上海市-建平中学高三期中数学考试试卷(含答案)(2018.11)
2018学年上海市建平中学高三(上)9月月考数学试卷 解析版

2017-2018学年上海市建平中学高三(上)9月月考数学试卷一、填空题1.(3分)在(x+a)5的二项式展开式中,x2的系数与x3的系数相同,则非零实数a的值为.2.(3分)袋中共有15个除颜色外完全相同的球,其中10个白球5个红球,从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为.3.(3分)设双曲线C的焦点在x轴上,渐近线方程为y=x,则其离心率为;若点(4,2)在C上,则双曲线C的方程为.4.(3分)已知集合{x|(x﹣1)(x2﹣x+a)=0,x∈R}中的所有元素之和为1,则实数a的取值集合为.5.(3分)已知x∈C,且x5﹣1=0,则=.6.(3分)设,则=.7.(3分)若复数z满足,则复数|z﹣1﹣i|的最大值为.8.(3分)在平面上,过点P作直线l的垂线所得的垂足称为点P的直线上的投影,由区域中的点在直线x+y﹣2=0上的投影构成的线段记为AB,则|AB|=.9.(3分)已知△ABC,若存在△A1B1C1,满足,则称△A1B1C1是△ABC的一个“友好”三角形.在满足下述条件的三角形中,存在“友好”三角形的是:(请写出符合要求的条件的序号)①A=90°,B=60°,C=30°;②A=75°,B=60°,C=45°;③A=75°,B=75°,C=30°.10.(3分)集合,若B⊆A,则实数a的取值范围是.11.(3分)在△ABC中,D、E分别是AB,AC的中点,M是直线DE上的动点,若△ABC的面积为1,则•+2的最小值为.12.(3分)已知函数f(x)=(a>0且α≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣x恰有两个不相等的实数解,则a的取值范围是.二、选择题13.(3分)若a、b为实数,则ab(a﹣b)<0成立的一个充要条件是()A.B.C.D.14.(3分)l1、l2是空间两条直线,α是平面,以下结论正确的是()A.如果l1∥α,l2∥α,则一定有l1∥l2B.如果l1⊥l2,l2⊥α,则一定有l1⊥αC.如果l1⊥l2,l2⊥α,则一定有l1∥αD.如果l1⊥α,l2∥α,则一定有l1⊥l215.(3分)已知数列{a n}共有5项,满足a1>a2>a3>a4>a5≥0,且对任意i,j(1≤i≤j≤5),有a i﹣a j仍是该数列的某一项,则下列命题中,假命题的序号是()A.数列{a n}中一定存在一项为0B.存在1≤i<j≤5,使得ia i=ja jC.数列{a n}一定是等差数列D.集合A={x|x=a i+a j,1≤i<j≤5}中元素个数为15.16.(3分)已知函数f(x)=,有下列四个结论:①对任意x∈D,f(x)+f(﹣x)=0恒成立;②存在m∈(0,1),使得方程|f(x)|=m有两个不等实根;③对任意x1,x2∈D,若x1≠x2,则一定有f(x1)=f(x2);④对任意k∈(1,+∞),函数g(x)=f(x)﹣kx有三个零点.上述结论正确的个数为()A.1B.2C.3D.4三、解答题17.如图,在长方体ABCD﹣A1B1C1D1中,AB=8,BC=5,AA1=4,平面α截长方体得到一个矩形EFGH,且A1E=D1F=2,AH=DG=5.(1)求截面EFGH把该长方体分成的两部分体积之比;(2)求直线AF与平面α所成角的正弦值.18.已知数列{a n}是首项等于的等比数列,公比q∈N*,S n是它的前n项和,满足S4=5S2.(1)求数列{a n}的通项公式;(2)设b n=log a a n(a>0且a≠1),求数列{b n}的前n项和T n的最值.19.某校兴趣小组在如图所示的矩形区域ABCD内举行机器人拦截挑战赛,在E 处按方向释放机器人甲,同时在A处按某方向释放机器人乙,设机器人乙在Q处成功拦截机器人甲.若点Q在矩形区域ABCD内(包含边界),则挑战成功,否则挑战失败.已知AB=18米,E为AB中点,机器人乙的速度是机器人甲的速度的2倍,比赛中两机器人均按匀速直线运动方式行进,记与的夹角为θ.(1)若θ=60°,AD足够长,则如何设置机器人乙的释放角度才能挑战成功?(结果精确到0.1°)(2)如何设计矩形区域ABCD的宽AD的长度,才能确保无论θ的值为多少,总可以通过设置机器人乙的释放角度使机器人乙在矩形区域ABCD内成功拦截机器人甲?20.设椭圆M:的左顶点为A、中心为O,若椭圆M过点,且AP⊥PO.(1)求椭圆M的方程;(2)若△APQ的顶点Q也在椭圆M上,试求△APQ面积的最大值;(3)过点A作两条斜率分别为k1,k2的直线交椭圆M于D,E两点,且k1k2=1,求证:直线DE恒过一个定点.21.已知集合A={x|x2﹣x﹣2≤0,x∈Z},集合B={x|lg(x2+x+8)=1},集合C={x|x=ab,a∈A,b∈B}.(1)用列举法表示集合C;(2)设集合C的含n个元素所有子集为C n,记有限集合M的所有元素和为S (M),求S(C1)+S(C2)+…+S(C n)的值.(3)已知集合P,Q是集合C的两个不同子集,若P不是Q的子集,且Q不是P的子集,求所有不同的有序集合对(P,Q)的个数n(P,Q).2017-2018学年上海市建平中学高三(上)9月月考数学试卷参考答案与试题解析一、填空题1.(3分)在(x+a)5的二项式展开式中,x2的系数与x3的系数相同,则非零实数a的值为1.【分析】利用(x+a)5二项式展开式的通项公式写出展开式中含x2的系数和x3的系数,列方程求出a的值.=•x5﹣r•a r,【解答】解:(x+a)5的二项式展开式中,通项公式为T r+1∴含x2的系数为•a3,x3的系数为•a2,由题意知•a3=•a2,即10a3=10a2,解得a=1或a=0;∴非零实数a的值为1.故答案为:1.2.(3分)袋中共有15个除颜色外完全相同的球,其中10个白球5个红球,从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为.【分析】从袋中任取2个球,基本事件总数n=,所取的2个球中恰有1个白球,1个红球包含的基本事件个数m=,由此能求出所取的2个球中恰有1个白球,1个红球的概率.【解答】解:袋中共有15个除颜色外完全相同的球,其中10个白球5个红球,从袋中任取2个球,基本事件总数n==105,所取的2个球中恰有1个白球,1个红球包含的基本事件个数m=,∴所取的2个球中恰有1个白球,1个红球的概率为p==.故答案为:.3.(3分)设双曲线C的焦点在x轴上,渐近线方程为y=x,则其离心率为;若点(4,2)在C上,则双曲线C的方程为.【分析】根据双曲线渐近线和a,b的关系建立方程进行求解即可求出离心率的大小,利用待定系数法求λ,即可得到结论.【解答】解:∵双曲线C的焦点在x轴上,渐近线方程为y=x,∴=,即==e2﹣1=,则e2=,则e=,设双曲线方程为﹣y2=λ,λ>0,∵若点(4,2)在C上,∴λ==8﹣4=4,即双曲线方程为﹣y2=4,即,故答案为:4.(3分)已知集合{x|(x﹣1)(x2﹣x+a)=0,x∈R}中的所有元素之和为1,则实数a的取值集合为{0}∪(,+∞).【分析】利用分类讨论的思想①当a=0时,集合只有0和1两个元素,故满足所有的元素和为1.②当f(x)=x2﹣x+a没有零点,即)x2﹣x+a=0没有实根,故△<0,进一步求出结果.【解答】解:集合{x|(x﹣1)(x2﹣x+a)=0,x∈R}中的所有元素之和为1,则:①当a=0时,集合只有0和1两个元素,故满足所有的元素和为1.②当f(x)=x2﹣x+a没有零点,即)x2﹣x+a=0没有实根.故△<0,即1﹣4a<0解得:a.综合①②得:,故答案为:{0}∪(,+∞)5.(3分)已知x∈C,且x5﹣1=0,则=4,或﹣1.【分析】由x5﹣1=(x﹣1)(x4+x3+x2+x+1)=0,得x=1,或x4+x3+x2+x+1=0,进而得到答案.【解答】解:∵x∈C,且x5﹣1=(x﹣1)(x4+x3+x2+x+1)=0,故x=1,或x4+x3+x2+x+1=0,当x=1时,=4,当x4+x3+x2+x+1=0时,==﹣1,故=4,或﹣1故答案为:4,或﹣1.6.(3分)设,则=1+.【分析】由已知求出|z n|,再由无穷递缩等比数列所有项和的求解方法求解.【解答】解:∵,∴=,则==.故答案为:1+.7.(3分)若复数z满足,则复数|z﹣1﹣i|的最大值为.