勾股定理一对一专题讲义

合集下载

(寒假班内部讲义)第十八章-勾股定理

(寒假班内部讲义)第十八章-勾股定理

第十八章勾股定理第一部分知识网络一、重、难点重点:勾股定理及其逆定理的应用。

难点:勾股定理及其逆定理的应用。

二、知识要点梳理知识点一:勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。

(即:a2+b2=c2)要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题知识点二:勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。

要点诠释:用勾股定理的逆定理判定一个三角形是否是直角三角形应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形(若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2<a2+b2,则△ABC为锐角三角形)。

知识点三:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。

知识点四:互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

三、规律方法指导1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。

2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。

3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。

4. 勾股定理的逆定理:如果三角形的三条边长a,b,c有下列关系:a2+b2=c2,•那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法.5.•应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解.第二部分 学习笔记1.直角三角形的边、角之间分别存在什么关系?(1) 角与角之间的关系:在△ABC 中,∠C=90°,有∠A+∠B=90°;(2) 边与边之间的关系:在△ABC 中,∠C=90°,有222c a b =+2.勾股定理:如果直角三角形两直角边分别为a,b,斜边为c ,那么222c a b =+ 即直角三角形的两直角边的平方和等于斜边的平方。

勾股定理辅导讲义

勾股定理辅导讲义

一对一八年级数学教师辅导讲义,如下图,a、b为直角边,勾股定理揭示了直角三角形三边之间的数量关系,完美地体现了“数形统一”的数学思想,将初中几何与代数很好的联系起来。

因此,学好勾股定理这一知识点对于我们解决数学问题有很大的帮助,下面我们具体来看看初中数学有关勾股定理的一些常见题型及其解答方法。

,则c= .=4,则斜边上的高CDD.57(无需证明)+b)2,S=2×12ab+12c2=ab评论:这是一道图形换的题,具体涉及到图形的拼凑,解决勾股定理这方面的试题关键是要对课本勾股定理证明涉及到的几种常见的图形以及证明过程和原理要熟练掌握,再利用适当的迁移便可以解答了。

,某校把一块形状为直角三角形的废地开辟为生物园,如图5点在边AB上,已知水渠的造价为从而水渠造价最低.因为CDAC BC248-=64米.所以,D点在距的小树梢上捉虫子,它的伙伴在离该树12m,高20m的一棵大树的树梢的速度飞向大树树梢,那么这只小鸟至少几秒才可能到达大树和伙伴4=5(s).评论:解答勾股定理的实际应用题,首先要审清题意,然后找出试题情景中涉及到的直角三角形,再结合勾股定理便可以求出了。

在该题中,我们关键是要根据题意画出勾股定理涉及到的直角三角形图形,AC=20-4=16,再根据勾股定理就可求解.图53.如图,为测湖两岸A、B间的距离,小兰在C点设桩,使△ABC为直角三角形,并测得BC=12m 则A、B两点间的距离是 m。

4.如右图,一透明的直圆柱状的玻璃杯,由内部测得其底部半径为3㎝,高为8㎝,今有一支管任意斜放于杯中,若不考虑吸管的粗细,则吸管露出杯口外的长度至少为 m。

5.如下图,铁路上A、B两点相距25㎞,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15㎞,CB=10㎞,现在要在铁路AB上修建一个土特产收购站E,使得C、D两村到E站的距离相等,则E站应修建在离A站多少千米处BAEC 第1题第2题第3题,则另一条直角边的长是(分米长的梯子,斜立在一竖直的墙上,这时梯足距离墙底端4分米,那么梯足将滑动B. 15=90,则底边上的高为一个直角三角形的三边为三个连续偶数,则它的三边长分别为请你帮助计算一下,铺完这个楼道至少需要多少元钱4m4m/s的速度飞向大树树梢,后,测得小汽车与车速检测仪间距离为AB+BC=18cm,若。

勾股定理专题复习(经典一对一学案)

勾股定理专题复习(经典一对一学案)

专题复习一 勾股定理本章常用知识点:1、勾股定理:直角三角形两直角边的 等于斜边的 。

如果 用字母 a,b,c 分别表示直角三角形的两直角边和斜边,那么勾股定理可以表示 为: 。

2、勾股数:满足 a 2+b 2=c 2 的三个 ,称为勾股数。

常见勾股数如下:3 112 121; 122 144;132 169; 22 142 196 ; 152 2 225 ; 162 256 172 289; 182 324;192 361; 202 400; 212 441; 222 484 232 529; 242 576; 252625; 262 676; 27 2 729专题归类:专题一、勾股定理与面积1、、在 Rt ▲ABC 中, C=90 ,a=5,c=3.,则 Rt ▲ABC 的面积 S= 。

