线围成一个正方形.

2015年全国新课标2卷高考文科数学试题及答案

2015年全国新课标2卷高考文科数学试题及答案

2015年全国新课标2卷高考文科数学试题及答案2015普通高等学校招生全国统一考试II卷文科数学第一卷一、选择题:本大题共12小题,每小题5分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合 $A=x-1<x<2$,$B=x<x<3$,则 $A\cup B=$A。

$(-1,3)$ B。

$(-1,0)$ C。

$(0,2)$ D。

$(2,3)$2.若 $a$ 是实数,且 $\frac{2+ai}{1+i}=3+i$,则 $a=$A。

$-4$ B。

$-3$ C。

$3$ D。

$4$3.根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是此处删除明显有问题的段落)4.已知向量 $a=(1,-1)$,$b=(-1,2)$,则 $(2a+b)\cdot a=$A。

$-1$ B。

$0$ C。

$1$ D。

$2$5.设 $S_n$ 是等差数列 $\{a_n\}$ 的前 $n$ 项和。

若$a_1+a_3+a_5=3$,则 $S_5=$A。

$5$ B。

$7$ C。

$9$ D。

$11$6.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为A。

$\frac{1}{1111}$ B。

$\frac{1}{8576}$ C。

$\frac{2}{1254}$ D。

$\frac{1}{333}$7.已知三点 $A(1,-1)$,$B(2,3)$,$C(2,3)$,则 $\triangle ABC$ 外接圆的圆心到原点的距离为A。

$\sqrt{5}$ B。

$3$ C。

$2\sqrt{5}$ D。

$3\sqrt{2}$8.右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”。

执行该程序框图,若输入的$a,b$ 分别为14,18,则输出的 $a$ 为开始输入a,ba>b是a≠b 否输出a是否结束a=a-b b=b-aA。

2015年高考文科数学全国2卷(含详细解析)

2015年高考文科数学全国2卷(含详细解析)

绝密★启用前2015年高考全国2卷文科数学注意事项:1.本试卷分第I 卷(阅读题)和第Ⅱ卷(表达题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上.写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12道小题,每小题5分,共60分. 1.已知集合,,则( )A .B .C .D . 【答案】A考点:集合运算. 2. 若为实数,且,则( ) A . B . C . D . 【答案】D 【解析】试题分析:由题意可得 ,故选D. 考点:复数运算.3. 根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( ){}|12A x x =-<<{}|03B x x =<<A B =()1,3-()1,0-()0,2()2,3a 2i3i 1ia +=++a =4-3-34()()2i 1i 3i 24i 4a a +=++=+⇒=A .逐年比较,2008年减少二氧化碳排放量的效果最显著B .2007年我国治理二氧化碳排放显现成效C .2006年以来我国二氧化碳年排放量呈减少趋势D .2006年以来我国二氧化碳年排放量与年份正相关 【答案】 D 考点:柱形图4. 已知,,则( ) A . B . C . D . 【答案】C 【解析】试题分析:由题意可得 , 所以.故选C.考点:向量数量积.5. 设是等差数列的前项和,若,则( ) A . B . C . D . 【答案】A 【解析】试题解析:,.故选A. 考点:等差数列6. 一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )()1,1=-a ()1,2=-b (2)+⋅=a b a 1-01222=a 3,⋅=-a b ()222431+⋅=+⋅=-=a b a a a b n S {}n a n 1353a a a ++=5S =5791113533331a a a a a ++==⇒=()15535552a a S a +===【答案】D 【解析】试题分析:截去部分是正方体的一个角,其体积是正方体体积的,所以截去部分体积与剩余部分体积的比值为 ,故选D.考点:三视图7. 已知三点,则△外接圆的圆心到原点的距离为( )【答案】B考点:直线与圆的方程.8. 右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的分别为14,18,则输出的为( )1A.81B.71C.61D.51615(1,0),A B C ABC 5A.33 C.34D.3,a b a A.0 B.2 C.4 D.14【答案】B 【解析】试题分析:由题意输出的a 是18,14的最大公约数2,故选B. 考点:1. 更相减损术;2.程序框图. 9.已知等比数列满足,,则( )【答案】C 【解析】试题分析:由题意可得,所以,故 ,选C.考点:等比数列.10. 已知是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为( )A. B. C. D. 【答案】C考点:球与几何体的切接.11. 如图,长方形的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记{}n a 114a =()35441a a a =-2a =A.2 B.11C.21D.8()235444412a a a a a ==-⇒=34182a q q a ==⇒=2112a a q ==B A ,O ︒=∠90AOBC ABC O -O π36π64π144π256,将动点P 到A ,B 两点距离之和表示为x 的函数 ,则的图像大致为( )A .B .C .D .【答案】B考点:函数图像12. 设函数,则使得成立的的取值范围是( )A .B .C .D .【答案】A 【解析】试题分析:由可知是偶函数,且在是增函数,所以 .故选A.BOP x ∠=()f x 21()ln(1||)1f x x x =+-+()(21)f x f x >-x 1,13⎛⎫ ⎪⎝⎭()1,1,3⎛⎫-∞+∞ ⎪⎝⎭11,33⎛⎫-⎪⎝⎭11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭21()ln(1||)1f x x x =+-+()f x [)0,+∞()()()()121212113f x f x f x f x x x x >-⇔>-⇔>-⇔<<考点:函数性质二、填空题:本大题共4小题,每小题5分,共20分13. 已知函数的图像过点(-1,4),则a = .【答案】-2 【解析】试题分析:由可得 .考点:函数解析式14. 若x ,y 满足约束条件 ,则z =2x +y 的最大值为 .【答案】8考点:线性规划15. 已知双曲线过点,且渐近线方程为,则该双曲线的标准方程为 .【答案】考点:双曲线几何性质16. 已知曲线在点 处的切线与曲线 相切,则()32f x ax x =-()32f x ax x =-()1242f a a -=-+=⇒=-50210210x y x y x y +-≤⎧⎪--≥⎨⎪-+≤⎩(12y x =±2214x y -=ln y x x =+()1,1()221y ax a x =+++a = . 【答案】8 【解析】试题分析:由可得曲线在点处的切线斜率为2,故切线方程为,与联立得,显然,所以由.考点:导数的几何意义. 三、解答题17(本小题满分12分)△ABC 中D 是BC 上的点,AD 平分BAC ,BD =2DC . (I )求;(II )若,求. 【答案】(I );.考点:解三角形试题解析:(I )由正弦定理得因为AD 平分BAC ,BD =2DC ,所以.(II )因为 所以 由(I )知, 11y x'=+ln y x x =+()1,121y x =-()221y ax a x =+++220ax ax ++=0a ≠2808a a a ∆=-=⇒=∠sin sin BC∠∠60BAC ∠=B ∠1230,,sin sin sin sin AD BD AD DCB BADC CAD==∠∠∠∠∠sin 1.sin 2B DC C BD ∠==∠()180,60,C BAC B BAC ∠=-∠+∠∠=()1sin sin sin .2C BAC B B B ∠=∠+∠=∠+∠2sin sin B C ∠=∠所以 考点:解三角形18. (本小题满分12分)某公司为了了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对其产品的满意度的评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频率分布表.A 地区用户满意度评分的频率分布直方图(I )在答题卡上作出B 地区用户满意度评分的频率分布直方图,并通过此图比较两地区满意度评分的平均值及分散程度.(不要求计算出具体值,给出结论即可)B 地区用户满意度评分的频率分布直方图tan 30.B B ∠=∠=(II )根据用户满意度评分,将用户的满意度评分分为三个等级:估计那个地区的用户的满意度等级为不满意的概率大,说明理由.【答案】(I )见试题解析(II )A 地区的用户的满意度等级为不满意的概率大. 考点:1.频率分布直方图;2.概率估计.19. (本小题满分12分)如图,长方体中AB =16,BC =10,,点E ,F 分别在 上,过点E ,F 的平面与此长方体的面相交,交线围成一个正方形.(I )在图中画出这个正方形(不必说明画法与理由); (II )求平面把该长方体分成的两部分体积的比值. 【答案】(I )见试题解析(II )或1111ABCD A B C D -18AA =1111,A B D C 11 4.A E D F ==αα9779考点:1.几何体中的截面问题;2.几何体的体积20. (本小题满分12分)已知椭圆 的离心率为,点在C 上.(I )求C 的方程;(II )直线l 不经过原点O ,且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 中点为M ,证明:直线OM 的斜率与直线l 的斜率乘积为定值.【答案】(I )(II )见试题解析()2222:10x y C a b a b+=>>2(2222184x y +=考点:直线与椭圆21. (本小题满分12分)已知.(I )讨论的单调性;(II )当有最大值,且最大值大于时,求a 的取值范围.【答案】(I ),在是单调递增;,在单调递增,在单调递减;(II ). 【解析】()()ln 1f x x a x =+-()f x ()f x 22a -0a ≤()f x ()0,+∞0a >()f x 10,a ⎛⎫ ⎪⎝⎭1,a ⎛⎫+∞ ⎪⎝⎭()0,1考点:导数的应用.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号22. (本小题满分10分)选修4-1:几何证明选讲如图O是等腰三角形AB C内一点,圆O与△ABC的底边BC交于M,N两点,与底边上的高交于点G,且与AB,AC分别相切于E,F两点.(I )证明;(II )若AG 等于圆O 半径,且,求四边形EBCF 的面积.【答案】(I )见试题解析;(II考点:1.几何证明;2.四边形面积的计算.23. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系中,曲线 (t 为参数,且 ),其中,在以O为极点,x 轴正半轴为极轴的极坐标系中,曲线 (I )求与交点的直角坐标;(II )若与 相交于点A ,与相交于点B ,求最大值.EF BC AE MN ==xOy 1cos ,:sin ,x t C y t αα=⎧⎨=⎩0t ≠0απ≤<23:2sin ,:.C C ρθρθ==2C 3C 1C 2C 1C 3C AB【答案】(I );(II )4. 【解析】 试题分析:(I )把与的方程化为直角坐标方程分别为,,联立解考点:参数方程、直角坐标及极坐标方程的互化.24. (本小题满分10分)选修4-5:不等式证明选讲设 均为正数,且.证明:(I )若 ,(II )的充要条件.【答案】【解析】 ()30,0,2⎫⎪⎪⎝⎭2C 3C 2220x y y +-=22230x y x +-=,,,a b c d a b c d +=+ab cd >>>a b c d -<-试题分析:(I )由及,可证明,开方即得(II )本小题可借助第一问的结论来证明,但要分必要性与充分性来证明.试题解析:解:(I )因为考点:不等式证明.a b c d+=+abcd>22>>22a b c d =++=++。