【分析】设出z=a+bi(a,b∈R),则由,得z在复平面内对应点的轨迹,再由|z﹣1﹣i|的几何意义求解.【解答】解:设z=a+bi(a,b∈R),则由,得a2+b2+2a≤0,即(a+1)2+b2≤1.复数z在复平面内对应点的轨迹如图:∴复数|z﹣1﹣i|的最大值为|PC|+1=.故答案为:.8.(3分)在平面上,过点P作直线l的垂线所得的垂足称为点P的直线上的投影,由区域中的点在直线x+y﹣2=0上的投影构成的线段记为AB,则|AB|=3.【分析】作出不等式组对应的平面区域,利用投影的定义,利用数形结合进行求解即可.【解答】解:作出不等式组对应的平面区域如图:(阴影部分),区域内的点在直线x+y﹣2=0上的投影构成线段R′Q′,即SAB,而R′Q′=RQ,由得Q(﹣1,1)由即R(2,﹣2),则|AB|=|QR|==3,故答案为:3.9.(3分)已知△ABC,若存在△A1B1C1,满足,则称△A1B1C1是△ABC的一个“友好”三角形.在满足下述条件的三角形中,存在“友好”三角形的是②:(请写出符合要求的条件的序号)①A=90°,B=60°,C=30°;②A=75°,B=60°,C=45°;③A=75°,B=75°,C=30°.【分析】满足,则有A1=±A,B1=±B,C1=±C逐一验证选项即可.【解答】解:满足,则有A1=±A,B1=±B,C1=±C.对于①,cosA=cos90°=0,显然不成立.对于②,可取满足题意.对于③,经验证不满足.故答案为:②.10.(3分)集合,若B⊆A,则实数a的取值范围是{a|1<a} .【分析】根据B⊆A,建立条件关系即可求实数a的取值范围.【解答】解:集合,化简集合A={x|x2﹣5x+4≤0}=[1,4].∵B⊆A,当B=∅时,则4(a﹣2)2﹣4a<0,可得:1<a<4.当B≠∅时,f(x)=x2﹣2(a﹣2)x+a≤0有解.则4(a﹣2)2﹣4a≥0,f(1)≥0,f(4)≥0,,可得:3<a综上可得:实数a的取值范围是{a|1<a}.故答案为:{a|1<a≤}.11.(3分)在△ABC中,D、E分别是AB,AC的中点,M是直线DE上的动点,若△ABC的面积为1,则•+2的最小值为.【分析】由三角形的面积公式,S△ABC=2S△MBC,则S△MBC=,根据三角形的面积公式及向量的数量积,利用余弦定理,即可求得则•+2,利用导数求得函数的单调性,即可求得则•+2的最小值;方法二:利用辅助角公式及正弦函数的性质,即可求得•+2的最小值.【解答】解:∵D、E是AB、AC的中点,∴A到BC的距离=点A到BC的距离的一半,∴S△ABC =2S△MBC,而△ABC的面积1,则△MBC的面积S△MBC=,S△MBC=丨MB丨×丨MC丨sin∠BMC=,∴丨MB丨×丨MC丨=.∴•=丨MB丨×丨MC丨cos∠BMC=.由余弦定理,丨BC丨2=丨BM丨2+丨CM丨2﹣2丨BM丨×丨CM丨cos∠BMC,显然,BM、CM都是正数,∴丨BM丨2+丨CM丨2≥2丨BM丨×丨CM丨,∴丨BC丨2=丨BM丨2+丨CM丨2﹣2丨BM丨×丨CM丨cos∠BMC=2×﹣2×..∴•+2≥+2×﹣2×=,方法一:令y=,则y′=,令y′=0,则cos∠BMC=,此时函数在(0,)上单调减,在(,1)上单调增,∴cos∠BMC=时,取得最小值为,•+2的最小值是,方法二:令y=,则ysin∠BMC+cos∠BMC=2,则sin(∠BMC+α)=2,tanα=,则sin(∠BMC+α)=≤1,解得:y≥,•+2的最小值是,故答案为:.12.(3分)已知函数f(x)=(a>0且α≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣x恰有两个不相等的实数解,则a的取值范围是[,]∪{} .【分析】利用函数是减函数,根据对数的图象和性质判断出a的大致范围,再根据f(x)为减函数,得到不等式组,利用函数的图象,方程的解的个数,推出a的范围.【解答】解:函数f(x)=(a>0且α≠1)在R上单调递减,则:;解得,≤a≤.由图象可知,在[0,+∞)上,|f(x)|=2﹣x有且仅有一个解,故在(﹣∞,0)上,|f(x)|=2﹣x同样有且仅有一个解,当3a>2即a>时,联立|x2+(4a﹣3)x+3a|=2﹣x,则△=(4a﹣2)2﹣4(3a﹣2)=0,解得a=或1(舍去),当1≤3a≤2时,由图象可知,符合条件,综上:a的取值范围为[,]∪{},故答案为:[,]∪{}.二、选择题13.(3分)若a、b为实数,则ab(a﹣b)<0成立的一个充要条件是()A.B.C.D.【分析】先判断p⇒q与q⇒p的真假,再根据充要条件的定义给出结论;也可判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.【解答】解:ab(a﹣b)<0⇔a2b﹣ab2<0⇔a2b<ab2⇔⇔<故选:D.14.(3分)l1、l2是空间两条直线,α是平面,以下结论正确的是()A.如果l1∥α,l2∥α,则一定有l1∥l2B.如果l1⊥l2,l2⊥α,则一定有l1⊥αC.如果l1⊥l2,l2⊥α,则一定有l1∥αD.如果l1⊥α,l2∥α,则一定有l1⊥l2【分析】由空间中直线与直线、直线与平面、平面与平面的关系逐一核对四个选项得答案.【解答】解:若l1∥α,l2∥α,则有l1∥l2或l1与l2相交或l1与l2异面,故A错误;如果l1⊥l2,l2⊥α,则有l1∥α或l1⊂α,故B、C错误;如果l1⊥α,则l1垂直α内的所有直线,又l2∥α,则过l2与α相交的平面交α于a,则l2∥a,∴l1⊥l2,故D正确.故选:D.15.(3分)已知数列{a n}共有5项,满足a1>a2>a3>a4>a5≥0,且对任意i,j(1≤i≤j≤5),有a i﹣a j仍是该数列的某一项,则下列命题中,假命题的序号是()A.数列{a n}中一定存在一项为0B.存在1≤i<j≤5,使得ia i=ja jC.数列{a n}一定是等差数列D.集合A={x|x=a i+a j,1≤i<j≤5}中元素个数为15.【分析】根据题意:对任意i,j(1≤i≤j≤5),有a i﹣a j仍是该数列的某一项,因此0∈{a n},由于a4﹣a5=a4∈{a n},(a4>0),可得a3﹣a4=a4,即a3=2a4,以此类推可得:a2=3a4,a1=4a4.分析选项即可判断出结论.【解答】解:根据题意:对任意i,j(1≤i≤j≤5),有a i﹣a j仍是该数列的某一项,∴a i﹣a i=0,∴当a5=0时,则a4﹣a5=a4∈{a n},(a4>0).必有a3﹣a4=a4,即a3=2a4,而a2﹣a3=a3或a4,若a2﹣a3=a3,则a2﹣a4=3a4,而3a4≠a3,a4,a5,舍去;若a2﹣a3=a4∈{a n},此时a2=3a4,同理可得a1=4a4.可得数列{a n}为:4a4,3a4,2a4,a4,0(a4>0);据此分析选项:易得A、B、C正确;对于D、集合A={x|x=a i+a j,1≤i≤j≤5}={8a4,7a4,6a4,5a4,4a4,3a4,2a4,a4,0(a4>0)}中共有9个元素,D错误;故选:D.16.(3分)已知函数f(x)=,有下列四个结论:①对任意x∈D,f(x)+f(﹣x)=0恒成立;②存在m∈(0,1),使得方程|f(x)|=m有两个不等实根;③对任意x1,x2∈D,若x1≠x2,则一定有f(x1)=f(x2);④对任意k∈(1,+∞),函数g(x)=f(x)﹣kx有三个零点.上述结论正确的个数为()A.1B.2C.3D.4【分析】通过函数的基本性质﹣﹣奇偶性和单调性,对选项进行逐一验证即可【解答】解:∵函数f(x)=(x∈R)是奇函数,∴任意x∈R,等式f(﹣x)+f(x)=0恒成立,故①正确;令m=,|f(x)|=,可解得,x=1或x=﹣1,故②正确;当x≥0时,f(x)=,f'(x)=>0,故原函数在[0,+∞)单调递增当x<0时,f(x)=,f'(x)=>0,故原函数在(﹣∞,0)单调递增,故函数在R上单调递增,对任意x1,x2∈D,若x1≠x2,则一定有f(x1)≠f(x2);故③错误;由③中分析可得:f'(x)∈(0,1],故对任意k∈(1,+∞),函数y=f(x)的图象与y=kx只有原点一个交点,即函数g(x)=f(x)﹣kx有一个零点,故④错误.故选:B.三、解答题17.如图,在长方体ABCD﹣A1B1C1D1中,AB=8,BC=5,AA1=4,平面α截长方体得到一个矩形EFGH,且A1E=D1F=2,AH=DG=5.(1)求截面EFGH把该长方体分成的两部分体积之比;(2)求直线AF与平面α所成角的正弦值.