2、一个直角三角形周长为 12米,斜边长为 5 米,则这个三角形的面积为:。

3、直线 l 上有三个正方形 a 、b 、c ,若 a 和 c 的面积分别为 5 和 11,则 b 的面 积为4、在直线 l 上依次摆放着七个正方形 (如图所示 )。

已知斜放置的三个正方形的面积分别是 1、 2、3,正放置的四个正方形的面积依次是 S 1、 S 2、S 3、S 4,则 S 1 +S 2+ S 3+ S 4 等于 。

5、三条边分别是 5,12,13 的三角形的面积是2 2 26、如果一个三角形的三边长分别为 a,b,c 且满足: a 2+b 2+c 2 +50=6a+8b+10c,则这个三角形 的面积为 。

7、如图 1, ACB 90 , BC=8,AB=10,CD 是斜边的高,求 CD 的长?7、如下图,在 ?ABC 中, ABC 90 , AB=8cm ,BC=15cm ,P 是到 ?ABC 三边距离相等的点,求点 P 到?ABC 三边的距离。

BC8、有一块土地形状如图 3 所示, B D 90 ,AB=20 米, BC=15米, CD=7 米,请计算这块土地的面积。

八年级数学《勾股定理》讲义

八年级数学《勾股定理》讲义

【课题名称】八上数学《勾股定理》【考纲解读】1.掌握勾股定理的含义;2.理解勾股数,并且会熟练地运用勾股数;3.能够根据勾股定理,解决实际问题。

【考点梳理】考点1:勾股定理(1)勾股定理:直角三角形两直角边的平方和等于斜边的平方。

(2)勾股定理的表示:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222ab c+= (3)勾股定理的证明:勾股定理的证明方法很多,常见的是拼图法。

图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变。

根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。

考点2:勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。

考点3:勾股数(1)能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c为正整数时,称a ,b ,c 为一组勾股数。

(2)记住常见的勾股数可以提高解题速度,比如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17等。

考点4:勾股定理的应用(1)已知直角三角形的任意两边长,求第三边。

在A B C ∆中,90C ∠=︒,则c ,b ,a ;(2)已知直角三角形一边,可得另外两边之间的数量关系;(3)可以运用勾股定理解决一些实际问题,比如圆柱和长方体的最短距离问题。

【例题讲解】c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A例1:如图字母B所代表的正方形的面积是()A.12 B.13 C.144 D.194例2:下列由线段a,b,c组成的三角形不是直角三角形的是()A.a=3,b=4,c=5 B.a=2,b=3,c=C.a=12,b=10,c=20 D.a=5,b=13,c=12例3:三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形例4:如图,有两棵树,一棵高10米,另一棵高5米,两树相距12米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米B.10米C.13米D.14米例5:如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是()A.9 B.10 C.D.例6:如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的点C有个.【课堂检测】1.如图,在△ABC中,∠ACB=90°,分别以点A和点B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于点E.若AC=3,AB=5,则DE等于()A.2 B.C.D.2.在△ABC中,∠C=90°,若AC=3,BC=4,则AB=()A.B.5 C.D.73.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a:b:c=3:4:64.在△ABC中,AC2﹣AB2=BC2,那么()A.∠A=90°B.∠B=90°C.∠C=90°D.不能确定5.下列各组数中,能成为直角三角形的三条边长的是()A.8、15、17 B.10、24、25 C.9、15、20 D.9、80、816.如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm7.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是()A.13cm B.2cm C.cm D.2cm8.已知直角三角形的两边长为3厘米和5厘米,则第三边长为.9.三角形的三边长为a、b、c,且满足等式(a+b)2﹣c2=2ab,则此三角形是三角形(直角、锐角、钝角).10.如图,是美国总统Garfield于1896年给出的一种验证勾股定理的办法,你能利用它证明勾股定理吗?请写出你的证明过程.(提示:如图三个三角形均是直角三角形)11.如图,在四边形ABCD中,∠B=90°,AB=BC=4,CD=6,DA=2.求∠DAB的度数.【课后作业】1.如图,将一边长为a的正方形(最中间的小正方形)与四块边长为b的正方形(其中b >a)拼接在一起,则四边形ABCD的面积为()A.b2+(b﹣a)2B.b2+a2 C.(b+a)2D.a2+2ab2.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,且(a+b)(a﹣b)=c2,则()A.∠A为直角B.∠C为直角C.∠B为直角D.不是直角三角形3.已知a=3,b=4,若a,b,c能组成直角三角形,则c=()A.5 B.C.5或D.5或64.下列是三角形的三边,能组成直角三角形的是()A.1:2:3 B.1::3 C.2:3:5 D.1:1:5.如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为()A.400m B.525m C.575m D.625m6.由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m7.已知等腰三角形的腰长为5,一腰上的高为3,则以底边为边长的正方形的面积为.8.有一根长24cm的小木棒,把它分成三段,组成一个直角三角形,且每段的长度都是偶数,则三段小木棒的长度分别是m,cm,cm.9.写出一组直角三角形的三边长.(要求是勾股数但3、4、5和6、8、10除外)10.如图所示,“赵爽弦图”由4个全等的直角三角形拼成,在Rt△ABC中,∠ACB=90°,AC=b,BC=a,请你利用这个图形解决下列问题:(1)证明勾股定理;(2)说明a2+b2≥2ab及其等号成立的条件.11.如图,将边长为a与b、对角线长为c的长方形纸片ABCD,绕点C顺时针旋转90°得到长方形FGCE,连接AF.通过用不同方法计算梯形ABEF的面积可验证勾股定理,请你写出验证的过程.12.已知:如图,AD=4,CD=3,∠ADC=90°,AB=13,BC=12.求图形的面积.13.如图,有一只蚂蚁从一个圆柱体的A点沿着侧面绕圆柱至少一圈爬到B点,已知圆柱的底面半径为1.5cm,高为12cm,则蚂蚁所走过的最短路径是多少?(π取3)。

