关于电能计量装置常见故障及处理分析
智能电能表计量故障分析及处理措施

智能电能表计量故障分析及处理措施智能电能表是一种基于微处理器技术和通信技术的电能计量设备,具备实时监测、数据记录、远程通信等功能。
由于其具备了自动化、智能化的特性,得到了广泛的应用。
在使用过程中,智能电能表也存在着故障的可能性,因此对于智能电能表的故障分析及处理措施具有重要的意义。
一、常见的智能电能表故障类型及其原因1. 电能表显示异常出现电能表显示异常的原因可能有很多,例如电能表的显示液晶屏幕损坏、电能表内部线路短路等。
可以通过重新连接电源、检查线路等方式进行排查。
2. 电能表读数偏差大电能表读数偏差大的原因可能是电能表内部的电路出现问题,例如电能表计量芯片损坏、电流互感器故障等。
可以通过更换计量芯片、重新校准电流互感器等方式来处理。
3. 电能表通信故障电能表通信故障可能是由于通讯模块故障、通信线路故障等原因导致的。
可以通过更换通讯模块、检查通信线路等方式来解决这一问题。
针对以上几种常见的智能电能表故障类型及其原因,我们可以采取以下的处理措施。
二、智能电能表故障的处理措施1. 定期检测电能表为了及时发现电能表的故障,可以对电能表进行定期的检测,包括对电能表的外观、显示、通信等功能进行检查,确保电能表的正常运行。
2. 加强维护保养对于智能电能表的维护保养非常重要,包括清洁电能表外壳、保持通信线路畅通、定期更换电池等,可以有效的延长电能表的使用寿命。
3. 及时处理故障一旦发现电能表出现故障,应该立即对其进行处理,例如重新连接电源、更换故障部件等,确保电能表的正常使用。
4. 强化管理和监督对于使用智能电能表的单位,应当建立健全的管理制度,加强对电能表的监督,确保其正常运行。
5. 提高技术水平针对电能表的故障处理,需要有一定的技术储备,因此可以组织相关人员参加培训,提高其技术水平,提高对电能表故障的识别和处理能力。
三、结语智能电能表在电力计量领域得到了广泛的应用,然而在使用过程中,其也存在故障的可能性。
电能计量工作中的常见故障及解决策略分析

电能计量工作中的常见故障及解决策略分析摘要:为了有效将电能计量的准确性提高,加强这项技术专业水平为用户提供具有多样性的服务,加大对这项工作故障的把控力度是电能计量工作中的关键内容。
因此以下专门针对电能计量中产生故障原因解析,然后阐述电能计量故障的控制改进原则,并对其提出有效改进对策。
关键词:电能计量;故障;改进措施1导致电能计量出现故障的原因1.1设备安装工艺导致故障问题现阶段随着电力企业的快速发展,其获得很大成就。
而电力企业在一些细节方面却存在一些问题,比如电能计量设备安装缺乏规范性。
电能计量当中,如果一些电能计量设备出现不规范的安装情况,就会导致计量工作出现故障。
1.2使用电能计量设备不够恰当从有关探究中可以得知,导致电能计量出现故障的因素非常多,发生频率最高的就是因为电能计量设备在使用过程中出现不恰当的情况。
电力企业高速发展期间,其面临着激烈竞争,所以为了更好将电能计量效率提高,由此将其资深竞争力提高,一些电力企业都会引进新型且先进的电能计量设备。
而这种先进的店里计量设备在使用期间跟传统的设备存在一定差异性,再加上电能计量人员并没有提前进行相关培训和了解,在实际使用当中常常会由于操作不恰当而导致故障问题发生,甚至严重的会导致计量数值和实际使用数值有很大差距。
2电能计量故障的控制改进原则2.1科学性原则对电能计量活动开展中所存在的故障提出有效改善对策,而且还要追究其原因,实际探索过程中需要遵循科学原则。
对于电能计量活动而言,这是一项具有科学性和严谨性的工作过程,其成果评价工作需要考虑到科学性要求,所以在探索期间需要遵循科学原则。
对故障进行科学改进的过程主要表现在改进方法和科学改进目的。