【分析】(1)由题意,平面α把长方体分成两个高为5的直四棱柱,转化求解体积推出结果即可.(2)解法一:作AM⊥EH,垂足为M,证明HG⊥AM,推出AM⊥平面EFGH.通过计算求出AM=4.AF,设直线AF与平面α所成角为θ,求解即可.解法二:以DA、DC、DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,求出平面α一个法向量,利用直线AF与平面α所成角为θ,通过空间向量的数量积求解即可.【解答】(本题满分(14分),第1小题满分(6分),第2小题满分8分)解:(1)由题意,平面α把长方体分成两个高为5的直四棱柱,,…(2分),…(4分)所以,.…(6分)(2)解法一:作AM⊥EH,垂足为M,由题意,HG⊥平面ABB1A1,故HG⊥AM,所以AM⊥平面EFGH.…(2分)=10,)因为,,所以S△AEH因为EH=5,所以AM=4.…(4分)又,…(6分)设直线AF与平面α所成角为θ,则.…(7分)所以,直线AF与平面α所成角的正弦值为.…(8分)解法二:以DA、DC、DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(5,0,0),H(5,5,0),E(5,2,4),F(0,2,4),…(2分)故,,…(3分)设平面α一个法向量为,则即所以可取.…(5分)设直线AF与平面α所成角为θ,则.…(7分)所以,直线AF与平面α所成角的正弦值为.…(8分)18.已知数列{a n}是首项等于的等比数列,公比q∈N*,S n是它的前n项和,满足S4=5S2.(1)求数列{a n}的通项公式;(2)设b n=log a a n(a>0且a≠1),求数列{b n}的前n项和T n的最值.【分析】(1)公比q∈N*,q≠1,由S4=5S2.可得=,解得q.(2)b n=log a a n=(n﹣5)log a2,利用等差数列的求和公式可得数列{b n}的前n项和T n=log a2,对a分类讨论,利用二次函数与对数函数的单调性即可得出.【解答】解:(1)公比q∈N*,q≠1,∵S4=5S2.∴=,解得q=2.∴a n==2n﹣5.(2)b n=log a a n=(n﹣5)log a2,∴数列{b n}的前n项和T n=log a2=log a2,a>1时,(T n)min=T4=T5=﹣10log a2.0<a<1时,(T n)max=T4=T5=﹣10log a2.19.某校兴趣小组在如图所示的矩形区域ABCD内举行机器人拦截挑战赛,在E 处按方向释放机器人甲,同时在A处按某方向释放机器人乙,设机器人乙在Q处成功拦截机器人甲.若点Q在矩形区域ABCD内(包含边界),则挑战成功,否则挑战失败.已知AB=18米,E为AB中点,机器人乙的速度是机器人甲的速度的2倍,比赛中两机器人均按匀速直线运动方式行进,记与的夹角为θ.(1)若θ=60°,AD足够长,则如何设置机器人乙的释放角度才能挑战成功?(结果精确到0.1°)(2)如何设计矩形区域ABCD的宽AD的长度,才能确保无论θ的值为多少,总可以通过设置机器人乙的释放角度使机器人乙在矩形区域ABCD内成功拦截机器人甲?【分析】(1)利用正弦定理,即可求解;(2)以AB所在直线为x轴,AB中垂线为y轴,建平面直角坐标系,求出Q 的轨迹方程,即可得出结论.【解答】解:(1)△AEQ中,AQ=2EQ,∠AEQ=120°…(2分)由正弦定理,得:所以…(4分)所以所以应在矩形区域ABCD内,按照与夹角为25.7°的向量方向释放机器人乙,才能挑战成功…(6分)(2)以AB所在直线为x轴,AB中垂线为y轴,建平面直角坐标系,设Q(x,y)(y≥0)…(8分)由题意,知AQ=2EQ,所以所以(x﹣3)2+y2=36(y≥0)…(11分)即点Q的轨迹是以(3,0)为圆心,6为半径的上半圆在矩形区域ABCD内的部分所以当AD≥6米时,能确保无论θ的值为多少,总可以通过设置机器人乙的释放角度使机器人乙在矩形区域ABCD内成功拦截机器人甲…(14分)20.设椭圆M:的左顶点为A、中心为O,若椭圆M过点,且AP⊥PO.(1)求椭圆M的方程;(2)若△APQ的顶点Q也在椭圆M上,试求△APQ面积的最大值;(3)过点A作两条斜率分别为k1,k2的直线交椭圆M于D,E两点,且k1k2=1,求证:直线DE恒过一个定点.【分析】(1)利用AP⊥OP,可知k AP•k OP=﹣1,A点坐标为(﹣a,0),得a,求出b,然后求解椭圆方程.(2)求出AP的方程x﹣y+1=0,通过Q是椭圆M上的点,故可设,然后利用三角形的面积求解最大值即可.(3)直线AD方程为y=k1(x+1),代入x2+3y2=1,求出D、E坐标,得到直线DE的方程,利用直线系得到定点坐标.(法二)若DE垂直于y轴,则x E=﹣x D,y E=y D,此时与题设矛盾.若DE不垂直于y轴,可设DE的方程为x=ty+s,将其代入x2+3y2=1,利用韦达定理结合斜率关系推出DE的方程为x=ty﹣2,推出直线DE过定点(﹣2,0).【解答】解:(1)由AP⊥OP,可知k AP•k OP=﹣1,又A点坐标为(﹣a,0),故,可得a=1,…(2分)因为椭圆M过P点,故,可得,所以椭圆M的方程为.…(4分)(2)AP的方程为,即x﹣y+1=0,由于Q是椭圆M上的点,故可设,…(6分)所以…(8分)=当,即时,S取最大值.△APQ的最大值为.…(10分)故S△APQ(3)直线AD方程为y=k1(x+1),代入x2+3y2=1,可得,,又x A=﹣1,故,,…(12分)同理可得,,又k1k2=1且k1≠k2,可得且k1≠±1,所以,,,直线DE的方程为,…(14分)令y=0,可得.故直线DE过定点(﹣2,0).…(16分)(法二)若DE垂直于y轴,则x E=﹣x D,y E=y D,此时与题设矛盾.若DE不垂直于y轴,可设DE的方程为x=ty+s,将其代入x2+3y2=1,可得(t2+3)y2+2tsy+s2﹣1=0,可得,…(12分)又,可得,…(14分)故,可得s=﹣2或﹣1,又DE不过A点,即s≠﹣1,故s=﹣2.所以DE的方程为x=ty﹣2,故直线DE过定点(﹣2,0).…(16分)21.已知集合A={x|x2﹣x﹣2≤0,x∈Z},集合B={x|lg(x2+x+8)=1},集合C={x|x=ab,a∈A,b∈B}.(1)用列举法表示集合C;(2)设集合C的含n个元素所有子集为C n,记有限集合M的所有元素和为S (M),求S(C1)+S(C2)+…+S(C n)的值.(3)已知集合P,Q是集合C的两个不同子集,若P不是Q的子集,且Q不是P的子集,求所有不同的有序集合对(P,Q)的个数n(P,Q).【分析】(1)先求出集合A,B,进而可得集合C={x|x=ab,a∈A,b∈B}(2)C的每一元素a在“总和”S(M)中均出现25次,进而可得答案;(3)集合C有26个子集,不同的有序集合对(P,Q)有26(26﹣1)个.去除满足P⊊Q和Q⊊P的元素个数,可得答案.【解答】解:(1)∵集合A={x|x2﹣x﹣2≤0,x∈Z}={﹣1,0,1,2},集合B={x|lg(x2+x+8)=1}={﹣2,1},集合C={x|x=ab,a∈A,b∈B}={﹣4,﹣2,﹣1,0,1,2}.(2)n∈N*时,对C的任一元素a,因为C共有6个元素,故含有元素a的子集为25个,故C的每一元素a在“总和”S(M)中均出现25次,故S(C1)+S(C2)+…+S(C n)=(﹣4﹣2﹣1+0+1+2)•25=﹣128;(3)集合C有26个子集,不同的有序集合对(P,Q)有26(26﹣1)个.若P⊊Q,并设Q中含有k(1≤k≤n,k∈N•)个元素,则满足P⊊Q的有序集合对(P,Q)有=36﹣26个.同理,满足Q⊊P的有序集合对(P,Q)有36﹣26个.故满足条件的有序集合对(P,Q)的个数为n(P,Q)=26(26﹣1)﹣2(36﹣26)=2702.。
2018届上海市建平中学高三上学期期中考试数学试题(3)