勾股定理复习(1对1辅导精品)

勾股定理复习(1对1辅导精品)

勾股定理复习一.知识纵横:勾股定理是初等几何中的一个基本定理。

所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。

这个定理有十分悠久的历史,几乎所有文明古国(希腊、中国、埃及、巴比伦、印度等)对此定理都有所研究。

勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯(Pythagoras,公元前572?~公元前497?)(右图)于公元前550年首先发现的。

但毕达哥拉斯对勾股定理的证明方法已经失传。

著名的希腊数学家欧几里得(Euclid,公元前330~公元前275)在巨著《几何原本》(第Ⅰ卷,命题47)中给出一个很好的证明。

(左图为欧几里得和他的证明图)中国古代对这一数学定理的发现和应用,远比毕达哥拉斯早得多。

中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:"我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?" 商高回答说:"数的产生来源于对方和圆这些形体的认识。

其中有一条原理:当直角三角形‘矩'得到的一条直角边‘勾'等于3,另一条直角边’股'等于4的时候,那么它的斜边'弦'就必定是5。

这个原理是大禹在治水的时候就总结出来的呵。

" 如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。

其中所说的勾3股4弦5,正是勾股定理的一个应用特例。

所以现在数学界把它称为勾股定理是非常恰当的。

在稍后一点的《九章算术》一书中(约在公元50至100年间)(右图),勾股定理得到了更加规范的一般性表达。

书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。

”。

《九章算术》系统地总结了战国、秦、汉以来的数学成就,共收集了246个数学的应用问题和各个问题的解法,列为九章,可能是所有中国数学著作中影响最大的一部。

勾股定理讲义

勾股定理讲义

勾股定理复习一.知识归纳 1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCB A方法二:bacbac cabcab四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a bcc baE D CBA3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =- ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:ABC30°D CB A ADB CCB DA题型一:直接考查勾股定理 例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长 分析:直接应用勾股定理222a b c += 解:⑴2210AB AC BC =+=⑵228BC AB AC =-=题型二:应用勾股定理建立方程 例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD = ⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 ⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解 解:⑴224AC AB BC =-=, 2.4AC BCCD AB⋅== DBAC⑵设两直角边的长分别为3k ,4k ∴222(3)(4)15k k +=,3k ∴=,54S =⑶设两直角边分别为a ,b ,则17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21EDCBA分析:此题将勾股定理与全等三角形的知识结合起来 解:作DE AB ⊥于E ,12∠=∠,90C ∠=︒ ∴ 1.5DE CD == 在BDE ∆中2290,2BED BE BD DE ∠=︒=-= Rt ACD Rt AED ∆≅∆ AC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积BAC答案:6题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 mABCD E分析:根据题意建立数学模型,如图8AB =m ,2CD =m ,8BC =m ,过点D 作DE AB ⊥,垂足为E ,则6AE =m ,8DE =m在Rt ADE ∆中,由勾股定理得2210AD AE DE =+=答案:10m题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形例6.已知三角形的三边长为a ,b ,c ,判定ABC ∆是否为Rt ∆① 1.5a =,2b =, 2.5c = ②54a =,1b =,23c =解:①22221.52 6.25a b +=+=,222.5 6.25c ==∴ABC ∆是直角三角形且90C ∠=︒②22139b c +=,22516a =,222b c a +≠ABC ∴∆不是直角三角形例7.三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状? 解:此三角形是直角三角形理由:222()264a b a b ab +=+-=,且264c = 222a b c ∴+= 所以此三角形是直角三角形题型五:勾股定理与勾股定理的逆定理综合应用例8.已知ABC ∆中,13AB =cm ,10BC =cm ,BC 边上的中线12AD =cm ,求证:AB AC =证明:D CBAAD 为中线,5BD DC ∴==cm在ABD ∆中,22169AD BD +=,2169AB =222AD BD AB ∴+=, 90ADB ∴∠=︒,222169AC AD DC ∴=+=,13AC =cm ,AB AC ∴=勾股定理单元测试题一、选择题1、下列各组数中,能构成直角三角形的是( )A :4,5,6B :1,1,2C :6,8,11D :5,12,23 2、在Rt △ABC 中,∠C =90°,a =12,b =16,则c 的长为( ) A :26 B :18 C :20 D :213、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( ) A :3 B :4 C :5 D :74、在Rt △ABC 中,∠C =90°,∠B =45°,c =10,则a 的长为( ) A :5 B :10 C :25 D :55、等边三角形的边长为2,则该三角形的面积为( )A 、43B 、3C 、23D 、36、若等腰三角形的腰长为10,底边长为12,则底边上的高为( )A 、6B 、7C 、8D 、9 7、已知,如图长方形ABCD 中,AB=3cm , AD=9cm ,将此长方形折叠,使点B 与点D 重合, 折痕为EF ,则△ABE 的面积为( ) A 、3cm 2B 、4cm 2C 、6cm 2D 、12cm 28、若△ABC 中,13,15AB cm AC cm ==,高AD=12,则BC 的长为( ) A 、14 B 、4 C 、14或4 D 、以上都不对 二、填空题1、若一个三角形的三边满足222c a b -=,则这个三角形是 。