2015年高考全国卷2文科数学试题和答案解析

2015年高考全国卷2文科数学试题和答案解析

2015年高考全国卷2文科数学试题及答案(word精校版)含详细解析一、选择题:本大题共12道小题,每小题5分1.已知集合A={x|-l<x<2},B={x|0<x<3},则A B=A.(-1,3)B.(-1,0)C.(0,2)D.(2,3)【答案】A【解析】试题分析:因为彳={x|-l<x<2},3={x|0<x<3},所以火汕={*|一1<*<3}.故选人.考点:集合运算.【名师点睛】本题属基础题,主要考查数列的交集运算。

2.若为a实数,且?+=3+i,则a=1+iA.-4B.-3C.3D.4【答案】D【解析】试题分析:由题意可得2+tri=(l+i)(3+i)=2+4ina=4,故选D.考点:复数运算.【名师点睛】本题主要考查复数的乘除运算,及复数相等,难度不大,但要注意运算的准确性。

3.根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是A.逐年比较,2008年减少二氧化碳排放量的效果最显著B.2007年我国治理二氧化碳排放显现成效C.2006年以来我国二氧化碳年排放量呈减少趋势D.2006年以来我国二氧化碳年排放量与年份正相关【答案】D【解析】试题分析:由柱形图可知2006年以来,我国二氧化碳排放童基本成i走诚趋势,所以二氧化碳援放童与年份负相关,故选D.考点:柱形图【名师点睛】本题考查学生对柱形图的理解,要求学生能从图中读出有用信息,背景比较新颖。

4,己知«=(0,-1),*=(-1,2),贝i](2a+6)-a=A.-1B.0C.1D.2【答案】B【解析】试题分析:由题意可得«2=1,a b=-2,所以(2a+b)a=2a1+a b=2-2=0.考点:向量数量积。

【名师点睛】本题主要考查向量数量积的坐标运算,属于基础题。

5.设&是等差数列{%}的前"项和,若tZ]+O,+a5=3,则S5=A.5B.7C.9D.11【答案】A【解析】试题解析:%+%+%= 3% = 3 => % = 1,S)=---------= 5角=5.考点:等差数列【名师点睛】本题主要考查等差数列性质及前〃项和公式,具有小、巧、活的特点。

2015年度全国2卷(理数)

2015年度全国2卷(理数)