改进方法的科学性是对电能计量活动而言,而对整个计量工作质量来说,需要做到合理评价,使这项活动调查结果更真实,通过运用科学的计量方法,还能进一步推动电能计量活动的积极发展,而科学的改进目的能够更好对电能计量活动在故障方面的处理措施进行引导,使这项故障把控体系越来越完善。
电力计量装置故障异常分析

电力计量装置故障异常分析
电力计量装置是电力系统中不可或缺的重要设备之一,它主要用于对电能量进行计量及收费。
一旦电力计量装置发生故障或异常,不仅会影响电费计算,而且还会对电力系统的运行和管理造成极大的不利影响。
因此,对电力计量装置的故障异常情况进行分析和处理具有重要的意义。
电力计量装置的故障异常情况主要包括以下几种:
1. 表盘不转或转速慢:这种情况可能是由于电表的机械部件出现故障,例如电表内部的液体堵塞或运动部件磨损等。
对于发生这种情况的电表,需要及时更换。
2. 表盘转速过快:这种情况通常是由于电表内部的夹具松动或电表内部的磁场强度异常等原因导致的。
此时应当及时报修或更换。
3. 光盘显示不清:这种情况通常是由电表内部的显示元件出现故障,例如光盘不清洁或光盘损坏等原因导致的。
此时需要及时更换电表。
4. 电表漏电:这种情况通常是由于电表内部的绝缘材料老化或因为绝缘被损坏而导致的。
这种情况需要及时更换电表。
对于电力计量装置的故障异常问题,我们需要采取一些措施进行处理。
首先,需要对电表进行检查和维护,以防出现故障异常情况。
其次,对于已经出现的故障异常情况,应及时进行维修或更换。
最后,我们应加强对电力计量装置的管理,做好电表的计量准确性检验和校准,以保证电能计量的真实、准确和合法。
综上所述,电力计量装置是电力系统中重要的设备之一。
对其故障异常情况进行分析和处理能够保障电力运行的稳定和安全。
我们需要注意加强电力计量装置的管理和维护,提高电能计量的准确性和合法性,以更好地服务于社会和经济的发展。
电能计量装置的故障分析及管控措施

电能计量装置的故障分析及管控措施电能计量装置是电力系统中重要的组成部分,是用于测量电能消耗的设备。
它的正常工作对于保障电能计量的准确性和电力系统的稳定运行至关重要。
电能计量装置也会出现各种故障,给电力系统带来不良影响。
为了保障电能计量装置的正常工作,对其故障进行分析,并制定相应的管控措施显得尤为重要。
一、故障分析1. 电能计量装置故障类型(1)显示异常:电能计量装置的显示屏出现乱码、闪烁等异常情况,导致读数不准确。
(2)通讯故障:电能计量装置无法进行通讯,无法与上位监测设备进行数据交互。
(3)计量误差:电能计量装置的误差超出规定范围,无法保证准确计量消耗的电能。
(1)环境影响:电能计量装置安装环境恶劣,受到温度、湿度等环境因素影响。
(2)设备老化:长期使用导致电能计量装置内部元件老化,影响其正常工作。
(3)人为操作失误:误操作导致电能计量装置异常。
二、管控措施1. 确保环境条件对电能计量装置的安装环境进行评估,确保温度、湿度等环境条件符合要求。
定期进行环境监测,及时发现异常情况并采取相应措施。
2. 定期维护保养对电能计量装置进行定期维护保养,检查设备的外部和内部情况,及时更换老化的元件,保证设备的正常工作。
3. 加强培训管理对操作电能计量装置的人员进行培训,提高其使用设备的技能和意识,减少误操作的风险。
4. 建立监测机制建立电能计量装置的监测机制,定期对其进行检测和校准,及时发现并纠正计量误差。
5. 强化数据管理加强数据管理,建立完善的数据备份和恢复机制,确保电能计量装置数据的完整性和安全性。
通过对电能计量装置故障分析的研究和管控措施的制定,可以有效预防和降低电能计量装置的故障发生,保障电能计量的准确性,确保电力系统的稳定运行。
也可以提高电能计量装置的可靠性和稳定性,延长其使用寿命,降低维护成本,提升电力系统的整体运行效率。
电力计量装置的异常原因及监测方法6篇

电力计量装置的异常原因及监测方法6篇第1篇示例:电力计量装置是监测和记录用电量的重要设备,可以准确地反映出家庭或企业的用电情况。