勾股定理专题讲义

勾股定理专题讲义

勾股定理二、核心纲要 1. 勾股定理如果直角三角形两直角边长分别为a 、b ,斜边长为c ,那么a 2+b 2=c 2.即直角三角形两直角边的平方和等于斜边的平方.注:⑴如图所示,直角三角形中较短的直角边是勾,较长的直角边是股,斜边是弦.⑵勾股定理只对直角三角形适用,而不适用锐角三角形和钝角三角形. ⑶为方便应用勾股定理进行计算,常将a2+b 2=c 2进行如下变形:①a 2 =c 2-b 2;②b 2=c 2-a 2;③a b ;⑤c ⑷勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:①已知直角三角形的两边求第三边;②已知直角三角形的一边与另两边的关系,求直角三角形边; ③证明三角形中的某些线段的平方关系; 的线段.2. 勾股定理的证明勾股定理的证明实际采用的图形面积与代数恒等式的关系相互转化进行证明的,体现了数形结合的思想.⑴证法一:赵爽的“勾股圆方图”(又称“赵爽弦图”)如图是由4个全等的直角三角形拼成的大正方形,直角三角形的两条直角边分别为a 、b (b >a ),斜边为c ,中间是正方形,且边长为b —a .∵以c 为边的大正方形的面积为c 2,而4个直角三角形的面积和为142ab ⨯,中间的小正方形的面积为(b -a )2, ∴c 2=214()2ab b a ⨯+-.即a 2+b 2=c 2.AB CDEFG Hb ac勾弦 股⑵证法二:邹元治的证明如图是由4个全等的直角三角形拼成的大正方形,直角三角形的两条直角边分别为a 、b ,斜边为c ,中间是正方形,且边长为c .∵四个直角三角形的面积与小正方形面积的和为S =2142ab c ⨯+=2ab +c 2,,大正方形面积S =(a +b )2,且四个直角三角形的面积与小正方形面积的和等于大正方形的面积. ∴(a +b )2=2ab +c 2. ∴a 2+b 2=c 2.⑶证法三:1876年美国总统伽菲尔德(Garfield )的证明如图是由2个以a 、b 为直角边,以c 为斜边作两个全等的直角三角形和一个以c 为直角边的等腰直角三角形拼成的直角梯形.∵S 梯形=211()()()22a b b a a b +⋅-=+, S 梯形=2S △ADE +S △DEC =221112222ab c ab c ⨯+=+,∴2211()22a b ab c +=+. ∴a 2+b 2=c 2. ⑷证法四:陈杰的证明如图所示,直角边长分别为a 、b 的四个三角形全等,斜边长为c ,图中有3个正方形边长分别为a 、b 、c ,设整个图形面积为S . ∵2222122S a b ab a b ab =++⨯=++,22122S c ab c ab =+⨯=+, ∴a 2+b 2+ab =c 2+ab . ∴a 2+b 2 =c 2.GD ABCEF Lb a a bc cABCa ab bE A B CD HE FG a b a b a b abc cc c⑸证法五:火柴盒拼图如图火柴盒的一个侧面ABCD 倒下到AB 'C 'D '的位置,连接C 'C ,可得到直角梯形B C C 'D '和等腰直角三角形C 'AC ,设AB =a ,BC =b ,AC =c ,利用梯形B C C´D´的面积即可证明勾股定理.∵S 梯形B C C 'D '=21()()22a b BC C D BD +'''+⋅=,S 梯形B C C 'D '=S △ABC +S △CAC '+S △D 'AC '=2211122222c abab c ab +++=,∴22()222a b c ab++=, ∴a 2+b 2 =c 2.说明:上面的“火柴盒拼图法”曾以证明题的形式出现在中考卷中,其验证过程的实质就是伽菲尔德总统证法.勾股定理的证明方法有很多种,我们选取了其中比较容易理解的五种,仅供读者参考. 3.直角三角形斜边上的高求法 如图所示,ab =ch =>ab h c=.4.数学思想本节涉及到的常用数学思想有: ⑴方程思想:勾股定理表达式中有三个量,如果条件中只有一个量,通常需要巧设未知数,灵活地寻找题目中的等量关系,然后利用勾股定理建立方程(组)解题,进而几何问题代数化.