初中数学中考模拟数学 反比例函数基础及能力提升考试卷及答案.docx
中考数学复习《反比例函数》专项测试卷(带答案)

中考数学复习《反比例函数》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若点()1,2A x ,()2,1B x -和()3,4C x 都在反比例函数8y x=的图像上,则1x ,2x 和3x 的大小关系是( ) A.123x x x <<B.231x x x <<C.132x x x <<D.213x x x <<2.若点()26-,在反比例函数ky x=的图象上,则下列说法正确的是( ) A.该函数的图象经过点()34--,B.该函数的图象位于第一、三象限C.当0x >时,y 的值随x 值的增大而增大D.当1x >-时,4y >3.如图,在同一平面直角坐标系中函数y ax a =+与函数ay x=的图象可能是( ) A. B. C. D.4.如图,点A 是双曲线()160y x x =-<上的一点,点B 是双曲线()60y x x=-<上的一点,AB 所在直线垂直x 轴于点C ,点M 是y 轴上一点,连接MA 、MB ,则MAB △的面积为( )A.5B.6C.10D.165.如图,点A ,B 为反比例函数()0ky x x=>的图象上的两点,且满足45AOB ∠=︒,若点A 的坐标为()3,5,则点B 的坐标是( ).A.15215,2⎛⎫ ⎪ ⎪⎝⎭B.1010,2⎛ ⎝⎭C.()8,2D.()8,36.如图,已知点A 、B 分别在反比例函数y =1x (x >0),y =-4x(x >0)的图象上,且OA⊥OB ,则OBOA的值为( )A.4B.2C.14D.127.如图,在ABC 中2AC BC == 90ACB ∠=︒ AC x ∥轴 点D 是AB 的中点 点C 、D 在(k 0,x 0)ky x=≠>的图象上 则k 的值为( )A.1-B.2-C.1D.28.已知蓄电池的电压为定值(电压三星近总度阻) 使用蓄电池时 电流(单位:A )与电阻尺(单位:Ω)是反比例函数关系 它的图象如图所示 下列说法不正确的是( )A.函数解析式为60I R=B.蓄电池的电压是C.当6ΩR =时 8A I =D.当10A I ≤时 6R ≥Ω9.如图 在平面直角坐标系中直线24y x =-+与x 轴、y 轴分别交于A 、B 两点 以AB 为边在第一象限作正方形ABCD 点D 在双曲线()0ky k x=≠上.将正方形沿x 轴负方向平移a 个单位长度后 点C 恰好落在该双曲线上 则a 的值( )A.1B.2C.3D.410.如图 直线22y x =-与x 轴 y 轴分别交于点A B 与反比例函数()0ky k x=>图像交于点C .点D 为x 轴上一点(点D 在点A 右侧) 连接BD 以BA BD 为边作ABDE E 点刚好在反比例函数图像上 设(),E m n 连接EC DC 若1()2ACED S AD AD n =+四边形 则k 的值为( )A.8B.10C.12D.1611.如图 直线y kx =与双曲线3y x -=在同一坐标系中如图所示 则不等式3x-<的解集为( )A.01x <<B.1x <-C.1x <-或01x <<D.10x -<<或1x >12.智能手机已遍及生活中的各个角落 手机拍照功能也越来越强 高档智能手机还具有调焦(调整镜头和感光芯片的距离)的功能.为了验证手机摄像头的放大率(摄像头的放大率是指成像长度与实物长度的比值 也可计算为像距与物距的比值) 小明用某透镜进行了模拟成像实验 得到如图所示的像距v 随物距u 变化的关系图像 下列说法不正确的是( )A.当物距为45.0cm 时 像距为13.0cmB.当像距为15.0cm 时 透镜的放大率为2C.物距越大 像距越小D.当透镜的放大率为1时 物距和像距均为20cm13.某商家设计了一个水箱水位自动报警仪 其电路图如图1所示 其中定值电阻110ΩR =2R 是一个压敏电阻 用绝缘薄膜包好后放在一个硬质凹形绝缘盒中放入水箱底部 受力面水平 承受水压的面积S 为0.012m 压敏电阻的阻值随所受液体压力F 的变化关系如图2所示(水深h 越深 压力F 越大) 电源电压保持6V 不变 当电路中的电流为0.3A 时 报警器(电阻不计)开始报警 水的压强随深度变化的关系图象如图3所示(参考公式:UI R=1000Pa 1kPa =).则下列说法中不正确的是( )2R F pS =A.当水箱未装水()时 压强p 为0kPaB.当报警器刚好开始报警时 水箱受到的压力F 为40NC.当报警器刚好开始报警时 水箱中水的深度h 是0.8mD.若想使水深1m 时报警 应使定值电阻1R 的阻值为 二、填空题14.一个圆柱形蓄水池的底面半径为x cm 蓄水池的侧面积为40π2cm 则这个蓄水池的高h (cm )与底面半径x (cm )之间的函数关系式为_____.15.在反比例函数12my x-=的图象上的图象在二、四象限 则m 的取值范围是_______. 16.若点()11,A y -、21,4B y ⎛⎫- ⎪⎝⎭、()31,C y 都在反比例函数21x k y +=(k 为常数)的图象上 则1y 、2y 、3y 的大小关系为_____.17.如图 点(3,1)P -是反比例函数m y x =的图象上的一点 设直线y kx =与双曲my x=的两个交点分别为P 和P 当mkx x>时 写出x 的取值范围_____.18.如图 在平面直角坐标系xOy 中正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10 点D 是边AB 上靠近点A 的三等分点 将⊥OAD 沿直线OD 折叠后得到⊥OA ′D 若反比例函数y kx=(k ≠0)的图象经过A ′点 则k 的值为_____. 0m h =12Ω19.如图 在平面直角坐标系中直线12y k x =+与x 轴交于点A 与y 轴交于点B 与双曲线2(0)k y x x=>交于点C 连接OC .若52,sin 5OBC S BOC =∠=△ 则12k +的值是______.20.如图 点1A 2A 3A …在反比例函数()10y x x=>的图象上 点1B 2B 3B … n B 在y 轴上 且11212323B OA B B A B B A ∠=∠=∠=直线y x =与双曲线1y x=交于点1A 111B A OA ⊥ 2221B A B A ⊥ 3323B A B A ⊥ … 则2023B 的坐标是________.三、解答题21.如图所示 一次函数y kx b =+的图象与反比例函数my x=的图象相交于两点(1),A n (2,1)B -- 与y 轴相交于点C .(1)求反比例函数和一次函数解析式; (2)直接写出:不等式mkx b x+>解集是______; (3)依据相关数据求AOB 的面积.22.如图 菱形OABC 的边OA 在y 轴正半轴上 点B 的坐标为()48,.反比例函数11k y x=的图象经过菱形对角线AC OB ,的交点D 设直线OC 的解析式为22y k x =.(1)求反比例函数的解析式; (2)求菱形OABC 的边长;(3)请结合图象直接写出不等式120k k x x-<的解集. 23.如图▱OABC 的顶点O 与坐标原点重合 边OA 在x 轴正半轴上 60AOC ∠=︒2OC = 反比例函数()0ky x x=>的图像经过顶点C 与边AB 交于点D.(1)求反比例函数的表达式.(2)尺规作图:作OCB ∠的平分线交x 轴于点E.(保留作图痕迹 不写作法) (3)在(2)的条件下 连接DE 若DE CE ⊥ 求证:AD AE =. 24.如图 已知一次函数26y x =+与反比例函数()0ky x x=>的图象交于点()1,A m 与x 轴交于点B .(1)填空:m 的值为______ 反比例函数的解析式为______; (2)直接写出当0x >时 26kx x+<的解集; (3)点P 是线段AB 上一动点(不与A 、B 点重合) 过P 作直线PM x ∥轴交反比例函数的图象于点M 连接BM .若PMB △的面积为S 求S 的取值范围.25.如图 已知抛物线2y x bx =+与x 轴交于O (4,0)A 两点 点B 的坐标为(0,3)-. (1)求抛物线的对称轴;(2)已知点P 在抛物线的对称轴上 连接OP BP .若要使OP BP +的值最小 求出点P 的坐标;(3)将抛物线在x 轴下方的部分沿x 轴翻折 其余部分保持不变 得到一个新的图象.当直线(0)y x m m =+≠与这个新图象有两个公共点时 在反比例函数y mx=的图象中y 的值随x 怎样变化?判断并说明理由.26.如图 在平面直角坐标系中正六边形ABCDEF 的对称中心P 在反比例函数()10,0ky k x x=>>的图象上 边AB 在x 轴上 点F 在y 轴上 已知23AB =.(1)判断点E 是否在该反比例函数的图象上 请说明理由;(2)求出直线EP :()20y ax b a =+≠的解析式 并根据图象直接写出当0x >时 不等式kax b x+>的解集. 27.如图① 有一块边角料ABCDE 其中AB BC DE EA 是线段 曲线CD 可以看成反比例函数图象的一部分.测量发现:90A E ∠=∠=︒ 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4.(1)小宁把A B C D E 这5个点先描到平面直角坐标系上 记点A 的坐标为()1,0-;点B 的坐标为()1,1-.请你在图②中补全平面直角坐标系并画出图形ABCDE ; (2)求直线BC 曲线CD 的函数表达式;(3)小宁想利用这块边角料截取一个矩形MNQP 其中M N 在AE 上(点M 在点N 左侧)点P 在线段BC 上 点Q 在曲线CD 上.若矩形的面积是53则=_________.参考答案1.答案:B解析:将三点坐标分别代入函数解析式8y x=得: 182x = 解得14x =; 28-1x =解得28x =-; 384x =解得; 824-<<故选:B. 2.