有时候电力计量装置可能会出现异常情况,导致数据不准确甚至损害设备。
本文将探讨电力计量装置异常的原因以及监测方法。
1. 电力计量装置异常原因:(1)电力计量装置老化:随着使用时间的增长,电力计量装置内部的元件会逐渐老化,导致检测不准确。
(2)外部干扰:电力计量装置受到电磁干扰、温度变化等外部因素影响,也会导致数据出现异常。
(3)设备故障:电力计量装置本身存在故障或缺陷,如电路短路、电表盗电等,也会导致异常情况发生。
(4)电力质量问题:电力质量不稳定或波动较大,也会对电力计量装置造成影响,导致数据不准确。
(1)定期维护检查:定期对电力计量装置进行维护检查,及时发现和排除隐患,确保其正常运行。
(2)安装稳定电源:为电力计量装置提供稳定的电源,避免因供电问题导致装置异常。
(3)加装滤波器:安装电磁干扰滤波器等设备,减少外部干扰对电力计量装置的影响。
(4)数据监测记录:定期对电力计量装置的数据进行监测和记录,发现异常情况及时处理。
(5)计量装置校准:定期对电力计量装置进行校准,确保数据准确可靠。
电力计量装置异常会给用户带来不必要的麻烦和损失,因此我们需要加强对电力计量装置的监测和维护工作,及时发现问题并解决,确保用电数据的准确性和可靠性。
希望以上信息能够帮助大家更好地了解电力计量装置异常的原因及监测方法。
第2篇示例:电力计量装置作为电力系统中的重要组成部分,主要用于测量、记录和监测电能的消耗情况,确保电力系统能够正常运行。
在实际使用过程中,电力计量装置可能会出现异常情况,影响测量准确性,甚至导致电能计量错误。
及时发现异常原因,并采取相应的监测方法,对于保障电力系统运行具有重要意义。
一、电力计量装置异常原因1. 环境因素:电力计量装置安装在户外或者恶劣环境下,受到温度、湿度、灰尘、电磁干扰等因素的影响,可能导致电力计量装置异常。
电能计量表计常见故障判断处理

电能计量表计常见故障判断处理摘要:电能计量表计是电力系统中重要的测量设备,其正常运行对于电能计量和电费结算具有重要意义。
然而,由于各种原因,电能计量表计常常会出现各种故障,影响其准确性和可靠性。
本文通过对电能计量装置常见故障进行分析,总结了常见的故障类型和出现的原因,并提出了相应的快速处理方法。
同时,针对电能计量装置故障的预防,本文提出了一些有效的措施和建议。
通过对电能计量表计常见故障的判断和处理,可以提高电能计量的准确性和可靠性,为电力系统的正常运行提供保障。
关键词:电能计量表计,故障分析,快速处理,故障预防引言:电能计量表计作为电力系统中的重要组成部分,承担着电能计量和电费结算的重要任务。
然而,在长期运行过程中,由于各种原因,电能计量表计常常会出现各种故障,如计量误差增大、显示异常、通信中断等。
这些故障不仅会影响电能计量的准确性和可靠性,还可能导致电费结算错误和电力系统运行异常。
因此,对电能计量表计常见故障的判断和处理具有重要意义。
1.电能计量装置常见故障分析电能计量装置在电力系统中负责准确测量电能消耗并进行电费结算。
然而,由于各种原因,电能计量装置常常会遭遇各种故障,这些故障会对其准确性和可靠性造成影响。
为了更好地理解和解决这些故障,我们将对电能计量装置常见故障进行分析,并将其分为人为故障、设备自身故障和不可抗力引起的故障三个方面。
1.1人为故障人为故障通常是由于操作人员的错误操作或不当使用而引起的。
例如,操作人员在设置参数时出现误操作,导致计量误差增大。
另外,连接线路接触不良也是常见的人为故障,这可能导致数据传输中断,影响电能计量的准确性。
此外,未经授权的人员对电能计量装置进行非法操作也可能导致故障的发生,例如擅自更改设备设置或损坏设备。
因此,加强对操作人员的培训和规范,提高其操作技能和意识,可以有效减少人为故障的发生。
1.2设备自身故障设备自身故障是由于设备的老化、损坏或制造缺陷等原因引起的。
电力计量装置的异常原因及监测方法