⑵分类讨论思想:有的题目没有明确指出是怎样的三角形,那么就需要对三角形的形状进行讨论,有时指明了是直角三角形,但没有指明哪条边是斜边,也需要对边的情况进行讨论. ⑶数形结合思想:勾股定理揭示了直角三角形三边之间的关系,本身体现了数形结合的思想.⑷转化思想:有些问题如果直接解决难以入手,如果换个方向、角度或观点来考虑,使得问题更清楚,更简单.⑸类比思想:类比思想涉及知识的迁移,它把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么就推断它们在其他方面也有可能有相同或类似之处.cbah A B 'DC 'D 'c ab图17-1-430°ACBA6410图17-1-2EADCB图17-1-5本节重点讲解:一个定理,五个证明,五个思想.三、全能突破基础演练1.如图17-1-1所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了______步路(假设2步为1米),却踩伤了花草. A.2 B.3 C.4 D.52.一艘轮船以16海里/时的速度离开A 港向东南方向航行,另一艘轮船同时以12海里/时的速度离开A 港向西南方向航行,经过1.5小时后他们相距(). A.25海里 B.30海里 C.40海里 D.32海里3.若直角三角形两条直角边长分别是3cm 和4cm ,则斜边上的高是() A.5cm B.4cm C.3cm D.125cm 4.三个正方形的面积如图17-1-2所示,则正方形A 的面积为______.5.在△ABC 中,∠C =90°,∠A 、∠B 、∠C 所对的边分别是a 、b 、c ,若a +c =32,a :c =3:5,则△ABC 的面积为______.6.图17-1-3所示是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm ),计算两圆孔中心A 和B 的距离为______mm.7.某楼梯的侧面视图如图17-1-4所示,其中AB =4米,∠BAC =30°,∠C =90°,因某种活动要求铺设红色地毯,则在AB 段楼梯所铺地毯的长度应为______米. 8.如图17-1-5所示,铁路上A 、B 两地相距25km ,C 、D 为两村庄.DA ⊥AB 于点A ,CB ⊥AB 于点B ,已知DA =15km ,CB =10km ,现在要在铁路AB 上建一个土特产收购站E ,使得C 、D 两村到E 站距离相等,则E 站应建在距A 地多少千米处?能力提升图17-1-3图17-1-19.如图17-1-6所示,一个长为10m 的梯子,斜靠在墙上,梯子的顶端距地面的垂直距离为8m ,如果梯子的顶端下滑1m ,那么,梯子与地面和墙围成的的三角形的面积() A.不变 B.大于24m 2 C.小于24m 2 D.不确定10.在△ABC 中,AB =20,AC =13,高AD =12,则△ABC 的周长为(). A.54 B.44 C.54或44 D.42或3211.如图17-1-7所示,在直线l 上依次摆放着七个正方形,正放置的四个正方形的面积为从左到右依次是1.21,1,1.44,1.69,则S 1+S 2+S 3=().12如图17-1-8所示,小正方形边长为1,连接小正方形的三个顶点,可得△ABC ,则边AC 上的高为()13.以某直角三角形三边分别作三个正方形,其中两个正方形面积分别为25cm 2和12cm 2,则第三个正方形的面积是______. 14.在Rt △ABC 中,∠C =90°,BC =6cm ,CA =8cm ,动点P 从C 出发,以每秒2cm 的速度沿CA →AB 运动到点B ,则从点C 出发______秒时,可使S △BCP =13S △ABC . 15.⑴已知Rt △ABC的周长为2AB =2,则这个三角形的面积为______.⑵已知,如图17-1-9所示,∠C =90°,CD ⊥AB 于点D ,AB =13,CD =6,则AC +BC =______.16.图17-1-10中的螺旋形有一系列等腰直角三角形组成,其序号依次为①、②、③、④、图17-1-9CBD CBA图17-1-8S 1S 2S 3图17-1-7图17-1-6⑤……,则第n 个等腰直角三角形的斜边长为______.17.