答案:C解析:⊥点()26-,在函数ky x=的图象上 ⊥2(6)120k =⨯-=-< ⊥函数ky x=位于第二、四象限 在每个象限内 y 的值随x 的增大增大 ⊥()341212-⨯-=≠-⊥该函数的图象不经过点()34--,把=1x -代入12y x=求得12y = ⊥当10x -<<时 12y > 综上 只有选项C 说法正确 故选:C. 3.答案:A解析:当0a >时 一次函数图像经过第一、二、三象限 反比例函数图像位于一、三象限 可知A 符合题意;32x =231x x x ∴<<当0a <时 一次函数图像经过第二、三、四象限 反比例函数图像位于二、四象限 可知B C D 不符合题意.故选:A.4.答案:A解析:如图所示 作MN BA ⊥交BA 的延长线于N则12AMB S BA MN =⋅设点A 的坐标为16a a ⎛⎫- ⎪⎝⎭, <0aAB 所在直线垂直x 轴于点CB ∴点坐标为6a a ⎛⎫- ⎪⎝⎭,16610AB a a a ⎛⎫∴=---=- ⎪⎝⎭ MN a =()11101105222ABM S AB MN a a a a ⎛⎫⎛⎫∴=⋅=⨯-⨯=⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭故选:A.5.答案:A解析:将OA 绕O 点顺时针旋转90︒到OC 连接AB 、CB作AM y ⊥轴于MCN x ⊥轴于N点A 的坐标为()3,53AM ∴= 5OM =45AOB ∠=︒45BOC ∠=︒∴在AOB 和COB △中OA OC AOB COBOB OB =⎧⎪∠=∠⎨⎪=⎩(SAS)AOB COB ∴△≌△AB CB ∴=90AOM AON CON AON ∠+∠=︒=∠+∠AOM CON ∴∠=∠ 在AOM 和CON 中AOM CON AMO ONCOA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩ (AAS)AOM CON ∴△≌△3CN AM ∴== 5ON OM == (5,3)C ∴-点A 为反比例函数(0)k y x x=>图象上的点 3515k ∴=⨯= 15y x ∴=设B 点的坐标为15(,)m m AB CB =22221515(3)(5)(5)(3)m m m m ∴-+-=-++解得215m =(负数舍去)15215,B ⎛∴ ⎝⎭故选A.6.答案:B解析:作AC y ⊥轴于C BD y ⊥轴于D 如图点A 、B 分别在反比例函数1(0)y x x => 4(0)y x x=->的图象上 11122OAC S ∆∴=⨯= 1|4|22OBD ∆=⨯-=OA OB ⊥90AOB ∠=︒∴90AOC BOD ∴∠+∠=︒AOC DBO ∴∠=∠Rt AOC Rt OBD ∴∆∆∽ ∴212()2AOC OBD S OA S OB ∆∆== ∴12OA OB =. ∴2OB OA=. 故答案为B. 7.答案:B解析:设(0,)A b 根据题意(2,)C b - (2,2)B b -+点D 是AB 的中点(1,1)D b ∴-+点C 、D 在(k 0,x 0)k y x=≠>的图象上 2(1)k b b ∴=-=-+解得1b =22k b ∴=-=-故选:B.8.答案:C解析:设图象过蓄电池的电压是A 、B 选项正确 不符合题意;当=6ΩR 时 (A 6010)6I ==∴C 选项错误 符合题意;当10I =时 6R =由图象知:当10A I ≤时 6R ≥Ω∴D 选项正确 不符合题意;故选:C.9.答案:B解析:作CE y ⊥轴于点E 交双曲线于点G 作DF x ⊥轴于点F在24y x =-+中令0x = 解得4y =∴B 的坐标是(0,4)令0y = 解得2x =∴A 的坐标是(2,0)kI R =(5,12)60k ∴=60I R ∴=∴60V ∴4OB ∴= 2OA =90BAD ∠=︒90BAO DAF ∴∠+∠=︒直角ABO △中90BAO OBA ∠+∠=︒DAF OBA ∴∠=∠在OAB △和FDA △中DAF OBA BOA AFD AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)OAB FDA ∴≌△△同理 OAB FDA BEC ≌≌△△△ 4AF OB EC ∴=== 2DF OA BE ===∴D 的坐标是(6,2) C 的坐标是(4,6)点D 在双曲线(0)k y k x=≠上 6212k ∴=⨯=∴函数的解析式是:12y x =把6y =代入12y x=得:2x = 422a ∴=-=故选B.10.答案:C解析:直线与x 轴 y 轴分别交于点A B(1,0)A ∴ (0,2)B -作EF x ⊥轴于F 如图所示:22y x =-四边形是平行四边形在和中E 点刚好在反比例函数图像上设C 的纵坐标为hABDE AE BD ∴=//DE AB DAE ADB ∴∠=∠AEF △DBO △EAF BDO AFE DOB AE BD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)AEF DBO ∴≌△△2EF OB ∴==AF OD =1DF OA ∴==(,)E m n 2m AD ∴=+2n =2(2)k mn AD ∴==+122AD k ∴=-//DE BC AED CED S S ∴=△△()11122222ACD CED ACD AED ACED S S S S S AD h AD AD h ∴=+=+=⋅+⋅=+四边形△△△△()12ACED S AD AD n =+四边形122h AD k ∴==-C 的纵坐标为代入得解得反比例函数图像经过点C 解得 20k =(舍去) 12k∴=故选:C.11.答案:D解析:有题意可知 当3y =时 33x= 解得=1x - ∴直线y kx =与双曲线3y x=在第二象限交点的坐标为1,3)- 由中心对称可得 直线y kx =与双曲线3y x=在第四象限交点的坐标为3)- ∴观察图象可得 不等式3kx x<的解集为10x <<或1x >. 故选:D.12.答案:B解析:由函数图象可知:当物距为45.0cm 时 像距为13.0cm 故选项A 说法正确;由函数图象可知:当像距为15.0cm 时 物距为300cm . 放大率为15.00.530.0= 故选项B 说法错误;由函数图象可知:物距越大 像距越小 故选项C 说法正确;由题意可知:当透镜的放大率为1时 物距和像距均为20cm 故选项D 说法正确 故选:B.13.答案:B解析:A.由图3得:当0h =时 0p = 故此项说法正确;122-22y x =-12222x -=-14x k =11(,2)42C k k ∴-(0)k y k x=>11(2)42k k k ∴-=112k =B.当报警器刚好开始报警时 260.310R =+ 解得210R =Ω 由图2可求得:2800R F =80010F∴= 解得80F N = 故此项说法错误; C.当报警器刚好开始报警时 由上得80F N = 则有800.01p =⨯ 8P p k a ∴= 由图3求得10p h = 810h = 解得:0.8h = 故此项说法正确;D.当报警器刚好开始报警时:1260.3R R =+ 1220R R ∴+=Ω 当1h =时 10110kPa p =⨯= 100000.01100F N ∴=⨯= 28008100R ==Ω 120812R ∴=-=Ω 故此项说法正确. 故选:B.14.答案:20h x = 解析:根据题意 得240x h ππ⋅= ⊥20h x=. 故答案为:20h x=. 15.答案:12m > 解析:由题意得 反比例函数12m y x -=的图象在二、四象限内 则120m -< 解得12m >. 故答案为12m >. 16.答案:213y y y << 解析:反比例函数2(1k k y x+=为常数) 210k +> ∴该函数图象在第一、三象限 在每个象限内y 随x 的增大而减小点1(1,)A y -、1(4B 2)y 、3(1,)C y 都在反比例函数2(1k k y x +=为常数)的图象上 114-<- 点A 、B 在第三象限 点C 在第一象限213y y y ∴<<故答案为:213y y y <<.17.答案:-3<x <0或x >3 解析:⊥直线y =kx 与双曲线y =m x的两个交点分别为P 和P ′ P (-3 1) ⊥P ′的坐标为(3 -1)当mx >kx 时 x 的取值范围为-3<x <0或x >3故答案为:-3<x <0或x >3. 18.答案:48解析:如图所示:过A '作EF OC ⊥于F 交AB 于E⊥90OA D '∠=︒90OA F DA E ∴∠'+∠'=︒⊥90A F AOF O ∠'+∠'=︒D AOF AE ∴'=∠'∠D A FO AE '=∠∠'A OF DA E ∴''∠△△设A '(m n )OF m ∴= A F n '=.正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10点D 是边AB 上靠近点A 的三等分点∴ 103DE m = 10A E n '=-.310103m n m m ==-- 解得:m =6 n =8. ∴A '(6,8) ∴ 反比例函数中k =xy (0k ≠)=48 故答案为:48.19.答案:9解析:据题意可知(0,2)B 设(,)Cx y 52,sin OBC S BOC =∠=△1222x ∴⨯= 52xOC = 解得2,25x OC ==2225OC x y =+=即2425y +=得4y = 故(2,4)C 将(2,4)C 代入直线12y k x =+ 双曲线2(0)k y x x => 得到 121,8k k == 故12189k k +=+= 故答案为:9.20.