上海市建平中学2018届高三上学期期中考试数学试题2017.11一.填空题1. 函数f (x) Tog2(x—3)的定义域是 ___________x _12. 若集合A ={x| 0},则C R A二 ________x_33. 函数f (x)二sinx的零点是_________4 J!4. 已知二是第二象限角且cos ,则sin(二-')二__________5 42 1T5. 在扇形OAB中,中心角• AOB二幺,若弧AB的长为2二,则扇形OAB的面积为36. 函数y =sin(2x ')的单调递增区间为______________47. 函数f(x) =2cos2x sin2 x -1,x • [0「]的值域为___________28. 函数f(x) =As in •‘X ( A .0,u >0 )在[0,二]上至少取到一次振幅,则频率的最小值为_________9. 已知函数f (x)满足:对任意a,b R,a中b,都有af (a) bf (b) af (b) bf (a),则不等式f(|x|) ■ f(2x 1)的解集为______________Q *10. 若关于x的不等式x -axcos二x・4一0对任意N成立,则实数a的取值范围是11. 设函数f (x)、g(x)的定义域均为R,若对任意x1,x^ R,且x1:::x2,具有f (x1^l f (x2),则称函数f (x)为R上的单调非减函数,给出以下命题:①若f(x)关于点(a,0)和直线x=b( b=a)对称,则f (x)为周期函数,且2(b - a)是f(x)的一个周期;②若f(x)是周期函数,且关于直线X二a对称,则f(x)必关于无穷多条直线对称;③若f(x)是单调非减函数,且关于无穷多个点中心对称,则f(x)的图像是一条直线;④若f(x)是单调非减函数,且关于无穷多条平行于y轴的直线对称,则f (x)是常值函数;以上命题中,所有真命题的序号是___________12. 已知a1、a2、a3、a°与d、b?、R、是8个不同的实数,若方程|x—a1||x—a2||x—a3||x—a4|=|x—b1||x—b2||x— b3「|x — b4| 有有限多个解,则此方程的解最多有_________ 个3选择题13.将函数y =sin2x 的图像向左平移 二个单位,得到函数()的图像4A. y =sin2xB. y=cos2xC. y =—sin 2xD. y = —cos2x14. 下列函数在其定义域上既是奇函数,又是增函数的是(15.下列关于充分必要条件的判断中,错误的是()A. “ x • (0,二)”是“ sinx • — - 2 ”的充分条件2sin xB. “ a b _2 ”是“ ab _1 ”的必要条件 1C. “ x 0 ”是“ X • — _ 2 ”的充要条件xD. “ a 0, b • 0 ”是“ a b 2一 ab ”的非充分非必要条件16. 汽车的“燃油效率”是指汽车每消耗 1升汽油行使的里程,下图描述了甲、乙、丙三辆 汽车在不同速度下的燃油效率情况,下列叙述中正确的是()A. 消耗1升汽油,乙车最多可行使5千米B. 以相同速度行使相同路程,三辆车中, 甲车消耗汽油最多C. 甲车以80千米/小时的速度行使1小时, 消耗10升汽油D. 某城市机动车最高限速 80千米/小时, 相同条件下,在该市用丙车比用乙车更省油三.解答题(1) 若cosB讨,求b 的值;(2) 若a =讦3,求 ABC 的面积的最大值A. y = lg(x . x -1)B.C.y =7^7 22-12D. y =2x1-2"17.在 ABC 中,角A 、B 、C 所对的边分别为 cos A 二VHHI F ,1x 118.设函数 f(x)=4 -1 ( x_0 )的反函数为 f —(x), g(x^log 4(3x 1). (1 )求 f "(x);(2)若函数h(x) =2g(x) - f 」(x)的图像与直线y =a 有公共点,求实数 a 的取值范围19.某工程队共有500人,要建造一段6000米的高速公路,工程需要把 500人分成两组, 甲组的任务是完成一段 4000米的软土地带,乙组的任务是完成剩下的 2000米的硬土地带, 据测算,软、硬土地每米的工程量是 30工(工为计量单位)和 40工.(1 )若平均分配两组的人数,分别计算两组完工的时间,并求出此时全队的筑路工期; (2 )如何分配两组的人数会使得全队的筑路工期最短?20.已知函数 f (x) = x | x 「a | bx , a,b R .(1 )若a=0,判断f (x)的奇偶性,并说明理由; (2 )若b=0,求f(x)在[1,3]上的最小值;f (x) f (x) - g(x) 21.给定函数 f(x)、g(x),定义 F(f(x),g(x)) .l g(x) f(x)<g(x)/、"口f (x)+g(x) + | f (x)—g(x) |(1)证明:F(f(x),g(x)):(2 )若 f(x) =si n2x-cosx , g(x) =si n2x cosx ,证明:F (f (x), g(x))是周期函数; (3)若 f(x)=A t Si n “X ,in 2x , A=0,- - 0 , i =1,2,证明:f (x) • g(x)是周期函数的充要条件是为有理数.(3)若 b0, 且 f(x)二a 2b 2有三个不同实根,十的取值范围.填空题三.解答题精美句子1、善思则能“从无字句处读书”。
上海市浦东新区建平中学2018届高三上学期10月月考数学试卷+Word版含答案

绝密★启用前上海市浦东新区建平中学2018届高三上学期10月月考数学试题一、填空题:本大题共12小题,每小题5分,共20分).1.(5分)已知集合A={x|x<1},B={x|x≥0},则A∩B= .2.(5分)函数f(x)=log2(x﹣1)的定义域为.3.(5分)当x>0时,函数f(x)=x+x﹣1的值域为.4.(5分)“x>1”是“x>a”的充分不必要条件,则实数a的取值范围是.5.(5分)若函数f(x)是奇函数,且x<0时,f(x)=x﹣2,则f﹣1(3)= .6.(5分)已知集合A={x|x2﹣3x+2≤0,x∈Z},B={t|at﹣1=0},若A∪B=A,则实数a的取值集合为.7.(5分)已知函数f(x)=lg(ax2﹣4x+5)在(1,2)上为减函数,则实数a的取值集合为.8.(5分)已知不等式≤1的解集为A,若1∉A,则实数a的取值范围是.9.(5分)设函数f(x)=ln(1+|x|)﹣,若f(a)>f(2a﹣1),则实数a的取值范围是.10.(5分)若集合A={x|x2+4x+a=0},集合B={t|函数f(x)=4x2﹣8x+t(4﹣t)至多有一个零点},则A∪B的元素之和的函数关系式f(a)= .11.(5分)当m>0时,方程(mx﹣1)2﹣=m在x∈[0,1]上有且只有一个实根,则实数m的取值范围是.12.(5分)已知函数f(x)=,记函数g(x)=f(x)﹣t,若存在实数t,使得函数g(x)有四个零点,则实数a的取值范围是.二、选择题13.(5分)下列函数中,与函数y=10lgx的定义域和值域相同的是()A.y=B.y=C.y=D.y=14.(5分)命题:“若x2=1,则x=1”的逆否命题为()A.若x≠1,则x≠1或x≠﹣1 B.若x=1,则x=1或x=﹣1C.若x≠1,则x≠1且x≠﹣1 D.若x=1,则x=1且x=﹣115.(5分)若函数f(x)=ax2+bx+c在区间[0,1]上的最大值是M,最小值是m,则M﹣m()A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关16.(5分)已知函数y=f(x)(x∈R),给出下列命题:①若f(x)既是奇函数又是偶函数,则f(x)=0;②若f(x)是奇函数,且f(﹣1)=f(1),则f(x)至少有三个零点;③若f(x)在R上不是单调函数,则f(x)不存在反函数;④若f(x)的最大值和最小值分别为M、m(m<M),则f(x)的值域为[m,M].则其中正确的命题个数是()A.1 B.2 C.3 D.4三、解答题17.已知U=R,P={x|>a},Q={x|x2﹣3x≤10}.(1)若a=1,求(∁U P)∩Q;(2)若P∩Q=P,求实数a的取值范围.18.已知函数f(x)=+(1)判断函数f(x)的奇偶性,并说明理由;(2)解不等式f(x)≥.19.某城市要建造一个边长为2km的正方形市民休闲OABC,将其中的区域ODC开挖成一个池塘,如图建立平面直角坐标系后,点D的坐标为(1,2),曲线OD是函数y=ax2图象的一部分,过对边OA上一点M的区域OABD内作一次函数y=kx+m(k>0)的图象,与线段DB 交于点N(点N不与点D重合),且线段MN与曲线OD有且只有一个公共点P,四边形MABN 为绿化风景区.(1)写出函数关系式m=f(k);(2)设点P的横坐标为t,将四边形MABN的面积S表示关于t的函数S=g(t),并求S的最大值.。
建平中学数学高三试卷答案

一、选择题1. 下列各数中,有理数是:()A. √2B. πC. -1/3D. 无理数答案:C解析:有理数是可以表示为两个整数之比的数,即分数形式。