电力计量装置的异常原因及监测方法电力计量装置是用于测量、记录和控制电能消耗的装置,是电力系统运行和管理的关键设备。
由于使用环境、设备老化、操作不当等原因,电力计量装置可能会出现异常,影响电能计量的准确性和可靠性。
本文将介绍电力计量装置异常的常见原因及监测方法。
一、异常原因1. 电流互感器短路:电流互感器是电力计量装置中的关键部件,用于测量电流大小。
如果电流互感器出现短路,会导致电能计量错误。
4. 电压互感器漏电:电压互感器出现漏电时,会导致电压测量不准确,影响电能计量的准确性。
5. 电源异常:电力计量装置的电源不稳定或异常时,会影响设备的正常运行,导致电能计量异常。
6. 通信故障:电力计量装置与上位机进行通信时出现故障,数据无法及时传输,导致电能计量的错误和延误。
二、监测方法1. 定期检测:定期对电力计量装置进行全面检测,包括电流互感器、电压互感器、电源等关键部件的检查,确保其正常工作。
2. 技术巡检:由专业人员对电力计量装置进行巡检,监测设备的运行状况,及时发现异常情况并采取措施修复。
3. 数据分析:定期对电力计量装置采集的数据进行分析,通过对数据趋势和异常情况的监测,发现电力计量装置的异常,并进行相应的处理。
4. 自动告警系统:建立自动告警系统,监测电力计量装置的运行状态,一旦出现异常情况,系统能够及时发出告警信号,以便及时处理。
5. 远程监测:利用远程监测系统,实时监测电力计量装置的运行状态,包括电压、电流等数据的实时传输和分析,发现异常情况并及时采取措施。
电力计量装置的异常原因有很多,但通过定期检测、技术巡检、数据分析、自动告警系统和远程监测等监测方法,可以有效地发现异常情况并加以处理,确保电能计量的准确性和可靠性。
电能计量装置的故障分析及管控措施
电能计量装置的故障分析及管控措施电能计量装置是电力系统中不可或缺的基础设施之一,它对电能进行测量和统计,对用户收费、计算电网负荷、运行调度等起着至关重要的作用。
然而在实际运营中,电能计量装置也会面临各种故障和问题,影响着其准确性和可靠性,给电力系统带来潜在风险。
因此,本文将就电能计量装置常见故障进行分析,并提出相应的管控措施。
一、电能计量装置常见故障1. 电压措施回路短路或开路故障:在电能计量装置中,电压措施回路常常面临短路或开路故障,这将导致电压测量失效或不准确,从而影响计量精度和质量。
这种故障一般由于设备老化、接线颤动、腐蚀等原因引起。
2. 电流互感器故障:电流互感器是测量电流的重要组成部分,一旦发生故障,将导致电流测量的失效。
电流互感器故障的原因可能是过载、短路、外部磁场干扰等。
3. 系统噪声和干扰:电能计量装置需要在一个极其复杂的电力系统环境中工作,稍有系统噪声和干扰就会导致计量精度、稳定性和抗干扰能力下降。
这种情况一般由于外部磁场、设备故障、电网负荷等原因引起。
4. 设备老化:随着电能计量装置的使用时间推移,设备将逐渐老化,出现腐蚀、损坏等状况,从而影响其精度和可靠性。
此外,也需要定期维护和检修,否则也容易发生故障。
1. 定期维护和检修:维护和检修是保持电能计量装置正常运行的基本条件。
应制定维护和检修计划,并按时执行,对设备的各个部分进行检查、清洁、调整和更换。
在出现故障时要及时处理,保证设备的可靠性和安全性。
2. 使用先进的检测手段:在电能计量装置的运行过程中,要配备相应的检测手段,包括基础设备检测、信号质量检测、实时负荷测量、环境干扰监视等工具,并对异常现象进行及时跟踪和处理,保证数据的准确性和可靠性。
3. 调整和校准:定期对电能计量装置进行调整和校准,消除由于设备老化、使用环境改变等原因引起的误差和漂移。
通过内部和外部标准源的对比校准,保证电能计量装置方向正确,保证仪器的精度和准确性。
电能计量装置的故障分析及管控措施
电能计量装置的故障分析及管控措施电能计量装置是电力系统中非常重要的一部分,它能够测量电能使用量,确保电力系统的安全和稳定运行。
电能计量装置也会出现故障,影响系统的正常运行。