2015年普通高等学校招生全国统一考试课标全国Ⅱ理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015课标全国Ⅱ,理1)已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=()A.{-1,0}B.{0,1}C.{-1,0,1}D.{0,1,2}答案:A解析:∵B={x|-2<x<1},∴A∩B={-1,0}.2.(2015课标全国Ⅱ,理2)若a为实数,且(2+a i)(a-2i)=-4i,则a=()A.-1B.0C.1D.2答案:B解析:∵(2+a i)(a-2i)=4a+(a2-4)i=-4i,∴{4a=0,解之得a=0.a2−4=−4,3.(2015课标全国Ⅱ,理3)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关 答案:D解析:由柱形图知,2006年以来我国二氧化硫年排放量呈减少趋势,故其排放量与年份负相关,故D 错误. 4.(2015课标全国Ⅱ,理4)已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( ) A.21 B.42 C.63 D.84答案:B 解析:由题意知a 1+a 3+a 5a 1=1+q 2+q 4=213=7,解得q 2=2(负值舍去).∴a 3+a 5+a 7=(a 1+a 3+a 5)q 2=21×2=42.5.(2015课标全国Ⅱ,理5)设函数f (x )={1+log 2(2−x),x <1,2x−1, x ≥1,则f (-2)+f (log 212)=( )A.3B.6C.9D.12答案:C解析:∵f (-2)=1+log 24=3,f (log 212)=2log 212−1=2log 21221=122=6,∴f (-2)+f (log 212)=9.6.(2015课标全国Ⅱ,理6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.15答案:D解析:由题意知该正方体截去了一个三棱锥,如图所示,设正方体棱长为a ,则V 正方体=a 3,V 截去部分=16a 3,故截去部分体积与剩余部分体积的比值为16a 3∶56a 3=1∶5.7.(2015课标全国Ⅱ,理7)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M ,N 两点,则|MN|=( )A.2√6B.8C.4√6D.10答案:C解析:设圆的方程为x 2+y 2+Dx+Ey+F=0,将点A ,B ,C 代入,得{D +3E +F +10=0,4D +2E +F +20=0,D −7E +F +50=0,解得{D =−2,E =4,F =−20.则圆的方程为x 2+y 2-2x+4y-20=0.令x=0得y2+4y-20=0,设M(0,y1),N(0,y2),则y1,y2是方程y2+4y-20=0的两根,由根与系数的关系,得y1+y2=-4,y1y2=-20,故|MN|=|y1-y2|=√(y1+y2)2−4y1y2=√16+80=4√6.8.(2015课标全国Ⅱ,理8)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0B.2C.4D.14答案:B解析:由程序框图,得(14,18)→(14,4)→(10,4)→(6,4)→(2,4)→(2,2),则输出的a=2.9.(2015课标全国Ⅱ,理9)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥O-ABC 体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π答案:C解析:由△AOB面积确定,若三棱锥O-ABC的底面OAB的高最大,则其体积才最大.因为高最大为半径R,所以V O-ABC=13×12R2×R=36,解得R=6,故S球=4πR2=144π.10.(2015课标全国Ⅱ,理10)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点.点P沿着边BC,CD与DA 运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图像大致为()答案:B解析:①当点P在线段BC上时,如图,x∈[0,π4].PB=OB tan x=tan x ,PA=√PB 2+AB 2=√tan 2x +4, 所以f (x )=PB+PA=tan x+√tan 2x +4. 显然函数f (x )在[0,π4]内单调递增,故f (0)≤f (x )≤f (π4),即2≤f (x )≤1+√5.②取线段CD 的中点E ,当点P 在线段CE 上时,x ∈(π4,π2).如图,过点P 作PH ⊥AB ,垂足为H. 则OH=1tanx ,BH=1-1tanx.所以PB=√PH 2+BH 2=√12+(1−1tanx)2, PA=√PH 2+AH 2=√12+(1+1tanx )2. 所以f (x )=PB+PA=√1+(1−1tanx)2+√1+(1+1tanx)2.所以f (x )在(π4,π2)上单调递减.③当点P 在点E 处,f (x )=PB+PA=2√2<1+√5. ④当点P 在线段DE 上时,x ∈(π2,3π4).由图形的对称性可知,此时函数图像与当点P 在线段CE 上时的图像关于x=π2对称.⑤当点P 在线段DA 上时,x ∈[3π4,π].由图形的对称性可知,此时的函数图像与当点P 在线段BC 上时的图像关于x=π2对称.综上选B .11.(2015课标全国Ⅱ,理11)已知A ,B 为双曲线E 的左、右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( ) A.√5B.2C.√3D.√2答案:D解析:设双曲线的标准方程为x 2a 2−y 2b2=1(a>0,b>0),点M 在右支上,如图所示,∠ABM=120°,过点M 向x 轴作垂线,垂足为N ,则∠MBN=60°.∵AB=BM=2a ,∴MN=2a sin 60°=√3a ,BN=2a cos 60°=a.∴点M 坐标为(2a ,√3a ),代入双曲线方程x 2a 2−y 2b2=1,整理,得a 2b2=1,即b2a 2=1.∴e2=1+b2a 2=2,∴e=√2.12.(2015课标全国Ⅱ,理12)设函数f'(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x>0时,xf'(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( ) A.(-∞,-1)∪(0,1) B.(-1,0)∪(1,+∞) C.(-∞,-1)∪(-1,0) D.(0,1)∪(1,+∞)答案:A解析:当x>0时,令F (x )=f(x)x,则F'(x )=xf ′(x)−f(x)x 2<0,∴当x>0时,F (x )=f(x)x为减函数. ∵f (x )为奇函数,且由f (-1)=0,得f (1)=0,故F (1)=0. 在区间(0,1)上,F (x )>0;在(1,+∞)上,F (x )<0,即当0<x<1时,f (x )>0; 当x>1时,f (x )<0.又f (x )为奇函数,∴当x ∈(-∞,-1)时,f (x )>0; 当x ∈(-1,0)时,f (x )<0.综上可知,f (x )>0的解集为(-∞,-1)∪(0,1).故选A .第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2015课标全国Ⅱ,理13)设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ= . 答案:12解析:由题意知存在常数t ∈R ,使λa +b =t (a +2b ),得{λ=t,1=2t,解之得λ=12.14.(2015课标全国Ⅱ,理14)若x ,y 满足约束条件{x −y +1≥0,x −2y ≤0,x +2y −2≤0,则z=x+y 的最大值为 .答案:32解析:由约束条件画出可行域,如图中的阴影部分所示.由可行域可知,目标函数z=x+y 过点B 取得最大值. 联立{x −2y =0,x +2y −2=0,得B (1,12).∴z max =12+1=32.15.(2015课标全国Ⅱ,理15)(a+x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a= . 答案:3解析一:∵(1+x )4=x 4+C 43x 3+C 42x 2+C 41x+C 40x 0=x 4+4x 3+6x 2+4x+1,∴(a+x )(1+x )4的奇数次幂项的系数为4a+4a+1+6+1=32,∴a=3. 解析二:设(a+x )(1+x )4=b 0+b 1x+b 2x 2+b 3x 3+b 4x 4+b 5x 5.令x=1,得16(a+1)=b 0+b 1+b 2+b 3+b 4+b 5, ① 令x=-1,得0=b 0-b 1+b 2-b 3+b 4-b 5, ②由①-②,得16(a+1)=2(b 1+b 3+b 5). 即8(a+1)=32,解得a=3.16.(2015课标全国Ⅱ,理16)设S n 是数列{a n }的前n 项和,且a 1=-1,a n+1=S n S n+1,则S n = . 答案:-1n解析:由a n+1=S n+1-S n =S n S n+1,得1S n−1S n+1=1,即1Sn+1−1S n =-1,则{1S n }为等差数列,首项为1S 1=-1,公差为d=-1,∴1S n=-n ,∴S n =-1n . 三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)(2015课标全国Ⅱ,理17)△ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍. (1)求sin ∠B sin ∠C;(2)若AD=1,DC=√22,求BD 和AC 的长.解:(1)S △ABD =12AB ·AD sin ∠BAD ,S △ADC =12AC ·AD sin ∠CAD.因为S△ABD=2S△ADC,∠BAD=∠CAD, 所以AB=2AC.由正弦定理可得sin∠Bsin∠C =ACAB=12.(2)因为S△ABD∶S△ADC=BD∶DC,所以BD=√2.在△ABD和△ADC中,由余弦定理知AB2=AD2+BD2-2AD·BD cos∠ADB,AC2=AD2+DC2-2AD·DC cos∠ADC.故AB2+2AC2=3AD2+BD2+2DC2=6.由(1)知AB=2AC,所以AC=1.18.