如图17-1-11所示,∠B =∠D =90°,∠A =60°,AB =10,CD =6. 求四边形ABCD 的面积.18.如果把勾股定理的平方理解为正方形的面积,那么从面积的角度来说,勾股定理可以推广.⑴如图17-1-12(a )所示,以Rt △ABC 的三边长为边作三个等边三角形,则这三个等边三角形的面积S 1,S 2,S 3之间有何关系?并说明理由.⑵如图17-1-12(b )所示,以Rt △ABC 的三边长为直径作三个半圆,则三个半圆的面积S 1,S 2,S 3之间有何关系?⑶如果将上图中斜边上的半圆沿斜边翻折180°,如图17-1-12(c )所示,请探讨两个阴影部分的面积之和与直角三角形的面积之间的关系,并说明理由.(此阴影面积在数学史上称为“希波克拉底月牙”)图17-1-13(a)FS 1 S 3S 2EACB Dc a bS 1 S 2S 3bACBc a (b)(c)S 2 S 1 S 3 AC B cba 图17-1-11ACBD①②③ ④ ⑤11 …图17-1-10图17-1-1419.图17-1-13所示是一块长、宽、高分别为3cm 、4cm 、6cm 的长方体纸箱(箱纸厚度忽略不计).⑴求长方体底面的对角线长;⑵若揭开盖子EFGH 后,插入一根长为10cm 的细木棍,则细木棍露在外面的最短长度是多少?⑶在A 处有一蚂蚁,在G 处有一滴蜂蜜,蚂蚁从A 沿表面爬行到G ,求蚂蚁爬行的最短路径长.⑷若蜂蜜在点M 处,且距离F 为1cm ,蚂蚁从A 沿表面爬行到M ,求蚂蚁爬行的最短路径长.(直接写出结果)20.如图17-1-14所示,在平面直角坐标系中,△ABC 满足:∠C =90°,AC =2,BC =1,点A 、C 分别在x 轴、y 轴上,当A 点从原点开始沿x 轴的正半轴运动,点C 沿y 轴的正半轴运动.⑴当A 在原点时,求原点O 到点B 的距离OB ;⑵当OA =OC 时,求原点O 到点B 的距离OB .21.在△ABC 中,BC =a ,AC =b ,AB =c ,如图17-1-15(a )所示,根据勾股定理,则a 2+b 2=c 2.若△ABC 不是直角三角形,如图17-1-15(b )和图17-1-15(c )所示,请你类比勾股定理,试猜想a 2+b 2与c 2的关系,并证明你的结论.中考链接(a ) (b ) 图17-1-15ACBABCABC(c )CH EF G A D3 64 图17-1-13· MACB22.(2012·山东青岛)如图17-1-16所示,圆柱形玻璃杯,高为12cm ,底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为______cm.23.(2012·陕西)如图17-1-17所示,从点A (0,2)发出的一束光,经x 轴反射,过点B(4,3),则这束光从点A 到点B 所经过的路径长为______ .24.(2012·山东泰安)如图17-1-18所示,在△ABC 中,∠ABC =45°,CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,F 为BC 中点,BE 与DF 、DC 分别交于点G 、H ,∠ABE =∠CBE . ⑴线段BH 与AC 相等吗?若相等,给予证明;若不相等,请说明理由; ⑵求证:BG 2-GE 2=EA 2.巅峰突破25.在Rt △ABC 中,∠ABC =90°,AC =5,BC =12,D 是BC 上一点,当AD 是∠A 的平分线时,则CD =______.26.在等腰△ABC 中,AB =AC ,D 为直线BC 上任意一点, ⑴试探究:AB 2-AD 2与BD ·DC 之间的关系.⑵应用上述结论解决问题:在△ABC 中,若AB =AC =1,BC 边上有2012个不同的点P 1、P 2、…、P 2012,记m i =AP i 2+BP i ·P i C (i =1、2、3、…、2012),则m 1+m 2+…+m 2012=______.(直接写出结果)图17-1-18CABE HG F图蚂蚁AC 蜂蜜 图17-1-16。