答案:(0,22023解析:联立1y xy x =⎧⎪⎨=⎪⎩解得1x =由题意可知145AOB ∠=︒111B A OA ⊥11OA B ∴△为等腰直角三角形1122OB OA ∴==过2A 作22A H OB ⊥交y 轴于H 则容易得到21A H B H = 设21A H B H x == 则()2,2A x x +()21x x ∴+=解得121x = 221x =-(舍去)2121A H B H ∴== 1212222B B B H ==2222222OB ∴=+=同理可得323OB =则2n OB n =即(0,2n B n(20230,22023B ∴故答案为:(0,22023. 21.答案:(1)2y x = 1y x =+ (2)1x >或20x -<<(3)32解析:(1)反比例函数m y x =的图象过(2,1)--∴反比例函数的解析式为:2y x = 点(1),A n 在反比例函数图象上∴12n ⨯=∴2n =∴点A 的坐标为(1,2)将点A B 坐标代入一次函数y kx b =+中得221k b k b +=⎧⎨-+=-⎩解得11k b =⎧⎨=⎩∴一次函数的解析式为:1y x =+.(2)根据图象可知 不等式0m kx b x+>>的解集是:1x >或20x -<<. 故答案为:1x >或20x -<<; (3)过点A 作AG y ⊥轴于点G 过点B 作BH y ⊥轴于点H 如下图所示:一次函数1y x =+与y 轴相交于点C∴C 点坐标为(0,1)∴1OC =A 点坐标为(1,2)∴1AG =B 点坐标为(2,1)--∴2BH =∴11123222AOB AOC BOC S S S ⨯⨯=+=+=△△△. 22.答案:(1)18y x = (2)5 (3)463x <或63x << 解析:(1)⊥菱形OABC 的对角线交于点D⊥OD DB =⊥点B 的坐标为()48,⊥点D 的坐标为()24, 又⊥反比例函数11k y x=经过点D ⊥1248k =⨯= ⊥18y x =; (2)过点B 作BE y ⊥轴于点E设OA AB a == 则8AE a =- 4BE =在Rt ABE 中222BE AE AB += 即()22248x x +-= 解得:5x =⊥菱形OABC 的边长为5;(3)⊥点B 的坐标为()48, 5BC =⊥点C 的坐标为()43,代入22y k x =得:234k = 解得:234k =⊥234y x =令1y y = 则834x x = 解得:63x =±结合图象 不等式120k k x x -<的解集为463x <或463x <<.23.答案:(1))30y x =>(2)见解析(3)见解析解析:(1)过点C 作CF OA ⊥于点F 如解图所示.在Rt COF △中2OC = 60COF ∠=︒30sin 6023CF C ∴=⋅==︒1cos60212OF OC =⋅︒=⨯=.(1,3C ∴. 把(3C 代入反比例函数()0ky x x =>中得3k =∴反比例函数的表达式为)30y x =>.(2)如解图所示 所作射线CE 即为所求.(3)证明:在OABC 中//OC AB //CB OA .60AOC ∠=︒120OCB OAB ∴∠=∠=︒. CE 平分OCB ∠60OCE BCE OEC ∴∠=∠=∠=︒.DE CE ⊥90CED ∴∠=︒.180609030AED ∴∠=︒-︒-︒=︒.1801203030ADE ∴∠=︒-︒-︒=︒.AED ADE ∴∠=∠.AD AE ∴=.24.答案:(1)8 8y x= (2)01x << (3)S 的取值范围是2504S <≤ 解析:(1)⊥一次函数26y x =+的图象经过点()1,A m ⊥268m =+=⊥点()18A ,⊥反比例函数()0k y x x =>的图象经过点()18A , ⊥188k =⨯=⊥反比例函数的解析式为8y x=; 故答案为:8 8y x =;(2)观察图象得 26k x x+<的解集为1x <<; (3)设点P 的纵坐标为n ⊥点P 在线段AB 上 点M 在8y x =的图象上 ⊥0n << 点P 的横坐标为62n -⊥PM x ∥轴⊥点M 的坐标为8n n ⎛⎫ ⎪⎝⎭, ⊥862n MP n -=. ⊥()21186125322244PMBn S MP n n n n -⎛⎫=⨯⨯=⨯-⨯=--+ ⎪⎝⎭. ⊥08n << 且104-<⊥当03n <<时 S 随n 的增大而增大 当38n ≤<时 S 随n 的增大而减小. ⊥当3n =时 △的面积最大 最大值为254 ⊥S 的取值范围是2504S <≤. 25.答案:(1)抛物线的对称轴为直线2x =(2)点P 的坐标为32,2⎛⎫- ⎪⎝⎭ (3)y 的值随x 的增大而增大解析:(1)由题意得:2440b +=4b ∴=-∴函数关系式为:24y x x =-∴对称轴为:4222b x a -=-=-=; (2)由题意得:OP PB +的值最小 实际就是在同一直线一旁有两点 在直线上求点只要取O 点关于直线2x =对称的点 过AB 的直线与直线的交点就是点P设过AB 的直线为 由在上()4,0A 2x =3y kx =-()4,0B 3y kx =-得34k =334AB y x =-P 在直线2x =上332342y ∴=⨯-=-32,2P ⎛⎫∴- ⎪⎝⎭; (3)24y x x =-在x 轴下方的部分沿x 轴翻转当直线()0y x m m =+≠有两个不相同的解0∴∆> 2340m -⨯> 得94m <又0> 904m ∴<< 在反比例函数m y x=中 904m k <=< y 随x 的增大而减小. 26.答案:(1)点E 在该反比例函数的图象上 理由见解析(2)39y x =+ 323x <<解析:(1)六边形ABCDEF 为正六边形 23AB =23AB AF ∴== 60FAO =︒cos 603OA AF ∴=⋅︒= sin603AF =⋅︒=()0,3F ∴ )3,0A 连接PF PA六边形ABCDEF 为正六边形PE PF PA PB ∴=== 60EPF FPA APB ∠=∠=∠=︒EFP ∴△ FAP △ ABP △为等边三角形23AF PF ∴==()23,3P ∴ 把()23,3P 代入1k y x =得:23=解得:63k =043k ∴=-∴反比例函数表达式为163y x=. EFP △ FAP △为等边三角形∴点E 和点A 关于PF 对称)3,6E ∴ 把3x =代入163y x =得:13663y == ∴点E 在该反比例函数的图象上; (2)把()3,6E ()23,3P 代入()20y ax b a =+≠得: 6333a b a b ⎧=+⎪⎨=+⎪⎩ 解得:39a b ⎧=-⎪⎨=⎪⎩∴直线EP 的解析式为:39y x =+()3,6E ()23,3P由图可知 当323x <<时 k b x +>. 27.答案:(1)见解析(2)直线BC 的函数表达式3522y x =曲线的函数表达式4y x= (3)72 解析:(1)根据点A 的坐标为()1,0- 点B 的坐标为()1,1- 补全x 轴和y 轴 90A E ∠︒∠== 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4 ()1,4C ∴ ()4,1D根据AB BC DE EA 是线段 曲线CD 是反比例函数图象的一部分 画出图形ABCDE如图所示 (2)设线段BC 的解析式为y kx b =+ 把()1,1B - ()1,4C 代入得 14k b k b -+=⎧⎨+=⎩解得 3252k b ⎧=⎪⎪⎨⎪=⎪⎩3522y x ∴=+设曲线CD 的解析式为'k y x =把()1,4C 代入得 '41k = '4= 4y x ∴=; (3)设(),0M m 则35,22P m m ⎛⎫+ ⎪⎝⎭ 435,352222Q m m ⎛⎫ ⎪+ ⎪ ⎪+⎝⎭3522PM m ∴=+ 43522m m =-+354352222PM PQ m m m ⎛⎫ ⎪⎛⎫⋅=+- ⎪ ⎪⎝⎭ ⎪+⎝⎭23554223m m ∴--= 2915140m m ∴+-= 23m ∴= 或73m =-(舍去) 32572322PM ∴=⨯+=. 故答案为:72.。
2024年中考数学考点复习集训提升测试卷——反比例函数(含答案)

16.为预防流感,某学校对教室进行“药熏消毒”.消毒期间,室内每立方米空气中的含药量 与时间 之间的函数关系如图所示.已知在药物燃烧阶段, 与 成正比例,燃烧完后 与 成反比例.现测得药物 燃烧完,此时教室内每立方米空气含药量 ,当每立方米空气中含药量低于 时,对人体无毒害作用.那么从消毒开始,经过 后教室内的空气才能达到安全要求.
A. B. C.9D.
二、填空题
11.已知3x= ,y=x2a﹣1是反比例函数,则xa的值为.
12.已知反比例函数 的图像经过点 ,则 .
13.在反比例函数 的图象每一条分支上, 都随 的增大而增大,则 的取值范围是.
14.函数y= (x>0)与y= (x>0)的图象如图所示,点C是y轴上的任意一点.直线AB平行于y轴,分别与两个函数图象交于点A、B,连接AC、BC.当AB从左向右平移时,△ABC的面积是
A.8B.-8C.-4D.4
7.如图,四边形 是菱形, 轴,垂直为 ,函数 的图像经过点 ,若 ,则菱形 的面积为()
A.8B.15C.29D.24
8.如图,点P1、P2在反比例函数y= (x>0)的图象上,过点P1作y轴的平行线,过点P2作x轴的平行线,两直线相交于点Q,若点Q恰好在反比例函数y= (x>0)的图象上,则P1Q·P2Q的值为()
21.如图,已知直线l经过点A(1,0),与双曲线y=
(x>0)交于点B(2,1).过点P(p,p-1)(p>1)作x轴的平行线分别交双曲线y=(x>0)和y=-(x<0)于点M、N.求m的值和直线l的解析式;
22.如图,一次函数 (k,b为常数,且 )的图象与反比例函数 的图象交于A、B两点,且与x轴交于点C,与y轴交于点D,点A的横坐标与点B的纵坐标都是2.