(本小题满分12分)(2015课标全国Ⅱ,理18)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:6273819295857464537678869566977888827689B地区:7383625191465373648293486581745654766579(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.解:(1)两地区用户满意度评分的茎叶图如下:通过茎叶图可以看出,A 地区用户满意度评分的平均值高于B 地区用户满意度评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散.(2)记C A 1表示事件:“A 地区用户的满意度等级为满意或非常满意”;C A 2表示事件:“A 地区用户的满意度等级为非常满意”; C B 1表示事件:“B 地区用户的满意度等级为不满意”; C B 2表示事件:“B 地区用户的满意度等级为满意”,则C A 1与C B 1独立,C A 2与C B 2独立,C B 1与C B 2互斥,C=C B 1C A 1∪C B 2C A 2.P (C )=P (C B 1C A 1∪C B 2C A 2)=P (C B 1C A 1)+P (C B 2C A 2)=P (C B 1)P (C A 1)+P (C B 2)P (C A 2). 由所给数据得C A 1,C A 2,C B 1,C B 2发生的频率分别为1620,420,1020,820, 故P (C A 1)=1620,P (C A 2)=420,P (C B 1)=1020,P (C B 2)=820,P (C )=1020×1620+820×420=0.48.19.(本小题满分12分)(2015课标全国Ⅱ,理19)如图,长方体ABCD-A 1B 1C 1D 1中,AB=16,BC=10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E=D 1F=4,过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形. (1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成角的正弦值. 解:(1)交线围成的正方形EHGF 如图:(2)作EM ⊥AB ,垂足为M , 则AM=A 1E=4,EM=AA 1=8.因为EHGF 为正方形,所以EH=EF=BC=10. 于是MH=√EH 2−EM 2=6,所以AH=10.以D 为坐标原点,DA ⃗⃗⃗⃗⃗ 的方向为x 轴正方向,建立如图所示的空间直角坐标系D-xyz , 则A (10,0,0),H (10,10,0),E (10,4,8),F (0,4,8),FE ⃗⃗⃗⃗⃗ =(10,0,0),HE ⃗⃗⃗⃗⃗⃗ =(0,-6,8). 设n =(x ,y ,z )是平面EHGF 的法向量, 则{n ·FE ⃗⃗⃗⃗⃗ =0,n ·HE ⃗⃗⃗⃗⃗⃗ =0,即{10x =0,−6y +8z =0,所以可取n =(0,4,3). 又AF⃗⃗⃗⃗⃗ =(-10,4,8), 故|cos <n ,AF ⃗⃗⃗⃗⃗ >|=|n·AF ⃗⃗⃗⃗⃗⃗||n||AF ⃗⃗⃗⃗⃗⃗|=4√515. 所以AF 与平面EHGF 所成角的正弦值为4√515.20.(本小题满分12分)(2015课标全国Ⅱ,理20)已知椭圆C :9x 2+y 2=m 2(m>0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M. (1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点(m 3,m),延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由.解:(1)设直线l :y=kx+b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ).将y=kx+b 代入9x 2+y 2=m 2得(k 2+9)x 2+2kbx+b 2-m 2=0,故x M =x 1+x 22=−kbk 2+9,y M =kx M +b=9bk 2+9.于是直线OM 的斜率k OM =y M x M =-9k,即k OM ·k=-9. 所以直线OM 的斜率与l 的斜率的乘积为定值. (2)四边形OAPB 能为平行四边形. 因为直线l 过点(m3,m),所以l 不过原点且与C 有两个交点的充要条件是k>0,k ≠3. 由(1)得OM 的方程为y=-9kx. 设点P 的横坐标为x P .由{y =−9k x,9x 2+y 2=m 2得x P 2=k 2m 29k 2+81,即x P =3√k +9.将点(m 3,m)的坐标代入l 的方程得b=m(3−k)3, 因此x M =k(k−3)m 3(k 2+9).四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P =2x M . 于是3√k +9=2×k(k−3)m 3(k 2+9),解得k 1=4-√7,k 2=4+√7. 因为k i >0,k i ≠3,i=1,2,所以当l 的斜率为4-√7或4+√7时,四边形OAPB 为平行四边形. 21.(本小题满分12分)(2015课标全国Ⅱ,理21)设函数f (x )=e mx +x 2-mx. (1)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x 1,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤e -1,求m 的取值范围. 解:(1)f'(x )=m (e mx -1)+2x.若m ≥0,则当x ∈(-∞,0)时,e mx -1≤0,f'(x )<0; 当x ∈(0,+∞)时,e mx -1≥0,f'(x )>0.若m<0,则当x ∈(-∞,0)时,e mx -1>0,f'(x )<0; 当x ∈(0,+∞)时,e mx -1<0,f'(x )>0.所以,f (x )在(-∞,0)单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m,f(x)在[-1,0]单调递减,在[0,1]单调递增,故f(x)在x=0处取得最小值.所以对于任意x1,x2∈[-1,1],|f(x1)-f(x2)|≤e-1的充要条件是{f(1)−f(0)≤e−1,f(−1)−f(0)≤e−1,①即{e m−m≤e−1,e−m+m≤e−1.设函数g(t)=e t-t-e+1,则g'(t)=e t-1.当t<0时,g'(t)<0;当t>0时,g'(t)>0.故g(t)在(-∞,0)单调递减,在(0,+∞)单调递增.又g(1)=0,g(-1)=e-1+2-e<0,故当t∈[-1,1]时,g(t)≤0.当m∈[-1,1]时,g(m)≤0,g(-m)≤0,即①式成立;当m>1时,由g(t)的单调性,g(m)>0,即e m-m>e-1;当m<-1时,g(-m)>0,即e-m+m>e-1.综上,m的取值范围是[-1,1].请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题记分,做答时请写清题号.22.(本小题满分10分)(2015课标全国Ⅱ,理22)选修4—1:几何证明选讲如图,O为等腰三角形ABC内一点,☉O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于☉O的半径,且AE=MN=2√3,求四边形EBCF的面积.解:(1)由于△ABC是等腰三角形,AD⊥BC,所以AD是∠CAB的平分线.又因为☉O分别与AB,AC相切于点E,F,所以AE=AF,故AD⊥EF.从而EF∥BC.(2)由(1)知,AE=AF,AD⊥EF,故AD是EF的垂直平分线.又EF为☉O的弦,所以O在AD上.连结OE,OM,则OE⊥AE.由AG等于☉O的半径得AO=2OE, 所以∠OAE=30°.因此△ABC和△AEF都是等边三角形.因为AE=2√3,所以AO=4,OE=2.因为OM=OE=2,DM=12MN=√3, 所以OD=1.于是AD=5,AB=10√33.所以四边形EBCF的面积为12×(10√33)2×√32−12×(2√3)2×√32=16√33.23.(本小题满分10分)(2015课标全国Ⅱ,理23)选修4—4:坐标系与参数方程在直角坐标系xOy中,曲线C1:{x=tcosα,y=tsinα,(t为参数,t≠0),其中0≤α<π.在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sin θ,C3:ρ=2√3cos θ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.解:(1)曲线C2的直角坐标方程为x2+y2-2y=0,曲线C3的直角坐标方程为x2+y2-2√3x=0.联立{x 2+y2−2y=0,x2+y2−2√3x=0,解得{x=0,y=0,或{x=√32,y=32.所以C2与C3交点的直角坐标为(0,0)和(√32,3 2 ).(2)曲线C1的极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤α<π.因此A的极坐标为(2sin α,α),B的极坐标为(2√3cos α,α).所以|AB|=|2sin α-2√3cos α|=4|sin(α−π3)|.当α=5π6时,|AB|取得最大值,最大值为4.24.(本小题满分10分)(2015课标全国Ⅱ,理24)选修4—5:不等式选讲设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则√a+√b>√c+√d;(2)√a+√b>√c+√d是|a-b|<|c-d|的充要条件.解:(1)因为(√a+√b)2=a+b+2√ab,(√c+√d)2=c+d+2√cd, 由题设a+b=c+d,ab>cd得(√a+√b)2>(√c+√d)2.因此√a+√b>√c+√d.(2)①若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd.由(1)得√a+√b>√c+√d.②若√a+√b>√c+√d,则(√a+√b)2>(√c+√d)2,即a+b+2√ab>c+d+2√cd.因为a+b=c+d,所以ab>cd.于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,√a+√b>√c+√d是|a-b|<|c-d|的充要条件.。