C选项-1/3可以表示为-1除以3,是有理数。
2. 已知函数f(x) = 2x + 1,那么f(-1)的值是:()A. 1B. 0C. -1D. -3答案:C解析:将x=-1代入函数f(x) = 2x + 1中,得到f(-1) = 2(-1) + 1 = -2 + 1 = -1。
3. 下列不等式中,正确的是:()A. 3x > 6B. 2x ≤ 4C. 5x < 10D. 4x ≥ 8答案:B解析:将不等式两边同时除以相同的正数或负数,不等号的方向不变。
B选项2x ≤ 4,除以2得到x ≤ 2,不等式成立。
4. 已知等差数列{an}的首项a1=3,公差d=2,那么第10项an的值是:()A. 15B. 17C. 19D. 21答案:D解析:等差数列的通项公式为an = a1 + (n-1)d。
将首项a1=3,公差d=2,项数n=10代入,得到第10项an = 3 + (10-1)2 = 3 + 18 = 21。
5. 下列各式中,能表示圆的方程是:()A. x^2 + y^2 = 1B. x^2 + y^2 = 4C. x^2 - y^2 = 1D. x^2 + y^2 = 9答案:B解析:圆的标准方程为x^2 + y^2 = r^2,其中r为圆的半径。
B选项x^2 + y^2= 4表示半径为2的圆。
二、填空题6. 已知函数f(x) = x^2 - 4x + 3,那么f(2)的值是:()答案:-1解析:将x=2代入函数f(x) = x^2 - 4x + 3中,得到f(2) = 2^2 - 42 + 3 = 4 - 8 + 3 = -1。
7. 在△ABC中,∠A = 60°,∠B = 45°,那么∠C的度数是:()答案:75°解析:三角形内角和为180°,∠A + ∠B + ∠C = 180°。
上海高三高中数学期中考试带答案解析

上海高三高中数学期中考试班级:___________ 姓名:___________ 分数:___________一、填空题1.集合,,则___________.2.复数所对应的点在复平面内位于第________象限.3.已知首项为1公差为2的等差数列,其前项和为,则_____.4.若方程组无解,则实数_____.5.若的二项展开式中,含项的系数为,则实数_________.6.已知双曲线,它的渐近线方程是,则的值为_______.7.在中,三边长分别为,,,则 ___________.8.在平面直角坐标系中,已知点,对于任意不全为零的实数、,直线,若点到直线的距离为,则的取值范围是___________.9.函数,如果方程有四个不同的实数解、、、,则_______.10.三条侧棱两两垂直的正三棱锥,其俯视图如图所示,主视图的边界是底边长为2的等腰三角形,则主视图的面积等于_______.11.在直角中,,,,是内一点,且,若,则的最大值______________.12.无穷数列的前项和为,若对任意的正整数都有,则的可能取值最多有_________个.二、选择题1.已知,,都是实数,则“,,成等比数列”是“的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.、是空间两条直线,是平面,以下结论正确的是()A.如果∥,∥,则一定有∥.B.如果,,则一定有.C.如果,,则一定有∥.D.如果,∥,则一定有.3.已知函数,、、,且,,,则的值(______)A.一定等于零.B.一定大于零.C.一定小于零.D.正负都有可能.4.已知点与点在直线的两侧,给出以下结论:①;②当时,有最小值,无最大值;③;④当且时,的取值范围是.正确的个数是()A.1B.2C.3D.4三、解答题1.如图是直三棱柱,底面是等腰直角三角形,且,直三棱柱的高等于4,线段的中点为,线段的中点为,线段的中点为.(1)求异面直线、所成角的大小;(2)求三棱锥的体积.2.已知定义在上的函数是奇函数,且当时,.(1)求在区间上的解析式;(2)当实数为何值时,关于的方程在有解.3.已知数列是首项等于且公比不为1的等比数列,是它的前项和,满足.(1)求数列的通项公式;(2)设且,求数列的前项和的最值.4.已知椭圆,定义椭圆上的点的“伴随点”为.(1)求椭圆上的点的“伴随点”的轨迹方程;(2)如果椭圆上的点的“伴随点”为,对于椭圆上的任意点及它的“伴随点”,求的取值范围;(3)当,时,直线交椭圆于,两点,若点,的“伴随点”分别是,,且以为直径的圆经过坐标原点,求的面积.5.对于定义域为的函数,部分与的对应关系如下表:02(1)求;(2)数列满足,且对任意,点都在函数的图像上,求;(3)若,其中,,,,求此函数的解析式,并求 ().上海高三高中数学期中考试答案及解析一、填空题1.集合,,则___________.【答案】【解析】2.复数所对应的点在复平面内位于第________象限.【答案】四【解析】3.已知首项为1公差为2的等差数列,其前项和为,则_____.【答案】【解析】【点睛】本题主要等差数列的通项公式、等差数列的前项和公式及极限,涉及方程思想、极限思想和转化化归思想,考查逻辑思维能力、等价转化能力和运算求解能力,具有一定的综合性,属于中档题型.先利用等差数列的通项公式、等差数列的前项和化简,再利用极限公式进行求解.4.若方程组无解,则实数_____.【答案】【解析】由已知可得 .5.若的二项展开式中,含项的系数为,则实数_________.【答案】1【解析】由已知可得 .6.已知双曲线,它的渐近线方程是,则的值为_______.【答案】2【解析】由已知可得 .7.在中,三边长分别为,,,则 ___________.【答案】【解析】8.在平面直角坐标系中,已知点,对于任意不全为零的实数、,直线,若点到直线的距离为,则的取值范围是___________.【答案】【解析】【点睛】本题主要直线的方程、直线的定点问题和点到直线的距离,涉及数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力和运算求解能力,具有一定的综合性,属于中档题型.首先求出直线得到定点,再利用数学结合思想,利用两点的距离公式即可求得正解.9.函数,如果方程有四个不同的实数解、、、,则_______.【答案】4【解析】10.三条侧棱两两垂直的正三棱锥,其俯视图如图所示,主视图的边界是底边长为2的等腰三角形,则主视图的面积等于_______.【答案】【解析】11.在直角中,,,,是内一点,且,若,则的最大值______________.【答案】【解析】由已知可得 .【点睛】本题主要考查向量的数量积、向量的分解和基本不等式,涉及数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力和运算求解能力,具有一定的综合性,属于中档题型.将已知条件两边平方得.12.无穷数列的前项和为,若对任意的正整数都有,则的可能取值最多有_________个.【答案】91【解析】由已知可得最多由个.二、选择题1.已知,,都是实数,则“,,成等比数列”是“的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】由成等比数列可得;但是当时可得,而不成等比数列,故正确答案为A.2.、是空间两条直线,是平面,以下结论正确的是()A.如果∥,∥,则一定有∥.B.如果,,则一定有.C.如果,,则一定有∥.D.如果,∥,则一定有.【答案】D【解析】选项A可能,故A错;选项B可能,故B错;选项C可能,故C错,故正确答案为D.【点睛】本题考查直线与直线的位置关系、直线与平面的位置关系,涉及数形结合思想和转化化归思想,考查空间想象能力、逻辑思维能力、等价转化能力、具有一定的综合性,属于中档题型. 本题可采用排除法进行求解:选项A可能,故A错;选项B可能,故B错;选项C可能,故C错,故正确答案为D.3.已知函数,、、,且,,,则的值(______)A.一定等于零.B.一定大于零.C.一定小于零.D.正负都有可能.【答案】B【解析】由已知可得为奇函数,且在上是增函数,由,同理可得,.【点睛】本题考查函数的奇偶性和单调性,涉及函数与不等式思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性强,属于较难题型.由已知可得为奇函数,且是增函数,由,同理可得,,三式相加化简即可得正解.4.已知点与点在直线的两侧,给出以下结论:①;②当时,有最小值,无最大值;③;④当且时,的取值范围是.