全国中考数学反比例函数的综合中考模拟和真题汇总含答案

全国中考数学反比例函数的综合中考模拟和真题汇总含答案一、反比例函数1.如图,直线y=﹣x+b与反比例函数y= 的图象相交于A(1,4),B两点,延长AO交反比例函数图象于点C,连接OB.(1)求k和b的值;(2)直接写出一次函数值小于反比例函数值的自变量x的取值范围;(3)在y轴上是否存在一点P,使S△PAC= S△AOB?若存在请求出点P坐标,若不存在请说明理由.【答案】(1)解:将A(1,4)分别代入y=﹣x+b和得:4=﹣1+b,4= ,解得:b=5,k=4(2)解:一次函数值小于反比例函数值的自变量x的取值范围为:x>4或0<x<1(3)解:过A作AN⊥x轴,过B作BM⊥x轴,由(1)知,b=5,k=4,∴直线的表达式为:y=﹣x+5,反比例函数的表达式为:由,解得:x=4,或x=1,∴B(4,1),∴,∵,∴,过A作AE⊥y轴,过C作CD⊥y轴,设P(0,t),∴S△PAC= OP•CD+ OP•AE= OP(CD+AE)=|t|=3,解得:t=3,t=﹣3,∴P(0,3)或P(0,﹣3).【解析】【分析】(1)由待定系数法即可得到结论;(2)根据图象中的信息即可得到结论;(3)过A作AM⊥x轴,过B作BN⊥x轴,由(1)知,b=5,k=4,得到直线的表达式为:y=﹣x+5,反比例函数的表达式为:列方程,求得B(4,1),于是得到,由已知条件得到,过A作AE⊥y轴,过C作CD⊥y轴,设P(0,t),根据三角形的面积公式列方程即可得到结论.2.如图,四边形OP1A1B1、A1P2A2B2、A2P3A3B3、…、A n﹣1P n A n B n都是正方形,对角线OA1、A1A2、A2A3、…、A n﹣1A n都在y轴上(n≥1的整数),点P1(x1,y1),点P2(x2,y2),…,P n(x n, y n)在反比例函数y= (x>0)的图象上,并已知B1(﹣1,1).(1)求反比例函数y= 的解析式;(2)求点P2和点P3的坐标;(3)由(1)、(2)的结果或规律试猜想并直接写出:△P n B n O的面积为 ________ ,点P n的坐标为________ (用含n的式子表示).【答案】(1)解:在正方形OP1A1B1中,OA1是对角线,则B1与P1关于y轴对称,∵B1(﹣1,1),∴P1(1,1).则k=1×1=1,即反比例函数解析式为y=(2)解:连接P2B2、P3B3,分别交y轴于点E、F,又点P1的坐标为(1,1),∴OA1=2,设点P2的坐标为(a,a+2),代入y=得a=-1,故点P2的坐标为(-1,+1),则A1E=A2E=2-2,OA2=OA1+A1A2=2,设点P3的坐标为(b,b+2),代入y=(>0)可得b=-,故点P3的坐标为(-,+)(3)1;(-,+)【解析】【解答】解:(3)∵=2=2×=1,=2=2×=1,…∴△P n B n O的面积为1,由P1(1,1)、P2(﹣1, +1)、P3(﹣,+ )知点P n的坐标为(﹣,+ ),故答案为:1、(﹣, +).【分析】(1)由四边形OP1A1B1为正方形且OA1是对角线知B1与P1关于y轴对称,得出点P1(1,1),然后利用待定系数法求解即可;(2)连接P2B2、P3B3,分别交y轴于点E、F,由点P1坐标及正方形的性质知OA1=2,设P2的坐标为(a,a+2),代入解析式求得a的值即可,同理可得点P3的坐标;(3)先分别求得S△P1B1O、S△P2B2O的值,然后找出其中的规律,最后依据规律进行计算即可.3.如图,已知直线y= x与双曲线y=交于A、B两点,且点A的横坐标为 .(1)求k的值;(2)若双曲线y=上点C的纵坐标为3,求△AOC的面积;(3)在坐标轴上有一点M,在直线AB上有一点P,在双曲线y=上有一点N,若以O、M、P、N为顶点的四边形是有一组对角为60°的菱形,请写出所有满足条件的点P的坐标.【答案】(1)解:把x= 代入,得y= ,∴A(,1),把点代入,解得:;(2)解:∵把y=3代入函数,得x= ,∴C ,设过,两点的直线方程为:,把点,,代入得:,解得:,∴,设与轴交点为,则点坐标为,∴;(3)解:设点坐标,由直线解析式可知,直线与轴正半轴夹角为,∵以、、、为顶点的四边形是有一组对角为的菱形,在直线上,∴点只能在轴上,∴点的横坐标为,代入,解得纵坐标为:,根据,即得:,解得: .故点坐标为:或 .【解析】【分析】(1)先求的A点纵坐标,然后用待定系数法求解即可;(2)先求出C 点坐标,再用待定系数法求的直线AC的解析式,然后求得直线AC与x的交点坐标,再根据求解即可;(3)设点坐标,根据题意用关于a的式子表示出N的坐标,再根据菱形的性质得,求出a的值即可.4.阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值。
中考数学总复习《反比例函数》专项测试卷-附带参考答案

中考数学总复习《反比例函数》专项测试卷-附带参考答案(测试时间60分钟满分100分)学校:___________班级:___________姓名:___________考号:___________一、选择题(共8题,共40分)1.反比例函数y=−3的图象在( )xA.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限2.已知P1(x1,y1),P2(x2,y2)和P3(x3,y3)是反比例函数y=6的图象上三点,且y1<y2<x0<y3,则x1,x2和x3的大小关系是( )A.x1<x2<x3B.x3<x2<x1C.x2<x1<x3D.x2<x3<x1的图象经过点P(−2,3),则下列各点也在这个函数图象的是3.已知反比例函数y=kx( )A.(−1,−6)B.(1,6)C.(3,−2)D.(3,2)的图象上,则k的值是( )4.点P(−1,k)在反比例函数y=−3xA.1B.3C.−1D.−3(x<0)的图象上,A点坐标为(−4,2),点B是y= 5.如图,A点在反比例函数y=kxk(x<0)的图象上的任意一点,BC=OB,则△BCO面积为( )xA.4B.6C.8D.126.函数y=(m2−m)x m2−3m+1是反比例函数,则( )A.m≠0B.m≠0且m≠1C.m=2D.m=1或27.关于反比例函数y=−4的图象,下列说法正确的是( )xA.经过点(−1,−4)B.当x<0时,图象在第二象限C.无论x取何值时,y随x的增大而增大D.图象是轴对称图形,但不是中心对称图形若当x=1时y1=y2,则( )8.设函数y1=(x−2)(x−m),y2=3xA.当x>1时y1<y2B.当x<1时y1>y2C.当x<0.5时y1<y2D.当x>5时y1>y2二、填空题(共5题,共15分)9.某小区要种植一个面积为4000m2的矩形草坪,已知草坪的长y(m)随宽x(m)的变化而变化,可用函数的表达式表示为.(k<0)的图象上,且y1>y2,10.若点A(a−1,y1),B(a+1,y2)在反比例函数y=kx则a的取值范围是.(k为常数)的图象上,11.若点A(−2,y1),B(−1,y2)和C(1,y3)都在反比例函数y=k2+3x则y1,y2和y3的大小关系为.12.如图,等腰△ABC中AB=BC,BC∥x轴,A,B两点的横坐标分别为1和3,反比例函数y=3的图象经过A,B两点,则△ABC的面积为.x交于A(x1,y1),B(x2,y2)两点,则3x1y2−13.已知直线y=kx(k<0)与双曲线y=−2x8x2y1=.三、解答题(共3题,共45分)14.为了预防“甲型H1N1”,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例,如图所示,现测得药物8min燃毕,此时室内空气每立方米的含药量为6mg,请你根据题中提供的信息,解答下列问题:(1) 药物燃烧时,求y关于x的函数关系式?自变量x的取值范围是什么?药物燃烧后y与x的函数关系式呢?(2) 研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?15.已知直线l经过点(−1,5),且与直线y=−x平行.(1) 求直线l的函数解析式;(2) 若直线l分别交x轴、y轴于A,B两点,求△AOB的面积.16.已知函数y=(7a−4)x7−3b+(2a+b).(1) 当a,b为何值时,此函数是一次函数?(2) 当a,b为何值时,此函数是正比例函数?(3) 当a,b为何值时,此函数是反比例函数?参考答案1. 【答案】B2. 【答案】C3. 【答案】C4. 【答案】B5. 【答案】C6. 【答案】C7. 【答案】B8. 【答案】D9. 【答案】y=4000x10. 【答案】−1<a<111. 【答案】y2<y1<y312. 【答案】2√213. 【答案】−1014. 【答案】(1) 设药物燃烧时y关于x的函数关系式为y=k1x代入(8,6)得6=8k1∴k1=34x,自变量取值范围是0≤x≤8;∴药物燃烧时y关于x的函数关系式为y=34设药物燃烧后y关于x的函数关系式为y=k2x代入(8,6)得6=k28∴k2=48∴药物燃烧后y关于x的函数关系式为:y=48(x>8).x(2) 把y=3代入y=34x,得:x=4把y=3代入y=48x,得:x=16∵16−4=12>10∴这次消毒是有效的.15. 【答案】(1) 设直线l的解析式为y=−x+b,将(−1,5)代入,可得b=4∴直线l的解析式为y=−x+4.(2) 当y=0时x=4∴A点坐标为(4,0)当x=0时y=4∴B点坐标为(0,4).∴S△AOB=12OA⋅OB=12×4×4=8.16. 【答案】(1) 由题意,得7−3b=1且7a−4≠0解得a≠47b=2.(2) 由题意,得{7−3b=1,2a+b=0,7a−4≠0,解得{a=−1,b=2.(3) 由题意,得{7−3b=−1,2a+b=0,7a−4≠0,解得{a=−43,b=83.。
中考数学总复习《反比例函数》专项提升训练题(带答案)