2015年普通高等学校招生全国统一考试 全国卷2 数学试卷含答案(理科)

2015年普通高等学校招生全国统一考试 全国卷2 数学试卷含答案(理科)

2015年普通高等学校招生全国统一考试(课标全国卷Ⅱ)理 数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=( ) A.{-1,0}B.{0,1}C.{-1,0,1}D.{0,1,2}2.若a 为实数,且(2+ai)(a-2i)=-4i,则a=( ) A.-1B.0C.1D.23.根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关4.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( ) A.21B.42C.63D.845.设函数f(x)={1+log 2(2-x ), x <1,2x -1,x ≥1,则f(-2)+f(log 212)=( )A.3B.6C.9D.126.一个正方体被一个平面截去一部分后,剩余部分的三视图如图所示,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.157.过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M,N两点,则|MN|=( )A.2√6B.8C.4√6D.108.下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=( )A.0B.2C.4D.149.已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥O-ABC体积的最大值为36,则球O的表面积为( )A.36πB.64πC.144πD.256π10.如图,长方形ABCD的边AB=2,BC=1,O是AB的中点.点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为( )11.已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为( )A.√5B.2C.√3D.√212.设函数f'(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf'(x)-f(x)<0,则使得f(x)>0成立的x 的取值范围是( ) A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0)D.(0,1)∪(1,+∞)第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.设向量a,b 不平行,向量λa+b 与a+2b 平行,则实数λ= . 14.若x,y 满足约束条件{x -y +1≥0,x -2y ≤0,x +2y -2≤0,则z=x+y 的最大值为 .15.(a+x)(1+x)4的展开式中x 的奇数次幂项的系数之和为32,则a= . 16.设S n 是数列{a n }的前n 项和,且a 1=-1,a n+1=S n S n+1,则S n = .三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)△ABC 中,D 是BC 上的点,AD 平分∠BAC,△ABD 面积是△ADC 面积的2倍. (Ⅰ)求sin∠Bsin∠C; (Ⅱ)若AD=1,DC=√22,求BD 和AC 的长.18.(本小题满分12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区: 73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);A地区B地区456789(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.19.(本小题满分12分)如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说明画法和理由);(Ⅱ)求直线AF与平面α所成角的正弦值.20.(本小题满分12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(Ⅰ)证明:直线OM的斜率与l的斜率的乘积为定值;,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此(Ⅱ)若l过点(m3时l的斜率;若不能,说明理由.21.(本小题满分12分)设函数f(x)=e mx+x2-mx.(Ⅰ)证明:f(x)在(-∞,0)单调递减,在(0,+∞)单调递增;(Ⅱ)若对于任意x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤e-1,求m的取值范围.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—1:几何证明选讲如图,O为等腰三角形ABC内一点,☉O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(Ⅰ)证明:EF∥BC;(Ⅱ)若AG等于☉O的半径,且AE=MN=2√3,求四边形EBCF的面积.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,曲线C 1:{x =tcosα,y =tsinα(t 为参数,t≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sinθ,C 3:ρ=2√3cosθ. (Ⅰ)求C 2与C 3交点的直角坐标;(Ⅱ)若C 1与C 2相交于点A,C 1与C 3相交于点B,求|AB|的最大值.24.(本小题满分10分)选修4—5:不等式选讲 设a,b,c,d 均为正数,且a+b=c+d,证明: (Ⅰ)若ab>cd,则√a +√b >√c +√d ;(Ⅱ)√a +√b >√c +√d 是|a-b|<|c-d|的充要条件.2015年普通高等学校招生全国统一考试(课标全国卷Ⅱ)一、选择题1.A 因为B={x|(x-1)(x+2)<0}={x|-2<x<1},A={-2,-1,0,1,2},故A ∩B={-1,0}.选A.2.B ∵(2+ai)(a -2i)=-4i ⇒4a+(a 2-4)i=-4i, ∴{4a =0,a 2-4=-4,解得a=0. 3.D 由柱形图可知:A 、B 、C 均正确,2006年以来我国二氧化硫年排放量在逐渐减少,所以排放量与年份负相关,∴D 不正确.4.B 设{a n }的公比为q,由a 1=3,a 1+a 3+a 5=21得1+q 2+q 4=7,解得q 2=2(负值舍去).