对于电能计量装置的故障进行分析并采取管控措施是非常必要的。
一、故障分析1. 电能计量装置的元件故障电能计量装置包括电能表、电流互感器、电压互感器等多个元件,这些元件的故障可能导致电能计量数据异常,进而影响系统的运行。
电能表内部的测量元件损坏或老化会导致电能测量不准确,电流互感器或电压互感器损坏会导致电能计量装置不能正常工作。
这些元件的故障往往需要经过专业人员进行维修或更换。
2. 环境因素引起的故障电能计量装置通常安装在室外或者变电站等恶劣环境下,容易受到恶劣天气、腐蚀性气体等环境因素的影响。
暴雨导致电能计量装置进水,大风导致电能计量装置受到机械损伤等,这些环境因素会导致电能计量装置发生故障。
在设计和安装电能计量装置时,需要考虑环境因素,采取防护措施,减少因环境因素引起的故障。
3. 人为操作不当引起的故障电能计量装置在运行过程中需要经常进行检修、维护和更换,人为操作不当很容易引起故障。
在更换电流互感器时未按照操作规程进行操作,导致电流互感器损坏;在电能计量装置维护时未断电导致安全隐患等。
需要加强对操作人员的培训,确保他们具备操作技能,并严格按照操作规程进行操作。
二、管控措施1. 预防性维护预防性维护是降低电能计量装置故障发生率的关键。
对于电能计量装置的元件,定期检测、清洁和校准是必不可少的。
对电能表、电流互感器、电压互感器等元件进行定期检查,确保其工作正常;对电能计量装置的外部环境进行检测,及时发现问题并加以解决。
2. 环境保护措施3. 人员培训和操作规程加强对操作人员的培训,是保障电能计量装置正常运行的重要措施。
操作人员需要具备相关的电力知识和操作技能,熟悉电能计量装置的结构和工作原理,并严格按照操作规程进行操作。
建立健全的维修记录和故障处理制度,及时发现问题并加以解决。
电能计量装置的故障分析及管控措施
电能计量装置的故障分析及管控措施电能计量装置是电力系统中重要的组成部分,其负责对用户用电量进行计量,对用电行为进行监控统计,是电力供应和管理的基础。
然而,在使用电能计量装置的过程中,会出现各种故障和异常情况,严重影响计量的准确性和可靠性。
因此,对电能计量装置的故障进行分析和管控,是保障电力供应和管理稳定运行的重要措施。
一、故障分析1. 死表故障死表故障是指电能计量装置不能进行计量或计量数值长期不变的问题。
主要原因有以下几种:(1)电流路或电压路断路或接触不良,导致电量无法传输;(2)抄表错误或计量装置出现磁场干扰,导致计量值与实际数值不符;(3)计量装置内部器件老化或损坏,无法进行计量。
2. 拉闸故障(1)施工或维护人员操作不规范,误操作断路器或隔离开关;(2)计量装置与断路器或隔离开关的连接紧固度不足,容易松动或脱落。
3. 补偿故障补偿故障是指在使用电力时,系统中的无功补偿装置出现问题,导致电能计量装置无法对实际电量进行准确计量的问题。
主要原因有以下几种:(1)无功补偿装置出现故障,无法实现对电力系统的无功补偿;(2)无功补偿装置的补偿能力不足,导致电能计量装置无法正确计量。
二、管控措施为了保障电能计量装置的准确性和可靠性,需要采取一系列管控措施:1. 加强维护和保养定期进行检查和维护,及时发现和排除掉电能计量装置中的故障和隐患。
2. 提高抄表人员的操作水平建立科学的巡检和抄表制度,提高抄表人员的操作规范化程度,及时发现和纠正计量装置的异常情况。
3. 采用质量合格的计量装置在采购或更新计量装置时,要选用可靠、性能稳定、质量合格的计量装置,以确保计量装置的准确性和可靠性。
4. 加强现场管理对电力系统中涉及到计量装置的设备和设施进行现场管理和维护,严格控制施工和维护人员的作业行为,避免误操作和疏忽大意的情况发生。
5. 建立故障报告和处理制度建立故障报告和处理制度,及时发现、处理和记录电能计量装置中的故障和异常情况,为后续的管控措施提供依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于电能计量装置常见故障及处理的分析摘要:本文结合笔者多年的工作经验,主要对电能计量装置技术管理进行了探讨分析,可供大家参考。