中考数学总复习《反比例函数》专项提升训练题(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若点()1,4A -是反比例函数()0ky k x=≠图象上一点,则常数k 的值为( ) A .4 B .14-C .4-D .142.函数6y x=的图象位于第( )象限 A .一、二 B .一、三 C .二、三 D .二、四3.已知反比例函数2y x =图象上有三点()14,A y ,()22,B y 和31,2C y ⎛⎫⎪⎝⎭,则1y 、2y 和3y 的大小关系为( ) A .y y y >>₁₂₃B .y y y >>₂₁₃C .y y y >>₃₂₁D .y y y >>₃₁₂4.已知二次函数2y x bx c =++的图象如图所示,则一次函数y bx c =+与反比例函数bcy x=的图象可能..是( )A .B .B .C .D .5.如图,点P ,Q 在反比例函数4y x=的图象上,点M 在x 轴上,点N 在y 轴上,下列说法正确的是( )A .图1、图2中阴影部分的面积分别为2,4B .图1、图2中阴影部分的面积分别为1,2C .图1、图2中阴影部分的面积之和为8D .图1、图2中阴影部分的面积之和为3 6.下列各点中,不在反比例函数6y x=图像上的点是( ) A .()1,6B .()6,1--C .()6,1D .()2,3-7.如图,OAB 是面积为4的等腰三角形,底边OA 在x 轴上,若反比例函数图象过点B ,则它的解析式为( )A .2y x=B .-2y x=C .4y x =D .4y x=-8.已知如图,一次函数14y x =+图象与反比例函数25y x=图象交于()1,A n ,()5,B m -两点,则12y y >时x 的取值范围是( )A .5x 0-<<或1x >B .5x <-或01x <<C .5x 0-<<或01x <<D .51x -<<二、填空题9.在平面直角坐标系中,将点()2,3A 向下平移5个单位长度得到点B ,若点B 恰好在反比例函数的图象上,则此反比例函数的表达式为 .10.已知点()()1221A yB y --,,,和()34C y ,都在反比例函数8y x=的图象上,则123y y y ,,的大小关系为 .(用“<”连接)11.如图,点A 是反比例函数2y x=-的图象上一点,过点A 向y 轴作垂线,垂足为点B ,点C 、D 在x 轴上,且BC AD ∥,则四边形ABCD 的面积为 .12.如图,直线6y x =-+与y 轴交于点A ,与反比例函数ky x=图象交于点C ,过点C 作CB x ⊥轴于点B ,3AO BO =,则k 的值为 .13.如图,已知点(3,3)A 和(3,1)B ,反比例函数(0)ky k x=≠图象的一支与线段AB 有交点,写出一个符合条件的k 的整数值: .三、解答题14.如图,在ABCD 中(1,0)A -,(2,0)B 和(0,2)D ,反比例函数ky x=在第一象限内的图象经过点C .(1)点C 的坐标为 . (2)求反比例函数的解析式.(3)点E 是x 轴上一点,若BCE 是直角三角形,请直接写出点E 的坐标.15.科学课上,同学用自制密度计测量液体的密度.密度计悬浮在不同的液体中时,浸在液体中的高度()cm h 是液体的密度()3g /cm ρ的反比例函数,如图是该反比例函数的图象,且0ρ>.(1)求h 关于ρ的函数表达式;(2)当密度计悬浮在另一种液体中时25cm h =,求该液体的密度ρ.16.通过试验研究发现:一节40分钟的课堂,初中生在数学课上听课注意力指标随上课时间的变化而变化,上课开始时,学生兴趣激增,中间一段时间,学生的兴趣保持平稳状态,随后开始分散.如图,学生注意力指标y 随时间x (分钟)变化的函数图象,当010x ≤<和1020x ≤<时,图象是线段;当2040x ≤≤时,图象是反比例函数的一部分.(1)求反比例函数解析式和点A 、D 的坐标;(2)陈老师在一节课上讲解一道数学综合题需要16分钟,他能否经过适当的安排,使学生在听这道综合题的讲解时,注意力指标都不低于32?请说明理由.17.某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x 元与日销售量y 之间满足某种函数关系. x (元)3 4 5 6y (个) 20 15 12 10(1)根据表中的数据请你写出请y 与x 之间的函数关系式;(2)设经营此贺卡的销售利润为w 元,试求出w 与x 之间的函数关系式,若物价局规定此贺卡的销售价每个最高不能超过10元,请你求出当日销售单价x 定为多少元时,才能使日销售获得最大利润?18.如图,一次函数()10y kx b k =+≠的图象与x 轴,y 轴分别交于点A ,B ,与反比例函数()20my x x=>的图象交于点()1,2C 和()2,D n .(1)分别求出两个函数的解析式; (2)当12y y >时,直接写出x 的取值范围. (3)连接OC ,OD ,求COD △的面积;(4)点P 是反比例函数上一点,PQ x ∥轴交直线AB 于Q ,且3PQ =请直接写出点P 的坐标.答案第1页,共1页参考答案:1.C 2.B 3.C 4.B 5.A 6.D 7.D 8.A9.4y x =-10.213y y y << 11.2 12.16-13.4(答案不唯一) 14.(1)()3,2 (2)6y x=(3)(3,0)或(7,0) 15.(1)20h ρ=(2)0.8ρ=16.(1)反比例函数的解析式为800y x=,()0,20A 和()40,20D (2)陈老师能经过适当的安排,使学生在听这道综合题的讲解时,注意力指标都不低于32 17.(1)60y x=(2)1018.(1)一次函数的解析式为13y x =-+,反比例函数的解析式为22y x=; (2)12x <<; (3)32; (4)()37,37P +-或()37,37P -+.。
北师大版九年级上册数学第六章 反比例函数含答案(能力提升)

北师大版九年级上册数学第六章反比例函数含答案一、单选题(共15题,共计45分)1、如果反比例函数y=的图象经过点(-1,-2),则k的值是( ).A.2B.-2C.-3D.32、在反比例函数的图象的每个象限内,y随x的增大而增大,则k值可以是()A.-1B.1C.2D.33、如图,正方形ABCD在平面直角坐标系中的点A和点B的坐标为A(1,0)、B(0,3),点D在双曲线y= (k≠0)上.若正方形沿x轴负方向平移m个单位长度后,点C恰好落在该双曲线上,则m的值是( )A.1B.2C.3D.44、已知是反比例函数,则该函数的图象在( )A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限5、若A(1,y1),B(2,y2)两点都在反比例函数y= 的图象上,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法确定6、已知函数y=(m+1) 是反比例函数,且其图象在第二、四象限内,则m的值是( )A.2B.-2C.±2D.-7、根据图1所示的程序,得到了y与x的函数图象,如图2.若点M是y轴正半轴上任意一点,过点M作PQ∥x轴交图象于点P,Q,连接OP,OQ.则以下结论:①x<0时,y=②△OPQ的面积为定值.③x>0时,y随x的增大而增大.④MQ=2PM.⑤∠POQ可以等于90°.其中正确结论是()A.①②④B.②④⑤C.③④⑤D.②③⑤8、反比例函数y=的图象经过点P(a,b),其中a,b是一元二次方程x2+kx+4=0的两根,那么点P的坐标是( )A.(1,4)B.(-1,-4)C.(2,2)D.(-2,-2)9、反比例函数的图象经过点,则当时,函数值的取值范围是()A. B. C. D.10、下列函数:①;②;③;④中,y随x的增大而减小的函数有()A.1个B.2个C.3个D.4个11、矩形面积为3cm2,则它的宽y(cm)与x(cm)长之间的函数图象位于()A.第一、三象限B.第二象限C.第三象限D.第一象限12、如果双曲线过点(3,-2),那么下列的点在该双曲线上的是()A.(3,0)B.(0,6)C.(-1.25,8)D.(-1.5,4)13、若反比例函数(k≠0)的图像经过点(-2,6),则下列各点在这个函数图像上的是().A. B. C. D.14、如图所示,平行四边形的顶点C在轴的正半轴上,O为坐标原点,以为斜边构造等腰,反比例函数的图象经过点A,交于点E,连接.若,轴,,则k的值为()A.12B.16C.18D.2415、某村粮食总产量为a(a为常量)吨,设该村粮食的人均产量y(吨),人口数为x(人),则y与x之间的函数图象应为图中的()A. B. C.D.二、填空题(共10题,共计30分)16、如图,面积为6的菱形AOBC的两点A,B在反比例函数(x>0)的图象上,则点C的坐标为________.17、如图,已知点A、C在反比例函数y= 的图象上,点B,D在反比例函数y= 的图象上,a>b>0,AB∥CD∥x轴,AB,CD在x轴的两侧,AB= ,CD= ,AB与CD间的距离为6,则a﹣b的值是________.18、在平面直角坐标系xOy中,当m,n满足mn=k(k为常数,且m>0,n>0)时,就称点(m,n)为“等积点”.若直线y=﹣x+b(b>0)与x轴、y轴分别交于点A和点B,并且该直线上有且只有一个“等积点”,过点A与y轴平行的直线和过点B与x轴平行的直线交于点C,点E是直线AC上的“等积点”,点F是直线BC上的“等积点”,若△OEF的面积为,则OE=________.19、如图,Rt△ABC的直角边BC在x轴负半轴上,斜边AC上的中线BD的反向延长线交y轴正半轴于点E,双曲线y= (x<0)的图象经过点A,S△BEC=8,则k=________.20、把一个长、宽、高分别是3 dm,2 dm,1 dm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积S(单位:dm2)与高h(单位:dm)之间的函数关系式是________.21、如图,一次函数y=x+m(m>0)的图像与x轴和y轴分别相交点A和点B,与反比例函数的图像在第一象限内交于点C,CD⊥x轴,CE⊥y轴,垂足分别为点D、E,当S四边形ODCE =S△OAB,则m的值为________.22、如图,已知点P(6,3),过点P作PM⊥x轴于点M,PN⊥y轴于点N,反比例函数y= 的图象交PM于点A,交PN于点B.若四边形OAPB的面积为12,则k=________.23、若点和点在反比例函数的图象上,则与的大小关系为________.24、如图,点A是双曲线y= 在第一象限上的一动点,连接AO并延长交另一分支于点B,以AB为斜边作等腰Rt△ABC,点C在第二象限,随着点A的运动,点C的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为________.25、若反比例函数y= 的图象经过点A(a,2),则a的值是________.三、解答题(共5题,共计25分)26、已知, 与成正比例, 与成反比例,且当时,; 时, .试求当时, 的值.27、已知:如图所示,反比例函数的图象与正比例函数的图象交于A、B,作AC⊥ 轴于C,连BC,则△ABC的面积为3,求反比例函数的解析式.28、已知A(1,)是反比例函数图象上的一点,直线AC经过点A及坐标原点且与反比例函数图象的另一支交于点C,求C的坐标及反比例函数的解析式.29、若函数y=(m+1)是反比例函数,求m的值.30、已知函数y=是关于x的反比例函数,求m的值并写出函数表达式.参考答案一、单选题(共15题,共计45分)1、D2、A3、B4、B5、C6、B7、B8、D9、D10、A11、D12、D14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