正确的个数是()A.1B.2C.3D.4【答案】B【解析】由已知可得,故①错;由图(1)可得无最值,故②错;由图(2)可得,故③对;由图(3)可得,或,故④对,综上正确命题个数为,故选B.图(1)图(2)图(3)【点睛】本题考查可行域、线性规划和直线的斜率等知识,涉及函数与不等式思想、分类讨论思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性强,属于较难题型.由已知可得,故①错;由图(1)可得无最值,故②错;由图(2)可得,故③对;由图(3)可得,或,故④对,综上正确命题个数为,故选B.三、解答题1.如图是直三棱柱,底面是等腰直角三角形,且,直三棱柱的高等于4,线段的中点为,线段的中点为,线段的中点为.(1)求异面直线、所成角的大小;(2)求三棱锥的体积.【答案】(1);(2)体积单位.【解析】(1)先建系,再求出的坐标,然后代入公式即可求得正解;(1)以A为坐标原点,、、分别为轴和轴建立直角坐标系.(2)利用等积法,再进一步求解.试题解析:依题意有(2,2,4),(0,0,0),(2,2,0),(0,4,2)所以.设异面直线、所成角为角,所以,所以异面直线、所成角的大小为线段的中点为,线段的中点为,由,高,得,,由为线段的中点,且,,由面,,得面,三棱锥的体积为体积单位.2.已知定义在上的函数是奇函数,且当时,.(1)求在区间上的解析式;(2)当实数为何值时,关于的方程在有解.【答案】(1) ;(2).【解析】(1)由奇函数定义得,从而求出是的表达式,进而求得定义域上的表达式;(2)先利用换元法求出是的值域为,再利用奇函数的性质可求得的值域为,从而定义域内的值域为,故的取值范围为.试题解析:(1)设,则,是奇函数,则有(2)设,令,则,而.,得,从而,在的取值范围是.又设,则,由此函数是奇函数得,,从而.综上所述,的值域为,所以的取值范围是.3.已知数列是首项等于且公比不为1的等比数列,是它的前项和,满足.(1)求数列的通项公式;(2)设且,求数列的前项和的最值.【答案】(1);(2)见解析.【解析】(1)先建立方程求得公比,再代入通项公式即可求得正解;(2)由(1)得,然后对进行分类讨论.试题解析:(1),,.整理得,解得或(舍去)..(2).1)当时,有数列是以为公差的等差数列,此数列是首项为负的递增的等差数列.由,得.所以.的没有最大值.2)当时,有,数列是以为公差的等差数列,此数列是首项为正的递减的等差数列.,得,.的没有最小值.4.已知椭圆,定义椭圆上的点的“伴随点”为.(1)求椭圆上的点的“伴随点”的轨迹方程;(2)如果椭圆上的点的“伴随点”为,对于椭圆上的任意点及它的“伴随点”,求的取值范围;(3)当,时,直线交椭圆于,两点,若点,的“伴随点”分别是,,且以为直径的圆经过坐标原点,求的面积.【答案】(1) ;(2);(3) .【解析】(1)利用相关点代入法求解;(2)先由已知求得椭圆方程为,设;(3)设, 1)当直线的斜率存在时,设方程为,由以为直径的圆经过原点,又到直线的距离;2) 当直线的斜率不存在时,设方程为的面积是定值 .试题解析:(1)解.设()由题意则,又,从而得(2)由,得.又,得.点在椭圆上,,,且,,由于,的取值范围是(3)设,则;1)当直线的斜率存在时,设方程为, 由得;有①由以为直径的圆经过坐标原点O可得: ;整理得:②将①式代入②式得: ,又点到直线的距离所以2) 当直线的斜率不存在时,设方程为联立椭圆方程得;代入得,解得,从而,综上:的面积是定值.【点睛】本题考查椭圆的方程、向量的数量积、直线与圆和三角形的面积,涉及方程思想、分类讨论思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性强,属于较难题型.第一小题利用相关点代入法求解;第二小题设;第三小题利用舍而不求法思想和分类讨论思想,紧扣进行求解.5.对于定义域为的函数,部分与的对应关系如下表:02(1)求;(2)数列满足,且对任意,点都在函数的图像上,求;(3)若,其中,,,,求此函数的解析式,并求 ().【答案】(1) ;(2) ;(3) .【解析】(1) ;(2)周期为;(3)由题意得.试题解析:(1)(2),周期为4 , 所以=.(3)由题意得由又而从而有此函数的最小正周期为6,1)当时..2)当时..【点睛】本题考查函数的解析式、复合函数、数列的通项公式和三角函数,涉及函数与方程思想、分类讨论思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性强,属于较难题型.第二小题通过计算发现数列的周期性,并利用周期性解题;第三小题通过待定系数法求得,从而,再利用周期性结合分类讨论思想进行求解.。
建平中学高三期中(2018.11)

建平中学高三期中数学试卷2018.11一. 填空题1. 设函数2(5)1()cos 1x x f x xx π⎧-≥=⎨<⎩,则((2))f f =2. 在各项为实数的等比数列{}n a 中,5280a a +=,则公比q 的值为3. 若(1,2)m =u r ,(2,1)n =-r ,(cos ,sin )p αα=u r ,3m p n p ⋅=⋅u r u r r u r,则tan α=4. 设集合2{|20}A x x x =-≥,1{|21}x B x -=≤,则()C A B =R I5. 某校邀请5位同学的父母共10人中的4位来学校介绍经验,如果这4位来自4个不同的 家庭,那么不同的的邀请方案的种数是6. 从原点向圆2212270x y y +-+=作两条切线,则该圆夹在两条切线间的劣弧的长为7. 已知数列{}n a 的前n 项和n S 满足:对于任意*,m n ∈N ,都有2n m n m S S S mn ++=+,若11a =,则2018a =8. 已知函数()f x 的定义域为R ,当0x <时,3()1f x x =-,当11x -≤≤时,()()f x f x -=-,当12x >时,11()()22f x f x +=-,则(6)f = 9. 已知()f x 是定义在R 上的偶函数,且在区间(,0]-∞上单调递增,若实数a 满足2(log |1|)(2)f a f ->-,则a 的取值范围是10. 在锐角三角形ABC 中,A 、B 、C 的对边分别为a 、b 、c ,226cos a b ab C +=,则1tan tan 1tan tan CBCA=- 11. 已知关于x 的不等式220ax x b ++>的解集为{|}x x c ≠,则227a b a c+++(0a c +≠)的取值范围是12. 若定义域均为D 的三个函数()f x 、()g x 、()h x 满足条件:对任意x D ∈,点(,())x g x 与点(,())x h x 关于点(,())x f x 对称,则称()h x 是()g x 关于()f x 的“对称函数”,已知2()1g x x =-()2f x x b =+,()h x 是()g x 关于()f x 的“对称函数”,且()()h x g x ≥恒成立,则实数b 的取值范围是二. 选择题13. 已知实数x 、y 满足x y a a <(01a <<),则下列关系式恒成立的是( )A.221111x y >++ B. 22ln(1)ln(1)x y +>+ C. sin sin x y> D. 33x y > 14. 已知点(2,0)A -、(3,0)B ,动点(,)P x y 满足2PA PB x ⋅=u u u r u u u r,则点P 的轨迹是( )A. 圆B. 椭圆C. 双曲线D. 抛物线15. 已知数列{}n a 是公比为q (1q ≠)的等比数列,则数列:①{2}n a ;②2{}na ;③21{}na ; ④1{}n n a a +;⑤1{}n n a a ++;等比数列的个数为( ) A. 2 B. 3 C. 4 D. 5 16. 设函数21()f x x =,22()2()f x x x =-,31()|sin 2|3f x x π=,99i ia =,0,1,2,,99i =⋅⋅⋅,记10219998|()()||()()||()()|k k k k k k k I f a f a f a f a f a f a =-+-+⋅⋅⋅+-,1,2,3k =,则( ) A. 123I I I << B. 213I I I << C. 132I I I << D. 321I I I <<三. 解答题17. 如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,BC ∥AD ,AB BC ⊥,45ADC ∠=︒,PA ⊥平面ABCD ,1AB AP ==,3AD =.