∴a 3+a 5+a 7=a 1q 2+a 3q 2+a 5q 2=(a 1+a 3+a 5)q 2=21×2=42.5.C ∵-2<1,∴f(-2)=1+log 2[2-(-2)]=3;∵log 212>1, ∴f(log 212)=2log 212-1=2log 26=6.∴f(-2)+f(log 212)=9.6.D 如图,由已知条件可知,截去部分是以△ABC 为底面且三条侧棱两两垂直的正三棱锥D-ABC.设正方体的棱长为a,则截去部分的体积为16a 3,剩余部分的体积为a 3-16a 3=56a 3.它们的体积之比为15.故选D.评析 本题主要考查几何体的三视图和体积的计算,考查空间想象能力. 7.C 设圆心为P(a,b),由点A(1,3),C(1,-7)在圆上,知b=3-72=-2.再由|PA|=|PB|,得a=1.则P(1,-2),|PA|=√(1-1)2+(3+2)2=5,于是圆P 的方程为(x-1)2+(y+2)2=25.令x=0,得y=-2±2√6,则|MN|=|(-2+2√6)-(-2-2√6)|=4√6. 8.B 开始:a=14,b=18,第一次循环:a=14,b=4; 第二次循环:a=10,b=4; 第三次循环:a=6,b=4; 第四次循环:a=2,b=4; 第五次循环:a=2,b=2. 此时,a=b,退出循环,输出a=2.评析 熟悉“更相减损术”对理解框图所确定的算法有帮助. 9.C ∵S △OAB 是定值,且V O-ABC =V C-OAB ,∴当OC ⊥平面OAB 时,V C-OAB 最大,即V O-ABC 最大.设球O 的半径为R,则(V O-ABC )max =13×12R 2×R=16R 3=36,∴R=6,∴球O 的表面积S=4πR 2=4π×62=144π.评析 点C 是动点,如果以△ABC 为底面,则底面面积与高都是变量,因此转化成以△OAB 为底面(S △OAB 为定值),这样高越大,体积越大.10.B 当点P 与C 、D 重合时,易求得PA+PB=1+√5;当点P 为DC 的中点时,有OP ⊥AB,则x=π2,易求得PA+PB=2PA=2√2.显然1+√5>2√2,故当x=π2时, f(x)没有取到最大值,则C 、D 选项错误.当x ∈[0,π4)时, f(x)=tan x+√4+tan 2x ,不是一次函数,排除A,故选B.11.D 设双曲线E 的标准方程为x 2a 2-y 2b 2=1(a>0,b>0),则A(-a,0),B(a,0),不妨设点M 在第一象限内,则易得M(2a,√3a),又M 点在双曲线E 上,于是(2a)2a 2-(√3a)2b2=1,解得b 2=a 2,∴e=√1+b 2a 2=√2.12.A 令g(x)=f(x)x,则g'(x)=xf '(x)-f(x)x 2,由题意知,当x>0时,g'(x)<0,∴g(x)在(0,+∞)上是减函数.∵f(x)是奇函数, f(-1)=0,∴f(1)=-f(-1)=0, ∴g(1)=f(1)1=0,∴当x ∈(0,1)时,g(x)>0,从而f(x)>0; 当x ∈(1,+∞)时,g(x)<0,从而f(x)<0.又∵g(-x)=f(-x)-x=-f(x)-x=f(x)x=g(x),∴g(x)是偶函数,∴当x ∈(-∞,-1)时,g(x)<0,从而f(x)>0; 当x ∈(-1,0)时,g(x)>0,从而f(x)<0. 综上,所求x 的取值范围是(-∞,-1)∪(0,1).评析 出现xf '(x)+f(x)>0(<0)时,考虑构造函数F(x)=xf(x),出现xf '(x)-f(x)>0(<0)时,考虑构造函数g(x)=f(x)x.二、填空题 13.答案12解析 由于a,b 不平行,所以可以以a,b 作为一组基底,于是λa+b 与a +2b 平行等价于λ1=12,即λ=12.14.答案32解析 作出可行域,如图:由z=x+y 得y=-x+z,当直线y=-x+z 过点A (1,12)时,z 取得最大值,z max =1+12=32.15.答案 3解析 设f(x)=(a+x)(1+x)4,则其所有项的系数和为f(1)=(a+1)·(1+1)4=(a+1)×16,又奇数次幂项的系数和为12[f(1)-f(-1)],∴12×(a+1)×16=32,∴a=3.评析 二项展开式问题中,涉及系数和的问题,通常采用赋值法. 16.答案 -1n解析∵a n+1=S n+1-S n,∴S n+1-S n=S n+1S n,又由a1=-1,知S n≠0,∴1S n -1S n+1=1,∴{1S n}是等差数列,且公差为-1,而1S1=1a1=-1,∴1S n=-1+(n-1)×(-1)=-n,∴S n=-1n.三、解答题17.解析(Ⅰ)S△ABD=12AB·ADsin∠BAD,S△ADC=12AC·ADsin∠CAD.因为S△ABD=2S△ADC,∠BAD=∠CAD,所以AB=2AC.由正弦定理可得sin∠Bsin∠C =ACAB=12.(Ⅱ)因为S△ABD∶S△ADC=BD∶DC,所以BD=√2.在△ABD和△ADC中,由余弦定理知AB2=AD2+BD2-2AD·BDcos∠ADB,AC2=AD2+DC2-2AD·DCcos∠ADC.故AB2+2AC2=3AD2+BD2+2DC2=6.由(Ⅰ)知AB=2AC,所以AC=1.评析本题考查正弦定理,余弦定理的应用,以及三角形的面积公式.属常规题,中等偏易.18.解析(Ⅰ)两地区用户满意度评分的茎叶图如下:A地区B地区4 6 83 5 1 3 6 46 4 2 6 2 4 5 56 8 8 64 3 73 34 699 2 8 65 18 3 2 17 5 5 2 9 1 3通过茎叶图可以看出,A 地区用户满意度评分的平均值高于B 地区用户满意度评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散.(Ⅱ)记C A1表示事件:“A 地区用户的满意度等级为满意或非常满意”;C A2表示事件:“A 地区用户的满意度等级为非常满意”;C B1表示事件:“B 地区用户的满意度等级为不满意”;C B2表示事件:“B 地区用户的满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,C=C B1C A1∪C B2C A2.P(C)=P(C B1C A1∪C B2C A2)=P(C B1C A1)+P(C B2C A2)=P(C B1)P(C A1)+P(C B2)P(C A2).由所给数据得C A1,C A2,C B1,C B2发生的频率分别为1620,420,1020,820,故P(C A1)=1620,P(C A2)=420,P(C B1)=1020,P(C B2)=820,P(C)=1020×1620+820×420=0.48.19.解析 (Ⅰ)交线围成的正方形EHGF 如图:(Ⅱ)作EM ⊥AB,垂足为M,则AM=A 1E=4,EM=AA 1=8.因为EHGF 为正方形,所以EH=EF=BC=10.于是MH=√EH 2-EM 2=6,所以AH=10.