人教版九年级数学《反比例函数》能力测试卷(word版有答案)

人教版九年级数学《反比例函数》能力测试卷(时间:60分钟 满分:100分)一、选择题(每小题4分,共32分)1.已知反比例函数的表达式为y =|a|-2x,则a 的取值范围是( )A .a ≠2B .a ≠-2C .a ≠±2D .a =±22.反比例函数y =kx的图像经过点(3,-2),下列各点在图像上的是( )A .(-3,-2)B .(3,2)C .(-2,-3)D .(-2,3) 3.对于函数y =4x,下列说法错误的是( )A .这个函数的图像位于第一、三象限B .这个函数的图像既是轴对称图形又是中心对称图形C .当x >0时,y 随x 的增大而增大D .当x <0时,y 随x 的增大而减小4.面积为2的直角三角形一直角边长为x ,另一直角边长为y ,则y 与x 的变化规律用图像大致表示为( )A B C D5.已知点P(-3,2),点Q(2,a)都在反比例函数y =kx (k ≠0)的图像上,过点Q 分别作两坐标轴的垂线,两垂线与两坐标轴围成的矩形面积为( )A .3B .6C .9D .126.如图,直线y =x -1与y 轴交于点A ,与反比例函数y =kx 的图像交于点B ,过点B 作BC⊥y 轴于点C.若△ABC 的面积为2,则反比例函数的表达式为( )A .y =2xB .y =4xC .y =6xD .y =9x7.若反比例函数y =kx与一次函数y =x -3的图像没有交点,则k 的值可以是( )A .1B .-1C .-2D .-38.一次函数y =ax +b 和反比例函数y =a -bx 在同一平面直角坐标系中的图像大致是( )A B C D二、填空题(每小题4分,共24分)9.已知反比例函数y =kx(k ≠0)的图像如图所示,则k 的值可能是 .(写一个即可)10.已知点A(1,m),B(2,n)在反比例函数y =-2x 的图像上,则m 与n 的大小关系为11.在反比例函数y =2-kx 的图像的每一条曲线上,y 都随着x 的增大而减小,则k 的取值范围是 .12.在对物体做功一定的情况下,力F(N)与此物体在力的方向上移动的距离s(m)成反比例函数关系,其图像如图所示,点P(4,3)在图像上,则当力达到10 N 时,物体在力的方向上移动的距离是 .13.如图,点A 是反比例函数y =4x (x >0)图像上一点,连接AO 交反比例函数y =2x (x >0)的图像于点B ,作BC ⊥x 轴,C 为垂足,AD ⊥x 轴,D 为垂足,则四边形ABCD 的面积等于 .14.如图,反比例函数y =kx (x <0)的图像经过点A(-1,1),过点A 作AB ⊥y 轴,垂足为B ,在y 轴的正半轴上取一点P(0,t),过点P 作直线OA 的垂线l ,以直线l 为对称轴,点B 经轴对称变换得到的点B ′在此反比例函数的图像上,则t 的值是 .三、解答题(共44分)15.(10分)在平面直角坐标系中,作出函数y =6x的图像,并根据图像回答下列问题:(1)当x =-2时,求y 的值;(2)当2<y <4时,求x 的取值范围;(3)当-1<x <2且x ≠0时,求y 的取值范围.16.(10分)如图,已知点A(-4,2),B(n ,-4)是一次函数y =kx +b 和反比例函数y =mx 图像的两个交点.(1)求一次函数和反比例函数的表达式; (2)求△AOB 的面积;(3)观察图像,直接写出不等式kx +b -mx>0的解集.17.(12分)驾驶员血液中每毫升的酒精含量大于或等于200微克即为酒驾,某研究所经试验测得:成人饮用某品牌38度白酒后血液中酒精浓度y(微克/毫升)与饮酒时间x(小时)之间的函数关系如图所示(当4≤x ≤10时,y 与x 成反比例).(1)根据图像分别求出血液中酒精浓度上升和下降阶段y 与x 之间的函数表达式; (2)问血液中酒精浓度不低于200微克/毫升的持续时间是多少小时?18.(12分)如图,一次函数y =-x +4的图像与反比例函数y =kx (k 为常数,且k ≠0)的图像交于A(1,a),B 两点.(1)求反比例函数的表达式及点B 的坐标;(2)在x 轴上找一点P ,使PA +PB 的值最小,求满足条件的点P 的坐标及△PAB 的面积.答案一、选择题(每小题4分,共32分)1.已知反比例函数的表达式为y =|a|-2x,则a 的取值范围是(C)A .a ≠2B .a ≠-2C .a ≠±2D .a =±22.反比例函数y =kx的图像经过点(3,-2),下列各点在图像上的是(D)A .(-3,-2)B .(3,2)C .(-2,-3)D .(-2,3) 3.对于函数y =4x,下列说法错误的是(C)A .这个函数的图像位于第一、三象限B .这个函数的图像既是轴对称图形又是中心对称图形C .当x >0时,y 随x 的增大而增大D .当x <0时,y 随x 的增大而减小4.面积为2的直角三角形一直角边长为x ,另一直角边长为y ,则y 与x 的变化规律用图像大致表示为(C)A B C D5.已知点P(-3,2),点Q(2,a)都在反比例函数y =kx (k ≠0)的图像上,过点Q 分别作两坐标轴的垂线,两垂线与两坐标轴围成的矩形面积为(B)A .3B .6C .9D .126.如图,直线y =x -1与y 轴交于点A ,与反比例函数y =kx 的图像交于点B ,过点B 作BC⊥y 轴于点C.若△ABC 的面积为2,则反比例函数的表达式为(A)A .y =2xB .y =4xC .y =6xD .y =9x7.若反比例函数y =kx与一次函数y =x -3的图像没有交点,则k 的值可以是(D)A .1B .-1C .-2D .-38.一次函数y =ax +b 和反比例函数y =a -bx 在同一平面直角坐标系中的图像大致是(A)A B C D二、填空题(每小题4分,共24分)9.已知反比例函数y =kx (k ≠0)的图像如图所示,则k 的值可能是-1(答案不唯一).(写一个即可)10.已知点A(1,m),B(2,n)在反比例函数y =-2x 的图像上,则m 与n 的大小关系为m <n .11.在反比例函数y =2-kx 的图像的每一条曲线上,y 都随着x 的增大而减小,则k 的取值范围是k <2.12.在对物体做功一定的情况下,力F(N)与此物体在力的方向上移动的距离s(m)成反比例函数关系,其图像如图所示,点P(4,3)在图像上,则当力达到10 N 时,物体在力的方向上移动的距离是1.2m.13.如图,点A 是反比例函数y =4x (x >0)图像上一点,连接AO 交反比例函数y =2x (x >0)的图像于点B ,作BC ⊥x 轴,C 为垂足,AD ⊥x 轴,D 为垂足,则四边形ABCD 的面积等于1.14.如图,反比例函数y =kx (x <0)的图像经过点A(-1,1),过点A 作AB ⊥y 轴,垂足为B ,在y 轴的正半轴上取一点P(0,t),过点P 作直线OA 的垂线l ,以直线l 为对称轴,点B 经轴对称变换得到的点B ′在此反比例函数的图像上,则t 的值是1+52.三、解答题(共44分)15.(10分)在如图所示的平面直角坐标系中,作出函数y =6x 的图像,并根据图像回答下列问题:(1)当x =-2时,求y 的值;(2)当2<y <4时,求x 的取值范围;(3)当-1<x <2且x ≠0时,求y 的取值范围.解:图像如图.(1)当x =-2时,y =-3. (2)当2<y <4时,1.5<x <3.(3)当-1<x <2且x ≠0时,y <-6或y >3.16.(10分)如图,已知点A(-4,2),B(n ,-4)是一次函数y =kx +b 和反比例函数y =mx 图像的两个交点.(1)求一次函数和反比例函数的表达式; (2)求△AOB 的面积;(3)观察图像,直接写出不等式kx +b -mx>0的解集.解:(1)把A(-4,2)代入y =mx ,得m =2×(-4)=-8.∴反比例函数的表达式为y =-8x.把B(n ,-4)代入y =-8x ,得-4n =-8,解得n =2.∴B(2,-4).把A(-4,2)和B(2,-4)代入y =kx +b ,得⎩⎪⎨⎪⎧-4k +b =2,2k +b =-4,解得⎩⎪⎨⎪⎧k =-1,b =-2. ∴一次函数的表达式为y =-x -2. (2)y =-x -2中,令y =0,则x =-2.设直线y =-x -2与x 轴交于点C ,则C(-2,0). ∴S △AOB =S △AOC +S △BOC =12×2×2+12×2×4=6.(3)不等式kx +b -mx>0的解集为x <-4或0<x <2.17.(12分)驾驶员血液中每毫升的酒精含量大于或等于200微克即为酒驾,某研究所经试验测得:成人饮用某品牌38度白酒后血液中酒精浓度y(微克/毫升)与饮酒时间x(小时)之间的函数关系如图所示(当4≤x ≤10时,y 与x 成反比例).(1)根据图像分别求出血液中酒精浓度上升和下降阶段y 与x 之间的函数表达式; (2)问血液中酒精浓度不低于200微克/毫升的持续时间是多少小时?解:(1)当0≤x <4时,设直线表达式为y =kx ,将(4,400)代入,得400=4k ,解得k =100,故直线表达式为y =100x.当4≤x ≤10时,设反比例函数表达式为y =ax,将(4,400)代入,得400=a4,解得a =1 600,故反比例函数表达式为y =1 600x. 