(1)求异面直线PB 与CD 所成角的大小; (2)求点D 到平面PBC 的距离.18. 设函数()sin()sin()62f x x x ππωω=-+-,其中03ω<<,已知()06f π=.(1)求ω;(2)将函数()y f x =的图像上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到 的图像向左平移4π个单位,得到函数()y g x =的图像,求()g x 在3[,]44ππ-上的最小值.19. 某沿海城市的海边有两条相互垂直的直线型公路1l 、2l ,海岸边界MPN 近似地看成一 条曲线段,为开发旅游资源,需修建一条连接两条公路的直线型观光大道AB ,且直线AB 与曲线MPN 有且仅有一个公共点P (即直线与曲线相切),如图所示,若曲线段MPN 是函数ay x=图像的一段,点M 到1l 、2l 的距离分别为8千米和1千米,点N 到2l 的距离为 10千米,以1l 、2l 分别为x 、y 轴建立如图所示的平面直角坐标系xOy ,设点P 的横坐标为p .(1)求曲线段MPN 的函数关系式,并指出其定义域; (2)若某人从点O 沿公路至点P 观景,要使得沿折线OAP 比沿折线OBP 的路程更近,求p 的取值范围.20. 对于函数1()1f x x=-,定义1()()f x f x =,1()[()]n n f x f f x +=(*n ∈N ),已知偶函 数()g x 的定义域为(,0)(0,)-∞+∞U ,(1)0g =,当0x >且1x ≠时,2018()()g x f x =. (1)求2()f x ,3()f x ,4()f x ,2018()f x ; (2)求出函数()y g x =的解析式;(3)若存在实数a 、b (a b <),使得函数()g x 在[,]a b 上的值域为[,]mb ma ,求实数m 的取值范围.21. 对于无穷数列{}n a ,记{|,}j i T x x a a i j ==-<,若数列{}n a 满足:“存在t T ∈,使 得只要m k a a t -=(*,m k ∈N ,m k >),必有11m k a a t ++-=”,则称数列具有性质()P t .(1)若数列{}n a 满足22253n nn a n n ≤⎧=⎨-≥⎩,判断数列{}n a 是否具有性质(2)P ?是否具有性质(4)P ?说明理由;(2)求证:“T 是有限集”是“数列{}n a 具有性质(0)P ”的必要不充分条件; (3)已知{}n b 是各项均为正整数的数列,且{}n b 既具有性质(2)P ,又具有性质(5)P , 求证:存在正整数N ,使得N a ,1N a +,2N a +,⋅⋅⋅,N K a +,⋅⋅⋅是等差数列.参考答案一. 填空题1. 1-2. 2-3. 74. (0,1]5. 821,4454102C C ⋅ 6. 2π,1(23)23ππ⋅= 7. 4033-,112(1)23n n n S S S n a n -+=+-⇒=-+ 8. 2,(6)(1)(1)(2)2f f f ==--=--= 9. 35(3,)(,5)44-U ,22log |1|2a -<-<10. 4,22232()c a b =+,2222tan tan 24tan tan C C c A B a b c +==+-11. (,6][6,)-∞-+∞U ,1c a =-,1b a =,设1t a a=-,∴227(,6][6,)t t ++∈-∞-+∞U 12. [5,)+∞,转化条件,即()()g x f x ≤要恒成立,[1,1]x ∈-,∴212x x b -≤+, 参变分离,即212b x x ≥--,设cos x θ=,21sin x θ-=, ∴sin 2cos b θθ≥-恒成立,即5b ≥二. 选择题13. D 14. D 15. B 16. B三. 解答题 17.(1)3π;(2)22.18.(1)2;(2)min 3()()42g x g π=-=-.19.(1)8y x=,定义域[1,10];(2)2210p <≤. 20.(1)21()1f x x =-(0,1)x x ≠≠;3()f x x =(0,1)x x ≠≠;41()1f x x=-(0,1)x x ≠≠;201821()()1f x f x x ==-(0,1)x x ≠≠;(2)1()1||g x x =-;(3)1(,0)4-.21.(1)不具有性质(2)P ,具有性质(4)P ;(2)略;(3)公差为1,略.。
上海市建平中学2018-2019学年高三上学期第三次月考试卷数学含答案

上海市建平中学2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知向量(1,2)a =,(1,0)b =,(3,4)c =,若λ为实数,()//a b c λ+,则λ=( ) A .14 B .12C .1D .2 2. 如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A .6103515++B .610+35+14C .6103515++D .4103515++【命题意图】本题考查三视图和几何体体积等基础知识,意在考查空间想象能力和基本运算能力.3. 已知x ,y 满足时,z=x ﹣y 的最大值为( ) A .4B .﹣4C .0D .24. 四面体ABCD 中,截面 PQMN 是正方形, 则在下列结论中,下列说法错误的是( )A .AC BD ⊥B .AC BD =C.AC PQMN D .异面直线PM 与BD 所成的角为455. 设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R AB =ð( )A.{}|12x x <≤B.{}|21x x -≤<C. {}|21x x -≤≤D. {}|22x x -≤≤ 【命题意图】本题主要考查集合的概念与运算,属容易题.6. 设0<a <1,实数x ,y 满足,则y 关于x 的函数的图象形状大致是( )A .B .C .D .7. 已知数列{n a }满足nn n a 2728-+=(*∈N n ).若数列{n a }的最大项和最小项分别为M 和m ,则=+m M ( ) A .211 B .227 C . 32259 D .32435 8. 满足下列条件的函数)(x f 中,)(x f 为偶函数的是( )A.()||x f e x =B.2()x x f e e =C.2(ln )ln f x x = D.1(ln )f x x x=+【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力. 9. 集合{}1,2,3的真子集共有( )A .个B .个C .个D .个 10.已知α,[,]βππ∈-,则“||||βα>”是“βαβαcos cos ||||->-”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力. 11.为了解决低收入家庭的住房问题,某城市修建了首批108套住房,已知C B A ,,三个社区分别有低收入家 庭360户,270户,180户,现采用分层抽样的方法决定各社区所分配首批经济住房的户数,则应从C 社 区抽取低收入家庭的户数为( )A .48B .36C .24D .18【命题意图】本题考查分层抽样的概念及其应用,在抽样考查中突出在实际中的应用,属于容易题. 12.已知变量与正相关,且由观测数据算得样本平均数,,则由该观测的数据算得的线性回归方程可能是( ) ABC D二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.设全集______.14.已知关于的不等式20x ax b ++<的解集为(1,2),则关于的不等式210bx ax ++>的解集 为___________.15.某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单位:小时)间的关系为0ektP P -=(0P ,k 均为正常数).如果前5个小时消除了10%的污染物,为了 消除27.1%的污染物,则需要___________小时.【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用. 16.已知函数5()sin (0)2f x x a x π=-≤≤的三个零点成等比数列,则2log a = . 三、解答题(本大共6小题,共70分。