探索勾股定理讲义

探索勾股定理讲义

龙文教育一对一讲义教师:魏敏学生:日期:星期时段:这个图案是我国汉代数学家赵爽用来证明勾股定理的“赵爽弦图”加工而来,了我国古代对勾股定理的研究成果,是我国古代数学的骄傲.毕达哥拉斯是古希腊著名的数学家.相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的三边的某种数量关系)观察下图中的地面,看看能发现些什么?地面图18.1-1(2)找出图18.1-1中正方形A、B、C面积之间的关系吗?(3)图中正方形A、B、C所围等腰直角三角形三边之间有什么特殊关系通过直接数等腰直角三角形的个数,或者用割补的方法将正方形A、B中小等腰直角三角形补成一个大正方形得到:正方形A、B的面积之和等于大正方形由正方形的面积等于边长的平方归纳出:_________________________________勾股定理:在一个直角三角形中,两直角边的平方和等于斜边的平方.ABC,∠C=90°。

+BC2=AB2)我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜(弦图验证))观察赵爽弦图,思考:如何利用此图的面积表示式验证勾股定理?)仿照课本中赵爽的思路,只剪两刀,将边长为a、b的两个连体正方形,C完全相同的直角三角形,然后将它们拼成如图2所示的图形大正方形的面积可以表示为________________________,____________.对比两种表示方法,看看能不能得到勾股定理的结论.图1图23.如图所示,一棵大树在一次强烈台风中于离地面10米处折断倒下,树顶落在离树根24米处大树在折断之前高多少?2.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的3.如图所示是一个长方形零件的平面图,尺寸如图所示, 求两孔中心A, B之间的距离.(单位:毫米)以直角三角形三边为边作等边三角形,这3个等边三角形的面积之间有什么关算一算日,他在《新英格兰教育日志》上发表了他对勾股定理的这一年,这位中年人—伽菲尔德就任美国第二十任总统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识点梳理1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGHS S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。

4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c,b =,a =②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边。

① 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形; ② 若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;③ 定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+cbaHG F EDCB Abacbac cabcab a bc c baE D CBACA BD (,m n m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 8.勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:ABC30°D C BA ADB C10、互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

勾股定理典型题归类类型一:等面积法求高【例题】如图,△ABC 中,∠ACB=900,AC=7,BC=24,CD ⊥AB 于D 。

(1)求AB 的长; (2)求CD 的长。

类型二:面积问题【例题】如下图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2。

【练1】如上右图,每个小方格都是边长为1的正方形,(1)求图中格点四边形ABCD 的面积和周长。

(2)求∠ADC 的度数ABC D7cm 25【练2】如图,四边形ABCD 是正方形,AE ⊥BE ,且AE =3,BE =4,阴影部分的面积是______. 【练3】如图字母B 所代表的正方形的面积是类型三:距离最短问题【例题】 如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并求出总费用是多少?【例题】如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?【练1】如图,一圆柱体的底面周长为20cm ,高AB为4cm ,BC是上底面的直径.一只蚂蚁从点A 出发,沿着圆柱的侧面爬行到点C ,试求出爬行的最短路程.【练2】如图,边长为1的立方体中,一只蚂蚁从A 顶点出发沿着立方体的外表面爬到B 顶点的最短路程是( ) A 、3B 、C 、D 、1【练3】如图,长方体的长为15cm ,宽为10cm ,高 为20cm ,点B 到点C 的距离为5cm ,一只蚂蚁如果要沿着长方体的表面从A 点爬到B 点,需要爬行的最短距离是多少?BDE 小河A B北牧童小屋 A BCDL类型四:判断三角形的形状【例题】如果ΔABC的三边分别为a、b、c,且满足a2+b2+c2+50=6a+8b+10c,判断ΔABC的形状。