因此血液中酒精浓度上升阶段的函数关系式为y =100x(0≤x <4),下降阶段的函数关系式为y =1 600x (4≤x ≤10).(2)y =100x 中,当y =200时,则200=100x.解得x =2. y =1 600x 中,当y =200时,则200=1 600x ,解得x =8.∵8-2=6(小时),∴血液中酒精浓度不低于200微克/毫升的持续时间是6小时.18.(12分)如图,一次函数y =-x +4的图像与反比例函数y =kx (k 为常数,且k ≠0)的图像交于A(1,a),B 两点.(1)求反比例函数的表达式及点B 的坐标;(2)在x 轴上找一点P ,使PA +PB 的值最小,求满足条件的点P 的坐标及△PAB 的面积.解:(1)把点A(1,a)代入一次函数y =-x +4,得a =-1+4, 解得a =3.∴点A 的坐标为(1,3).把点A(1,3)代入反比例函数y =kx ,得k =3,∴反比例函数的表达式为y =3x .联立⎩⎪⎨⎪⎧y =-x +4,y =3x.解得⎩⎪⎨⎪⎧x =1,y =3或⎩⎪⎨⎪⎧x =3,y =1.∴点B 的坐标为(3,1).(2)作点B 关于x 轴的对称点D ,连接AD ,交x 轴于点P ,连接PB ,此时PA +PB 的值最小.∵点B ,D 关于x 轴对称,B(3,1), ∴D(3,-1).设直线AD 的表达式为y =mx +n , 把A ,D 两点坐标代入,得⎩⎪⎨⎪⎧m +n =3,3m +n =-1.解得⎩⎪⎨⎪⎧m =-2,n =5.∴直线AD 的表达式为y =-2x +5. 令y =-2x +5=0,则x =52,∴点P 的坐标为(52,0).∴S △PAB =S △ABD -S △PBD=12BD ·(x B -x A )-12BD ·(x B -x P ) =12BD ·(x P -x A ) =12×[1-(-1)]×(52-1) =32.。
(完整word版)反比例函数基础练习题及答案

反比例函数练习一.选择题(共22小题)1.下列函数中,y是x的反比例函数的为()A.y=2x+1 B.C.D.2y=x2.)函数y=k是反比例函数,则k的值是()A.﹣1 B.2 C.±2D.±3.若y=(m﹣1)x|m|﹣2是反比例函数,则m的值为()A.m=2 B.m=﹣1 C.m=1 D.m=04.若y与x成反比例,x与z成反比例,则y是z的()A.正比例函数B.反比例函数C.一次函数D.不能确定5.反比例函数(m为常数)当x<0时,y随x的增大而增大,则m的取值范围是()A.m<0 B.C.D.m≥6.已知k1<0<k2,则函数y=和y=k2x﹣1的图象大致是()A.B.C.D.7.在同一直角坐标系中,函数y=kx+k与y=(k≠0)的图象大致为()A. B.C.D.8.下列函数的图象中,与坐标轴没有公共点的是()A.B.y=2x+1 C.y=﹣x D.y=﹣x2+19.若ab>0,则函数y=ax+b与函数在同一坐标系中的大致图象可能是()A.B.C.D.10.若方程=x+1的解x0满足1<x0<2,则k可能是()A.1 B.2 C.3 D.611.如图,有反比例函数y=,y=﹣的图象和一个圆,则图中阴影部分的面积是()第11题图第12题图A.πB.2πC.4πD.条件不足,无法求12.如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y=B.y=C.y=D.y=13.关于反比例函数y=的图象,下列说法正确的是()A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小14.如图是反比例函数y=(k为常数,k≠0)的图象,则一次函数y=kx﹣k的图象大致是()A B C D15.已知函数y=的图象如图,以下结论:①m<0;分支上y随x的增大而增大;③若点A(﹣1,a)、点B(2,b)在图象上,则a<b;④若点P(x,y)在图象上,则点P1(﹣x,﹣y)也在图象上.其中正确的个数是()A.4个 B.3个C.2个D.1个16.函数的自变量x满足≤x≤2时,函数值y满足≤y≤1,则这个函数可以是()A.y=B.y=C.y=D.y=17.反比例函数y=在每个象限内的函数值y随x的增大而增大,则m的取值范围是()A.m<0 B.m>0 C.m>﹣1 D.m<﹣118.以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面直角坐标系,双曲线y=经过点D,则正方形ABCD的面积是()第18题图第19题图A.10 B.11 C.12 D.1319.如图,A、B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为()A.B.C.3 D.420.如图,过点O作直线与双曲线y=(k≠0)交于A、B两点,过点B作BC⊥x轴于点C,作BD⊥y轴于点D.在x轴上分别取点E、F,使点A、E、F在同一条直线上,且AE=AF.设图中矩形ODBC的面积为S1,△EOF的面积为S2,则S1、S2的数量关系是()第20题图第21题图A.S1=S2B.2S1=S2C.3S1=S2D.4S1=S221.如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小22.如图,反比例函数y=﹣在第二象限的图象上有两点A、B,它们的横坐标分别为﹣1,﹣3,直线AB 与x轴交于点C,则△AOC的面积为()A.8 B.10 C.12 D.24二.填空题(共4小题)23.已知y=(a﹣1)是反比例函数,则a= .24.已知反比例函数的解析式为y=,则最小整数k= .25.函数y=,当y≥﹣2时,x的取值范围是(可结合图象求解).26.若反比例函数的图象在其每个象限内,y随x的增大而增大,则k的值可以是.(写出一个符合条件的值即可)三.解答题(共4小题)27.已知反比例函数y=﹣(1)说出这个函数的比例系数;(2)求当x=﹣10时函数y的值;(3)求当y=6时自变量x的值.28.已知函数y=(5m﹣3)x2﹣n+(n+m),(1)当m,n为何值时是一次函数?(2)当m,n为何值时,为正比例函数?(3)当m,n为何值时,为反比例函数?29.如图,是反比例函数y=的图象的一支.根据给出的图象回答下列问题:(1)该函数的图象位于哪几个象限?请确定m的取值范围;(2)在这个函数图象的某一支上取点A(x1,y1)、B(x2,y2).如果y1<y2,那么x1与x2有怎样的大小关系?30.如图,已知函数y=(x>0)的图象经过点A、B,点A的坐标为(1,2),过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC、OD.(1)求△OCD的面积;(2)当BE=AC时,求CE的长.答案:一.选择题(共22小题)1.C 2.D 3.B 4.A 5.C 6.C 7.B 8.A 9.C 10.C 11.B 12.D 13.D 14.B 15.B 16.A 17.D 18.C 19.B 20.B 21.C 22.C二.填空题(共4小题)23.-1 24.1 25.x≤-2或x>0 26.-1(答案不唯一)三.解答题(共4小题)27. 28. 29. 30.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:反比例函数y=的图象如图所示,以下结论:①常数m<-1;②在每个象限内,y随x的增大而增大;③若A(-1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(-x,-y)也在图象上.其中正确的是( )A.①②B.②③C.③④D.①④试题2:若反比例函数y=(k≠0)的图象经过点P(-2,3),则该函数的图象不经过的点是( )A.(3,-2)B.(1,-6)C.(-1,6)D.(-1,-6)试题3:已知双曲线y=经过点(-2,1),则k的值等于 .试题4:评卷人得分已知反比例函数y=的图象经过点A(-2,3),则当x=-3时,y= .试题5:若函数y=的图象在同一象限内,y随x的增大而增大,则m的值可以是 .(写出一个即可)试题6:已知反比例函数y=(m-1) 的图象在第二、四象限,求m的值,并指出在每个象限内y随x的变化情况.试题7:)如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=的图象上,OA=1,OC=6,则正方形ADEF的边长为 .试题8:如图,正方形ABOC的边长为2,反比例函数y=的图象经过点A,则k的值是( )A.2B.-2C.4D.-4试题9:如图,M为反比例函数y=的图象上的一点,MA垂直y轴,垂足为A,△MAO的面积为2,则k的值为 .试题10:如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4.反比例函数y=(x<0)的图象经过顶点C,则k的值为 .试题11:如图,点A、B在反比例函数y=(k>0,x>0)的图象上,过点A、B作x轴的垂线,垂足分别为M、N,延长线段AB交x轴于点C,若OM=MN=NC,△AOC的面积为6,则k的值为 .试题12:在平面直角坐标系中,若一条平行于x轴的直线l分别交双曲线y=-和y=于A,B两点,P是x轴上任意一点,则△ABP的面积等于 .试题13:如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数y=的图象上,过点A的直线y=x+b交x 轴于点B.(1)求k和b的值.(2)求△OAB的面积.试题14:已知反比例函数y=的图象经过点M(2,1).(1)求该函数的表达式;(2)当2<x<4时,求y的取值范围(直接写出结果).试题15:已知反比例函数y=,当x=2时y=3.(1)求m的值;(2)当3≤x≤6时,求函数值y的取值范围.试题16:已知,一次函数y=x+1的图象与反比例函数y=(k≠0)的图象都经过点A(a,2).(1)求a的值及反比例函数的表达式;(2)判断点B(2,)是否在该反比例函数的图象上,请说明理由.试题17:实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=-200x2+400x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)刻画(如图所示).