关键词:电能计量装置; 故障;错误接线;检查方法;预防处理中图分类号:u226.8+1 文献标识码:a 文章编号:
电能计量装置是供电企业对电力用户使用电能量多少的度量衡器具,是电能贸易结算的依据。
其准确性与否不但影响到供电企业的形象和信誉,而且也直接关系到供电企业的经济效益。
本文主要从电能计量所(人)职责、技术要求、安装、计量故障差错的预防与处理等方面提出其具体的管理措施。
1、计量装置常见错误接线
1.1 单相有功电能表的错误接线
当直接接入式单相电能表装表时,误将进电能表的火线与零线接反了,零线从电能表引出后处在开断状态,而负载跨接在火线和地线之间,用电依然正常,因电能表电流线圈无电流通过而不转。
当电压小钩断开或接触不良造成开路时,此时电能表的测量功率p=(0)×icosφ=0,电能表不转。
电流互感器二次测开路时,电能表电流线圈无电流通过,电能表测量的功率p=u(0)cosφ=0,电能表不转。
同样,电流互感器二次侧短路时,因无电流通过电流线圈,电能表也会不转。
当电流互感器二次侧极性接反时,电能表测量的功率p’=-uicosφ电能表反转。
1.2 1.2三相三线两元件电能表错误接线 * }” q( e4 t3 z+
~3 ]8 u
当电压线a、b相电压对调; b、c相电压对调; a、c相电压对调时,对调后计量值p’均为零,电能表不转。
1.3 三相三元件电能表的错误接线
当有任一只电流线或ct极性接反时,接反相测量的有功功率为负值,4 v; b7 p” a4 b+ m8 电能表变慢。
当有两相电流线或ct极性接反时,接反两相的测量值为负值,& n. x4 m$ e4 v! s5 qzg电力自动化,变电检修,继电保护,远动通信,电力技术,高压试验,输电线路,变电运行,整定计算,规章规程,电力论坛,电力技术,高压实验,电网,供电局,供电公司,电业局电
能表反转。
当三相电流线或ct极性接反时,电能表反转,k=-1。
; h& f3 j3 f- t2 kzg电力自动化不仅为电力职工提供一个可以交流的网络平台而且也为电力技术的爱好者和电力大中专学生
提供一个可以展现自我的一个舞台。
这个平台与传统知识交流平台相比具有:获取信息速度快,信息量大,互动性强,成本低。
这几个特性是传统知识交流平台所不具备的。
zg电力自动化就是要利用这种互动方式为大家铺设桥梁,使各位朋友的技术共
当电流回路一相开路时,电能表仅计量两相电量; 二相开路时,仅计量一相电量; 三相开路时,电能表停转。
同样,电流回路出现一相、两相、三相短路时,电能表计量值同上。
, ~% z k; a1 a( a4 r------电力技术论坛======专注电力技术、扩大学习交流,结交
电力好友、彼此共同进步====
当低压三相四线电能表ct接线正确,而电压辅助线相序与电流不一致时,如电能表反转。
/ x- [* b. i0 pzg电力自动在电压回路存在开路故障时,有以下特征:
2 c, w+ v, u
3 t r9 awww.zgepsa.c一相电压回路开路,电能表计量两相电量; 两相电压回路开路时,电能表仅计量一相电量,电能表变慢; 三相电压回路开路时,电能表停转。
2、计量装置故障检查与判断
2.1 计量装置电压回路的接线检查
(1) 测量各二次回路的线电压:在测量uab、ubc、uca时,其值应接近相等且为110v。
测量过程中如发现三组电压不相等,且数值相差较大时,说明tv有一、二次侧断线、熔丝烧断或绕组反接等情况。
①对于采用v/v接线的tv,如线电压中有0v、50v等情况出现时,可能是一次或二次断线。
有一组电压为170v时,说明有一台tv绕组极性反接。
②对于yyn接线的tv,当测量线电压的值中有58v出现时,说明有一次断线或一台tv绕组极性反接现象。