上海高三高中数学期中考试带答案解析

上海高三高中数学期中考试班级:___________ 姓名:___________ 分数:___________一、选择题1.把下列命题中的“=”改为“>”,结论仍然成立的是()A.如果,,那么B.如果,那么C.如果,,那么D.如果,,那么2.下列函数中,在其定义域内既是奇函数,又是增函数的函数是()A.B.C.D.3.对于函数,有下列五个命题:①若存在反函数,且与反函数图象有公共点,则公共点一定在直线上;②若在上有定义,则一定是偶函数;③若是偶函数,且有解,则解的个数一定是偶数;④若是函数的周期,则,也是函数的周期;⑤是函数为奇函数的充分不必要条件。
从中任意抽取一个,恰好是真命题的概率为()A.B.C.D.4.如图放置的边长为1的正方形PABC沿x轴滚动(向右为顺时针,向左为逆时针)。
设顶点(x,y)的轨迹方程是,则关于的最小正周期及在其两个相邻零点间的图像与x轴所围区域的面积的正确结论是()A.,B.,C.,D.,二、填空题1.方程的解是2.函数的最小正周期=3.不等式的解是_______4.若,则行列式5.若定义在上的函数是偶函数,则实数6.已知函数的周期为2,当时,,则当时,____________7.在中,已知,,,则=8.若为等比数列的前n项的和,,则=9.参数方程化为普通方程是10.函数()在区间上有反函数的一个充分不必要条件是=11.函数的递增区间是12.函数的值域是______13.设且。
若函数的图象与直线恒有公共点,则应满足的条件是14.设函数,其中(,)为已知实常数,.下列所有正确命题的序号是.①若,则对任意实数恒成立;②若,则函数为奇函数;③若,则函数为偶函数;④当时,若,则三、解答题1.已知△的周长为,且.(1)求边长的值;(2)若(结果用反三角函数值表示).2.设函数。
(1)当时,求函数的最小值;(2)当时,试判断函数的单调性,并证明。
3.已知函数,且.(1)求实数c的值;(2)解不等式4.已知是公差为的等差数列,它的前项和为, 等比数列的前项和为,,,(1)求公差的值;(2)若对任意的,都有成立,求的取值范围;(3)若,判别方程是否有解?说明理由.5.若定义在上的函数满足条件:存在实数且,使得:⑴任取,有(是常数);⑵对于内任意,当,总有。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
建平中学高三期中数学试卷
2018.11 一. 填空题
(x2
1.设函数,则f f(
cos x
2.在各项为实数的等比数列{a n} 中,a5 2 ,则公比q 的值为
3.若,,,sin ) ,,则
tan
4.设集合A 2 0},,则(C A R )
5.某校邀请 5 位同学的父母共 10 人中的 4 位来学校介绍经验,如果这 4 位来自 4 个不同的家庭,那么不同的的邀请方案的种数是
6.从原点向圆x2 2 0作两条切线,则该圆夹在两条切线间的劣弧的长
为
7.已知数列{a n} 的前n项和S n 满足:对于任意*,都有S n m
2mn ,若
a 1 ,则a2018
8.已知函数f x( ) 的定义域为R,当时, 3 1,当时,
1 1
,当时,) ,则
2 2
9. 已知f x( ) 是定义在R上的偶函数,且在区间上单调递增,若实数a满足
f (log2 ,则a的取值范围是
10.在锐角三角形ABC 中,A、B、C 的对边分别为a、b、c,a2 2
6abcosC ,
1
tanC
则tan B
1
A
2 2
2 的解集为{x x|,则()11.已知关于x的不等式
的取值范围是
12.若定义域均为D 的三个函数f x( ) 、g x( ) 、h x( ) 满足条件:对任意,点(x
(x h x, ( )) 关于点(x f x, ( )) 对称,则称h x( ) 是g x( ) 关于f x( )
的“对称函数”,已知 2 ,,h x( ) 是g x( ) 关于f
x( ) 的“对称函数”,且恒成立,则实数b的取值范围是
二. 选择题
13.已知实数x、y满足a x y (),则下列关系式恒成立的是()
1 1
2 2
3 3
A. 2 2
B.
C.
D.
14.已知点A( 、B(3,0) ,动点P x y( , ) 满足2,则点P的轨迹
是()
A.圆
B. 椭圆
C. 双曲线
D. 抛物线
a n 2 ;③{ 12 }; 15. 已知数列{a n} 是公比为q()的等比数列,则数列:①{2 };②{a n}
a n
④{a a};⑤{a n };等比数列的个数为()
A. 2
B. 3
C. 4
D. 5
2x | ,a i
2 ,f2 2 ) ,f3,
,16. 设函数f x1
3 99
记I k k (a1k (a0k (a2k ( 1k (a99k (a98) | ,k ,则()
A. I1 2 3
B. I2 1 3
C. I1 3 2
D. I3 2 1
三. 解答题
17. 如图,在四棱锥中,底面ABCD 为直角梯形,BC ∥ AD,,
,平面ABCD ,,
.
(1)求异面直线PB与CD 所成角的大小;
(2)求点D 到平面PBC 的距离.
18. 设函数) ,其中,已知f ( )
.
6 2 6
(1)求;
(2)将函数的图像上各点的横坐标伸长为原来的 2 倍(纵坐标不变),再将得到
3 的图像向左平移个单位,得到函数的图像,求g x( ) 在
]上的最小值.
4 4 4
19. 某沿海城市的海边有两条相互垂直的直线型公路l1 、l2 ,海岸边界MPN 近似地看成一
条曲线段,为开发旅游资源,需修建一条连接两条公路的直线型观光大道AB,且直线AB
与曲线MPN 有且仅有一个公共点P(即直线与曲线相切),如图所示,若曲线段MPN 是a
函数图像的一段,点M 到l1 、l2 的距离分别为 8 千米和 1 千米,点N 到l2 的距离为x
10 千米,以l1 、l2 分别为x、y轴建立如图所示的平面直角坐标系xOy ,设点P的横坐
标为p .
(1)求曲线段MPN 的函数关系式,并指出其定义域;
(2)若某人从点O 沿公路至点P观景,要使得沿折线
OAP比沿折线OBP的路程更近,求p的取值范围.
1 * ),已知偶函20. 对于函数,定义f x1,f n( )]x (
数 g x( )
的定义域为
, ,
当
且
时,
2018
( )x .
(1) 求 f 2 ( )x , f x 3( ) , f 4 ( )x , f 2018( )x ; (2) 求出函数
的解析式;
(3) 若存在实数a 、b (
),使得函数 g x( ) 在[a b, ]上的值域为[mb ma, ] ,
求实数m 的取值范围.
21. 对于无穷数列{a n } ,记j
a i i ,若数列{a n } 满足:“存在
,
使得只要a m
k
(
*,
),必有
a
”,则称数列
具有性质P t( ) .
(1)若数列{a n } 满足a n
性质P(4) ?说明理由;
,判断数列{a n } 是否具有性质P(2) ?是否具有
(2)求证:“T 是有限集”是“数列{a n } 具有性质P(0) ”的必要不充分条件;(3)已
知{b n }是各项均为正整数的数列,且{b n }既具有性质P(2) ,又具有性质P(5) ,求证:
存在正整数 N ,使得a N ,a ,a
,
,a
,是等差数列.
参考答案
一. 填空题
4 4
8 C5
1. 2. 3. 7 4. (0,1] 5. ,4
21 C10
6. 2,(2
7. ,S 1 n n
3 5
8. 2 , 9. ) ( ,5) ,log 2
4 4
2 2
2 ,
2 2c 22
2
10. 4 ,
)
tan A
tan B
2
1
1
1
11.
6]
,
,
,设
,∴
,
6
]
a a
a t
12. ,转化条件,即
要恒成立,
,∴
2
2x b ,参变分离,即
2
2x
,设
,
2
sin
,
∴
恒成立,即
二. 选择题
13. D 14. D 15. B 16. B
三. 解答题
17.(1) ;(2) .
3
2 3
18.(1) 2 ;(2) g x( )min .
4
2
8
19.(1)
,定义域[1,10];(2.
x
1 1
2
20.(1)f2 ;f x3;f4
;x
1 1 1
f2018 2 ;(2);(3)
,0) . x | x | 4
21.(1)不具有性质P(2) ,具有性质P(4) ;(2)略;(3)公差为 1,略.。