(1)根据上述数学模型计算:①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?②当x=5时,y=45,求k的值.(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.试题18:教室里的饮水机接通电源就进入自动程序:开机加热时每分钟上升10 ℃,加热到100 ℃后停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至30 ℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30 ℃时,接通电源后,水温y(℃)和时间x(min)的关系如右图,为了在上午第一节下课时(8:45)能喝到不超过50 ℃的水,则接通电源的时间可以是当天上午的( )A.7:20B.7:30C.7:45D.7:5 0试题19:将油箱注满k升油后,轿车可行驶的总路程s(单位:千米)与平均耗油量a(单位:升/千米)之间是反比例函数关系s=(k 是常数,k≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米.(1)求该轿车可行驶的总路程s与平均耗油量a之间的函数解析式(关系式).(2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?试题20:在平面直角坐标系中,反比例函数y=的图象的两支分别在( )A.第一、三象限B.第一、二象限C.第二、四象限D.第三、四象限试题21:已知反比例函数y= 的图象经过点(2,3),那么下列四个点中,也在这个函数图象上的是( )A.(-6,1)B.(1,6)C.(2,-3) D.(3,-2)试题22:已知矩形的面积为8,则它的长y与宽x之间的函数关系用图象大致可以表示为( )试题23:左下图是反比例函数y=(k为常数,k≠0)的图象,则一次函数y=kx-k的图象大致是( )试题24:正比例函数y=6x的图象与反比例函数y=的图象的交点位于( )A.第一象限B.第二象限C.第三象限D.第一、三象限试题25:在同一直角坐标系中,若正比例函数y=k1x的图象与反比例函数y=的图象没有公共点,则( )A.k1+k2<0B.k1+k2>0C.k1k2<0 D.k1k2>0试题26:如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数y=(x>0)的图象经过顶点B,则k的值为( )A.12B.20C.24D.32试题27:已知双曲线y=经过点(-1,2),那么k的值等于 .试题28:一定体积的面团做成拉面,面条的总长度y(cm)是面条粗细(横截面积)x(cm2)的反比例函数,假设其图象如图所示,则y 与x的函数关系式为 .试题29:若正比例函数y=-2x与反比例函数y=图象的一个交点坐标为(-1,2),则另一个交点的坐标为 .试题30:设反比例函数y=,(x1,y1),(x2,y2)为其图象上两点,若x1<0<x2,y1>y2则k的取值范围是 . 试题31:若点P1(-1,m),P2(-2,n)在反比例函数y=(k>0)的图象上,则m n(填“>”“<”或“=”).试题32:若点A(m,-2)在反比例函数y=的图象上,则当函数值y≥-2时,自变量x的取值范围是 .试题33:已知:如图,反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4)、点B(-4,n).(1)求一次函数和反比例函数的解析式;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.试题34:某乡镇要在生活垃圾存放区建一个老年活动中心,这样必须把1 200 m3的生活垃圾运走.(1)假如每天能运x m3,所需时间为y天,写出y与x之间的函数关系式;(2)若每辆拖拉机一天能运12 m3,则5辆这样的拖拉机要用多少天才能运完?(3)在(2)的情况下,运了8天后,剩下的任务要在不超过6天的时间完成,那么至少需要增加多少辆这样的拖拉机才能按时完成任务?试题35:已知反比例函数y=(m为常数)的图象在一、三象限.(1)求m的取值范围;(2)如图,若该反比例函数的图象经过□ABOD的顶点D,点A,B的坐标分别为(0,3),(-2,0).①求出函数解析式;②设点P是该反比例函数图象上的一点,若OD=OP,则P点的坐标为 .试题36:如图,反比例函数y=(k>0)的图象与矩形ABCO的两边相交于E、F两点.若E是AB的中点,S△BEF=2,则k的值为 .试题37:如图,函数y=和y=-的图象分别是l1和l2.PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则△PAB的面积为 .试题38:如图,在函数y=(x>0)的图象上有点P1,P2,P3,…,P n,P n+1,点P1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1,P2,P3,…,P n,P n+1分别作x轴,y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1,S2,S3,…,S n,则S1= ,S n= .(用含n的代数式表示)试题39:如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A(-4,0),与y轴交于点C,PB丄x轴于点B,且AC=BC.(1)求一次函数、反比例函数的解析式;(2)反比例函数图象上是否存在点D,使四边形BCPD为菱形,如果存在,求出点D的坐标;如果不存在,说明理由.试题1答案:C试题2答案:D试题3答案:-1试题4答案:2试题5答案:答案不唯一,如:-2试题6答案:∵y=(m-1)x m2-3是反比例函数,∴m2-3=-1,且m-1≠0.解得m=±.又∵图象在第二、四象限,∴m-1<0,即m<1. ∴m=-.在每个象限内,y随着x的增大而增大.试题7答案:2解析:∵OA=1,OC=6,∴B点坐标为(1,6). ∴k=1×6=6.∴反比例函数解析式为y=.设AD=t,则OD=1+t,∴E点坐标为(1+t,t). ∴(1+t)·t=6.整理得t2+t-6=0,解得t1=-3(舍去),t2=2.∴正方形ADEF的边长为2.试题8答案:D试题9答案:4试题10答案:-6试题11答案:4试题12答案:4试题13答案:(1)把A(2,5)分别代入y=和y=x+b,得5=,5=2+b,即k=10,b=3.(2)由(1)得直线AB的解析式为y=x+3,∴B点坐标为(-3,0),∴OB=3.过点A作AC⊥x轴于点C,∵点A的坐标为(2,5),∴AC=5.∴△OAB的面积=×BO×AC=×3×5=.试题14答案:(1)∵反比例函数y=的图象经过点M(2,1),∴k=2,即y=.(2)<y<1.试题15答案:(1)∵当x=2时y=3,∴3=,即m=-1.(2)由(1)得,反比例函数的解析式为y=,∵当x=3时,y=2;当x=6时,y=1,且当3≤x≤6时,y随x的增大而减小,∴函数值的取值范围是1≤y≤2.试题16答案:(1)∵一次函数y=x+1的图象经过点A(a,2),∴2=a+1,解得a=1.又反比例函数y=(k≠0)的图象经过点A(a,2),∴2=,∴k=2.∴a的值为1,反比例函数的表达式为y=.(2)∵2×=2,∴点B(2,)在该反比例函数的图象上.试题17答案:(1)①y=-200x2+400x=-200(x-1)2+200,∴喝酒后1时血液中的酒精含量达到最大值,最大值为200(毫克/百毫升).②∵当x=5时,y=45,∴k=xy=45×5=225.(2)不能驾车上班.理由:∵晚上20:00到第二天早上7:00,一共有11小时,∴将x=11代入y=,则y=>20,∴第二天早上7:00不能驾车去上班.试题18答案:A试题19答案:(1)把a=0.1,s=700代入s=,得700=,k=70,s=.(2)把a=0.08代入s=,得s=875.∴当平均耗油量为0.08升/千米时,该轿车可以行驶875千米. 试题20答案:A试题21答案:B试题22答案:B试题23答案:B试题24答案:D试题25答案:C试题26答案:D试题27答案:-3试题28答案:y=(x>0)试题29答案:(1,-2)试题30答案:k<-2试题31答案:<试题32答案:x≤-2或x>0试题33答案:(1)∵A(1,4),代入y=,得k=4,即反比例函数的解析式为y=.将(-4,n)代入y=得-4n=4,得n=-1. 所以B(-4,-1).把A(1,4)代入y=x+b得4=b+1,得b=3.所以y=x+3;(2)由题意得y=x+3与y轴交点为(0,3),∴△OAB的面积=×3×4+×3×1=7.5.(3)-4<x<0或x>1.试题34答案:(1)y=;(2)5辆拖拉机每天能运5×12=60(m3),则y=1 200÷60=20(天),即需要20天才能运完;(3)假设需要增加n辆,根据题意,得8×60+6×12(n+5)≥1 200,解得n≥5.答:至少需要增加5辆.试题35答案:(1)根据题意,得1-2m>0.解得m<.(2)①∵四边形ABCD是平行四边形,A(0,3),B(-2,0),∴D(2,3).∴函数解析式为y=.②(3,2)或(-2,-3)或(-3,-2).试题36答案:8 提示:设E点坐标为(a,b),则k=ab.因为E是AB中点,所以B点坐标为(2a,b).设F点坐标为(2a,h),则k=2ah,所以h=,所以F是CB中点.所以BE=AE=a,BF=CF=.因为S△BEF=2,所以×a×==2.所以ab=8.故k=8.试题37答案:8试题38答案:4试题39答案:(1)∵AC=BC,CO⊥AB,∴AO=BO.∵A(-4,0),∴B(4,0),∴P(4,2).∴m=4×2=8,即反比例函数的解析式为y=.把A(-4,0),P(4,2)代入y=kx+b得解得∴一次函数的解析式为y=x+1.(2)存在.∵点C在一次函数y=x+1的图象上,∴C(0,1).又∵B(4,0),∴BC的解析式为y=-x+1.∵P点的纵坐标为2,将BC向上平移2个单位的直线解析式为y=-x+3,解方程组得x=4(舍去)或x=8.当x=8时,y=1.∴D(8,1).此时PD==,BC==. 即PD=BC.∵PD∥BC,∴四边形BCPD为平行四边形.∵PC=,PC=BC,∴四边形BCPD为菱形,∴D(8,1).。