以D 为坐标原点,DA ⃗⃗⃗⃗⃗ 的方向为x 轴正方向,建立如图所示的空间直角坐标系D-xyz,则A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8),FE ⃗⃗⃗⃗⃗ =(10,0,0),HE⃗⃗⃗⃗⃗⃗ =(0,-6,8). 设n =(x,y,z)是平面EHGF 的法向量,则{n ·FE ⃗⃗⃗⃗ =0,n ·HE⃗⃗⃗⃗⃗ =0,即{10x =0,-6y +8z =0, 所以可取n =(0,4,3).又AF ⃗⃗⃗⃗⃗ =(-10,4,8),故|cos<n ,AF ⃗⃗⃗⃗⃗ >|=|n ·AF ⃗⃗⃗⃗⃗||n||AF ⃗⃗⃗⃗⃗ |=4√515. 所以AF 与平面EHGF 所成角的正弦值为4√515. 评析 本题背景常规,设问新颖,鼓励动手试验、创新尝试、独立思考.对空间想象力有较高要求.20.解析 (Ⅰ)设直线l:y=kx+b(k ≠0,b ≠0),A(x 1,y 1),B(x 2,y 2),M(x M ,y M ).将y=kx+b 代入9x 2+y 2=m 2得(k 2+9)x 2+2kbx+b 2-m 2=0,故x M =x 1+x 22=-kb k 2+9,y M =kx M +b=9b k 2+9.于是直线OM 的斜率k OM =y M x M =-9k ,即k OM ·k=-9.所以直线OM 的斜率与l 的斜率的乘积为定值.(Ⅱ)四边形OAPB 能为平行四边形.因为直线l 过点(m 3,m),所以l 不过原点且与C 有两个交点的充要条件是k>0,k ≠3. 由(Ⅰ)得OM 的方程为y=-9k x.设点P 的横坐标为x P .由{y =-9k x,9x 2+y 2=m 2得x P 2=k 2m 29k 2+81,即x P =3√k 2+9. 将点(m 3,m)的坐标代入l 的方程得b=m(3-k)3,因此x M =k(k -3)m 3(k 2+9). 四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P =2x M .于是3√k 2+9=2×k(k -3)m3(k 2+9),解得k 1=4-√7,k 2=4+√7. 因为k i >0,k i ≠3,i=1,2,所以当l 的斜率为4-√7或4+√7时,四边形OAPB 为平行四边形.评析 本题考查直线与圆锥曲线的位置关系,设问常规,但对运算能力要求较高,考查学生的思维能力.21.解析 (Ⅰ)f '(x)=m(e mx -1)+2x.若m ≥0,则当x ∈(-∞,0)时,e mx -1≤0, f '(x)<0;当x ∈(0,+∞)时,e mx -1≥0, f '(x)>0.若m<0,则当x ∈(-∞,0)时,e mx -1>0, f '(x)<0;当x ∈(0,+∞)时,e mx -1<0, f '(x)>0.所以, f(x)在(-∞,0)单调递减,在(0,+∞)单调递增.(Ⅱ)由(Ⅰ)知,对任意的m, f(x)在[-1,0]单调递减,在[0,1]单调递增,故f(x)在x=0处取得最小值.所以对于任意x 1,x 2∈[-1,1],|f(x 1)-f(x 2)|≤e-1的充要条件是{f(1)-f(0)≤e -1,f(-1)-f(0)≤e -1,即{e m -m ≤e -1,e -m +m ≤e -1.① 设函数g(t)=e t -t-e+1,则g'(t)=e t -1.当t<0时,g'(t)<0;当t>0时,g'(t)>0.故g(t)在(-∞,0)单调递减,在(0,+∞)单调递增.又g(1)=0,g(-1)=e -1+2-e<0,故当t ∈[-1,1]时,g(t)≤0.当m ∈[-1,1]时,g(m)≤0,g(-m)≤0,即①式成立;当m>1时,由g(t)的单调性,g(m)>0,即e m -m>e-1;当m<-1时,g(-m)>0,即e -m +m>e-1.综上,m 的取值范围是[-1,1].22.解析 (Ⅰ)由于△ABC 是等腰三角形,AD ⊥BC,所以AD 是∠CAB 的平分线.又因为☉O 分别与AB,AC 相切于点E,F,所以AE=AF,故AD ⊥EF.从而EF ∥BC.(Ⅱ)由(Ⅰ)知,AE=AF,AD ⊥EF,故AD 是EF 的垂直平分线.又EF 为☉O 的弦,所以O 在AD 上. 连结OE,OM,则OE ⊥AE.由AG 等于☉O 的半径得AO=2OE,所以∠OAE=30°.因此△ABC 和△AEF 都是等边三角形.因为AE=2√3,所以AO=4,OE=2.因为OM=OE=2,DM=12MN=√3,所以OD=1.于是AD=5,AB=10√33.所以四边形EBCF 的面积为12×(10√33)2×√32-12×(2√3)2×√32=16√33.23.解析 (Ⅰ)曲线C 2的直角坐标方程为x 2+y 2-2y=0,曲线C 3的直角坐标方程为x 2+y 2-2√3x=0. 联立{x 2+y 2-2y =0,x 2+y 2-2√3x =0,解得{x =0,y =0,或{x =√32,y =32. 所以C 2与C 3交点的直角坐标为(0,0)和(√32,32). (Ⅱ)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π.因此A 的极坐标为(2sin α,α),B 的极坐标为(2√3cos α,α).所以|AB|=|2sin α-2√3cos α|=4|sin (α-π3)|.当α=5π6时,|AB|取得最大值,最大值为4.24.解析 (Ⅰ)因为(√a +√b )2=a+b+2√ab ,(√c +√d )2=c+d+2√cd ,由题设a+b=c+d,ab>cd得(√a+√b)2>(√c+√d)2. 因此√a+√b>√c+√d.(Ⅱ)(i)若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd.由(Ⅰ)得√a+√b>√c+√d.(ii)若√a+√b>√c+√d,则(√a+√b)2>(√c+√d)2,即a+b+2√ab>c+d+2√cd.因为a+b=c+d,所以ab>cd.于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,√a+√b>√c+√d是|a-b|<|c-d|的充要条件.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年普通高等学校招生全国统一考试理科
(新课标卷二Ⅱ)
第Ⅰ卷
一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合A={-2,-1,0,2},B={x|(X-1)(x+2)<0},则A∩B=
(A){-1,0}(B){0,1}(C){-1,0,1}(D){0,1,2}2.若a为实数且(2+ai )(a-2i )=-4i,则a =
(A)-1 (B)0 (C)1 (D)2
3.根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。