【练1】已知△ABC的三边分别为m2-n2,2mn,m2+n2(m,n为正整数,且m>n),判断△ABC是否为直角三角形.【练2】.已知a,b,c为△ABC三边,且满足(a2-b2)(a2+b2-c2)=0,则它的形状为()三角形A.直角B.等腰C.等腰直角D.等腰或直角【练3】三角形的三边长为abcba2)(22+=+,则这个三角形是( ) 三角形(A)等边(B)钝角(C)直角(D)锐角类型五:直接考查勾股定理【例题】在Rt△ABC中,∠C=90°(1)已知a=6, c=10,求b;(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 【练习】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?类型六:构造应用勾股定理【例题】如图,已知:在中,,,. 求:BC的长. 练:△ABC中,AB=AC=20,BC=32,D是BC上一点,且AD⊥AC,求BD的长.【练习】四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积。

类型七:利用勾股定理作长为n的线段【例题】在数轴上表示10的点。

作法:如图所示在数轴上找到A点,使OA=3,作AC⊥OA且截取AC=1,以OC为半径,以O为圆心做弧,弧与数轴的交点B即为10。

类型八:勾股定理及其逆定理的一般用法【例题】若直角三角形两直角边的比是3:4,斜边长是20,求此直角三角形的面积。

【练习1】等边三角形的边长为2,求它的面积。

2、已知一直角三角形的斜边长是2,周长是2+6,求这个三角形的面积.3、以下列各组数为边长,能组成直角三角形的是()A、8,15,17B、4,5,6C、5,8,10D、8,39,40类型九:生活问题【例题】如下左图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需________米.【练1】种盛饮料的圆柱形杯(如上右图),测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出4.6㎝,问吸管要做㎝。

【练2】如下左图学校有一块长方形花园,有极少数人为了避开拐角而走“捷径”,在花园内走出了一条“路”。

他们仅仅少走了__________步路(假设2步为1m),却踩伤了花草。

【练3】如上右图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞米.3、台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东30º方向往C移动,且台风中心风力不变,若城市所受风力达到或走过四级,则称为受台风影响.(1)该城市是否会受到这交台风的影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市持续时间有多少?(3)该城市受到台风影响的最大风力为几级?类型十:翻折问题【例题】如图,有一个直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?1.如图,矩形纸片ABCD 中,已知AD=4,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE,且EF=.则AB 的长为( )【练习1】如图所示,折叠矩形的一边AD ,使点D 落在BC 边的点F 处,已知AB=8cm ,BC=10cm ,求EF 的长。

【练习2】如图,△ABC 中,∠C=90°,AB 垂直平分线交BC 于D 若BC=8,AD=5,求AC 的长。

【练习3】如图,把矩形纸片沿折叠,使点落在边上的点处,点落在点处。

(1)求证:(2)设,试猜想之间的一种关系,并给予证明.CBADE【练习4】如图,矩形纸片ABCD中,AB=6,BC=,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为4.如图所示,将一个长方形纸片ABCD沿对角线AC折叠.点B落在E点,AE交DC于F点,已知AB=8cm,BC=4cm.则折叠后重合部分的面积为5.如图,把一张长方形纸片ABCD折叠起来,使其对角顶点A与C重合,若长方形的长BC为8,宽AB为4,则折叠后重合部分的面积是6.如图所示,在完全重合放置的两张矩形纸片ABCD中,AB=4,BC=8,将上面的矩形纸片折叠,使点C与点A重合,折痕为EF,点D的对应点为点G,连接DG,则图中阴影部分的面积为类型十一:旋转问题90到∆CBE例题:如图所示,P为正方形ABCD内一点,将∆ABP绕B顺时针旋转︒的位置,若BP=a,求:以PE为边长的正方形的面积练习:如图2-9,△ABC中,∠ACB=90°,AC=BC,P是△ABC内一点,满足PA=3,PB=1,•PC=2,求∠BPC 的度数.。

相关文档
最新文档