③带有表计等负载进行测量时,出现二次断线时不论采用何种方式接线的tv,没断的两相之间电压值总为100v其它两组电压按负载阻抗分配。
(2) 检查接地点确定相别,用一只电压表一端接地,另一端依次接电能表三个电压端钮,可以判断tv的接地情况。
①电压表三次均指100v,说明tv二次侧回路没有接地,构不成回路。
②两次
为100v,一次为0,说明可能是两台单相互感器v形连接,也可能是三只单相tv或一台三相五柱tv为y形连接。
以上三种均可断定b相接地,为0的一相即为b相,根据相序可以定出a相和c相。
③三次均指100v,说明tv是y形连接且中性点接地,这种情况一时还不能定相别。
④测量三相电压的相序:它应符合接线图规定。
如测出的是逆相序,有功表虽然正转,但因有相序误差,除正弦无功表外,其它无功表都将反转,接线时要把它改为正相序。
如通过以上方法不能确定其相别的,可以通过向量图的方法来判断电能表接线的正确性。
2.2 电流回路的接线检查 (三相二元件(三相三线)电能表)
(1) 断开a相或c相电压,观察电能表是否转动。
检查时依次将接入电能表的a相或c相电压端子断开,电能表仍能转动。
①断开a相,圆盘不能转动,说明第二元件(接入电源ic相、电压uab)的电流回路可能有短路或断线等现象。
②断开c相,圆盘不能转动,说明第一元件(接入电流ia相、电压uab)的电流回路可能有短路或断线等现象。
需特别注意的是,当功率因素cosφ =0.5时,第一元件计量的功率为0。
对这种情况,可以在断开c相电压的同时,将c相电压换至a相电压的端钮上,此时第一元件所计量的功率为:pa=ucb·ia·cosφ(90°+φ),若φ =60°,电能表应有明显的反转,否则说明a相电流回路可能有短路或断线现象。
(2) 测量电流回路,确定ta有无极性反接,用标准电流表分别测量第一元件,第二元件和公用线的电流值,对a、c相ta二次侧
分别接入电能表的电流端子,如三相负载平衡,则三次测量值相等。
(3) 判断电流回路接地的正确性。
用一根两端带夹子的导线,一端接地,另一端依次与电能表的电流端钮连接。
与不接地的端钮连接时,导线与电流线圈中的电流被分流,表盘转速变慢;与接地端钮连接时,表速不发生变化,通过此法可以判断出哪个端钮接地,接地是否正确。
2.3 用功率因数判断电能计量装置故障
在电费计量中,人们往往只注重有功电量,而忽视无功电量。
在计量装置检查中,大多也从有功电量变化入手,再检查二次回路及电能表的正确性,由此判断是否存在窃电行为或计量装置的好坏。
但当用户负荷变化较大的时候,单从有功变化的角度很难做出正确的判断,所以应充分考虑无功电量。
然后通过分析功率因数变化,判断是否故障或有否窃电行为。
无功功率描述的是电路电压、电流由于相位不一致而引起的功率交换,目前无功电能表绝大多数都是正弦电路无功电能表,此类无功电能表按测量方法分主要有跨相法和移相法等。
跨相法的基本思想是一般采用有功电能表通过跨相接线,或基于跨相原理研制出专用无功电能表接法。
跨相法其计量元件的工作原理依然是有功电能计量原理,二者本质上是一致的。
跨相法按测量原件的使用和电压电流相位的不同分为:一元件跨相90°法,二元件跨相90°法,二元件跨相60°法等。
移相法主要是电子技术发展的结果,其基本原理是将电路电压移相90°(电压滞后90°),与电流相乘直接测
量出无功功率,然后累加得到无功电能。
其基本思想与传统正弦电路无功功率定义完全一致。
移相法分为模拟移相法和数字移相法。
二元件跨相60°法是功率表有两个测量原件,把三相三线制电路的任2相电流通过功率表的电流线圈,3相电压按一定方式加于功率表的电压线圈,使得接入功率表的电流电压跨相60°,测得功率值(两元件测量值的代数和)就是三相无功功率,累计即三相无功电能。
对于二元件表常见故障由两类:一类是只有第一个元件工作,二类是只有第二个元件工作。