以下结论不正确的是
(A)逐年比较,2008年减少二氧化硫排放量的效果最显著
(B)2007年我国治理二氧化硫排放显现
(C)2006年以来我国二氧化硫年排放量呈减少趋势
(D)2006年以来我国二氧化硫年排放量与年份正相关
4.等比数列{a n}满足a1=3,a1+ a3+ a5=21,则a3+ a5+ a7=
(A)21 (B)42 (C)63 (D)84
5.设函数f (x )=⎩⎨⎧≥++-1
,2,1),2(log 112x x x x <,则f (-2)+ f (log 212) =
(A )3 (B )6 (C )9 (D )12
6.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则
截去部分体积与剩余部分体积的与剩余部分体积的比值为
(A )81 (B )71 (C )61 (D )5
1
7.过三点A (1,3),B (4,2),C (1,7)的圆交于y 轴于M 、N 两点,则MN =
(A )26 (B )8 (C )46 (D )10
8.右边程序抗土的算法思路源于我国古代数学名著《九章算术》
中的“更相减损术”。

执行该程序框图,若输入a,b 分别为14,18,
则输出的a=
(A )0 (B )2
(C )4 (D )14
9.已知A,B 是球O 的球面上两点,∠AOB=90,C 为该球面上的动点,若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为
(A )36π (B )64π (C )144π (D )256π
10.如图,长方形ABCD 的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,∠BOP=x 。

将动点P 到AB 两点距离之和表示为x 的函数f (x ),则f (x )的图像大致为
11.已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,
且顶角为
120°,则E 的离心率为
(A)5 (B)2 (C)3 (D)2
12.设函数f ’(x)是奇函数f (x )(x ∈R)的导函数,f (-1)=0,当x>0时,x f ’(x )-f
(x )<0,则使得f (x ) >0成立的x 的取值范围是
(A) (-∞,-1)∪(0,1) (B) (-1,0)∪(1,+∞)
(C) (-∞,-1)∪(-1,0) (D) (0,1)∪(1,+∞)
第Ⅱ卷
本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答。

二.填空题
13.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________.(用数字填写答案)
14.若x ,y 满足约束条件⎪⎩
⎪⎨⎧≤-+≤-≥+-,022,02,01y x y x y x ,则z= x +y 的最大值为____________..
15.(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =__________.
16.设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n=________.
三.解答题:解答应写出文字说明,证明过程或演算步骤.
17.(本小题满分12分)
(17)∆ABC 中,D 是BC 上的点,AD 平分∠BAC ,∆ABD 是∆ADC 面积的2倍。

(Ⅰ) 求C
B ∠∠sin sin ; (Ⅱ) 若AD=1,DC=2
2,求BD 和AC 的长.
18. 某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:
A 地区:62 73 81 92 95 85 74 64 53 76
78 86 95 66 97 78 88 82 76 89
B 地区:73 83 62 51 91 46 53 73 64 82
93 48 65 81 74 56 54 76 65 79
(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶
图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);
(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:
地区用户的评价结果相互独立。

根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率
19. 如图,长方体ABCD-A 1B 1C 1D 1中AB=16,BC=10,AA 1=8,点E ,F 分别在A1B1,D1C1上,A1E=D1F 。

过带你E ,F 的平面α与此长方体的面相交,交线
围成一个正方形
(Ⅰ)在图中画出这个正方形(不必说出画法和理由)
(Ⅱ)求直线AF 与平面α所成角的正弦值
20. 已知椭圆C :9x 2+ y 2 = m 2 (m >0)错误!未找到引用源。

,直线l 不过原点O 且不平行于坐标轴,l 与C 有
两个交点A ,B ,线段AB 的中点为M.
(I )证明:直线OM 的斜率与l 的斜率的乘积为定值;
(II )若l 过点(3
m ,m ),延长线段OM 与C 交于点P ,四边形OAPB 能否平行四边行?若能,求此时l 的斜率,若不能,说明理由.
21. 设函数f(x)=e mx+x2-mx.
(Ⅰ)证明:f(x)在(-∞,0)单调递减,在(0,+∞)单调递增;
(Ⅱ)若对于任意x1, x2∈[-1,1],都有|f(x1)- f(x2)|≤e-1,求m的取值范围请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清题号.
(22).(本小题满分10分)选修4—1:几何证明选讲
如图,O为等腰三角形ABC内一点,圆O与ABC的底边BC
交于M、N两点与底边上的高AD交于点G,且与AB、AC分别相
切于E、F两点.
(I)证明:EF平行于BC
(II)若AG等于圆O的半径,且AE=MN=,求四边形EBCF的面积。

(23)(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系xOy 中,曲线C 1:)0(,sin ,cos ≠⎩
⎨⎧==t t t y t x 为参数,αα,其中0≤α<π ,在以O
为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,曲线C 3:ρ=32cos θ .
(I ).求C 2与C 3交点的直角坐标
(II ).若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求AB 的最大值
(24)(本小题满分10分)选修4-5不等式选讲 设a 、b 、c 、d 均为正数,且a+b=c+d,证明: (I )若ab >cd ,则d c b a ++>;
(II )d c b a ++>是d c b a --<的充要条件.。

相关文档
最新文档