固体电介质的电导

合集下载

高电压技术复习资料

高电压技术复习资料

⾼电压技术复习资料⾼电压技术复习资料⼀、填空题1、__________的⼤⼩可⽤来衡量原⼦捕获⼀个电⼦的难易,该能量越⼤越容易形成__________ 。

(电⼦亲合能、负离⼦)2、⾃持放电的形式随⽓压与外回路阻抗的不同⽽异。

低⽓压下称为__________ ,常压或⾼⽓压下当外回路阻抗较⼤时称为⽕花放电,外回路阻抗很⼩时称为__________ 。

(辉光放电、电弧放电)3、⾃持放电条件为__________ 。

(γ(-1)=1或γ=1)4、汤逊放电理论适⽤于__________ 、__________ 条件下。

(低⽓压、pd较⼩)5、流注的特点是电离强度__________ ,传播速度__________ 。

(很⼤、很快)6、棒—板间隙中棒为正极性时电晕起始电压⽐负极性时__________ 。

(略⾼)7、长间隙的放电⼤致可分为先导放电和__________ 两个阶段,在先导放电阶段中包括__________ 和流注的形成及发展过程。

(主放电、电⼦崩)8、在稍不均匀场中,⾼场强电极为正电极时,间隙击穿电压⽐⾼场强电极为负时__________ 。

在极不均匀场中,⾼场强电极为负时,间隙击穿电压⽐⾼场强电极为正时__________ 。

(稍⾼、⾼)9、电晕放电产⽣的空间电荷可以改善__________ 分布,以提⾼击穿电压。

(极不均匀的电场)10、电⼦碰撞电离系数代表⼀个电⼦沿电场线⽅向⾏径__________ cm时平均发⽣的碰撞电离次数。

(1)11、提⾼⽓体击穿电压的两个途径:改善电场分布,使之尽量均匀,削弱⽓体中的电离过程。

12、我国采⽤等值盐密法划分外绝缘污秽等级。

13、沿整个固体绝缘表⾯发⽣的放电称为闪络。

14、在电⽓设备上希望尽量采⽤棒—棒类对称型的电极结构,⽽避免棒—板类不对称型的电极结构。

15、对于不同极性的标准雷电波形可表⽰为±1.2/50us 。

16、我国采⽤ 250/2500us 的操作冲击电压标准电压。

材料物理性能课后习题答案解析北航出版社田莳主编

材料物理性能课后习题答案解析北航出版社田莳主编

材料物理习题集第一章 固体中电子能量结构和状态(量子力学基础)1. 一电子通过5400V 电位差的电场,(1)计算它的德布罗意波长;(2)计算它的波数;(3)计算它对Ni 晶体(111)面(面间距d =2.04×10-10m )的布拉格衍射角。

(P5)12341311921111o '(2)6.610 =(29.1105400 1.610)=1.67102K 3.7610sin sin 2182hh pmE md dλπλθλλθθ----=⨯⨯⨯⨯⨯⨯⨯=⨯==⇒=解:(1)=(2)波数=(3)22. 有两种原子,基态电子壳层是这样填充的;;s s s s s s s 2262322626102610(1)1、22p 、33p (2)1、22p 、33p 3d 、44p 4d ,请分别写出n=3的所有电子的四个量子数的可能组态。

(非书上内容)3. 如电子占据某一能级的几率是1/4,另一能级被占据的几率为3/4,分别计算两个能级的能量比费米能级高出多少k T ?(P15)1()exp[]11ln[1]()()1/4ln 3()3/4ln 3FF F F f E E E kT E E kT f E f E E E kT f E E E kT=-+⇒-=-=-=⋅=-=-⋅解:由将代入得将代入得4. 已知Cu 的密度为8.5×103kg/m 3,计算其E 0F 。

(P16) 2203234262333118(3/8)2(6.6310)8.510 =(3 6.0210/8)291063.5=1.0910 6.83Fh E n m J eVππ---=⨯⨯⨯⨯⨯⨯⨯⨯=解:由5. 计算Na 在0K 时自由电子的平均动能。

(Na 的摩尔质量M=22.99,.0ρ⨯33=11310kg/m )(P16)22323426233311900(3/8)2(6.6310) 1.01310 =(3 6.0210/8)291022.99=5.2110 3.253 1.085F F h E n mJ eVE E eVππ---=⨯⨯⨯⨯⨯⨯⨯⨯===解:由由 6. 若自由电子矢量K 满足以为晶格周期性边界条件x x L ψψ+()=()和定态薛定谔方程。

电介质物理基础--孙目珍版-最完整的课后习

电介质物理基础--孙目珍版-最完整的课后习

第一章 电介质的极化1.什么是电介质的极化?表征介质极化的宏观参数是什么? 若两平行板之间充满均匀的电介质,在外电场作用下,电介质的内部将感应出偶极矩,在与外电场垂直的电介质表面上出现与极板上电荷反号的极化电荷,即束缚电荷σˊ。

这种在外电场作用下,电介质内部沿电场方向产生感应偶极矩,在电介质表面出现极化电荷的现象称为电介质极化。

为了计及电介质极化对电容器容量变化的影响,我们定义电容器充以电介质时的电容量C 与真空时的电容量C0的比值为该电介质的介电系数,即0rC C=ε,它是一个大于1、无量纲的常数,是综合反映电介质极化行为的宏观物理量。

2.什么叫退极化电场?如何用一个极化强度P 表示一个相对介电常数为r ε的平行板介质电容器的退极化电场、平均宏观电场、电容器极板上充电电荷产生的电场。

电介质极化以后,电介质表面的极化电荷将削弱极板上的自由电荷所形成的电场,所以,由极化电荷产生的场强被称为退极化电场。

退极化电场:00εεσPE d -='-= 平行宏观电场:)1(0-=r PE εε充电电荷产生的电场:)1()1(0000000-=+-=+===+=r r r d PP P P E D E E E εεεεεεεεεεσ 3.氧离子的半径为m 101032.1-⨯,计算氧原子的电子位移极化率 按式304r πεα=代入相应的数据进行计算。

240310121056.2)1032.1()1085.8(14.34m F •⨯≈⨯⨯⨯⨯⨯=---α4.在标准状态下,氖的电子位移极化率为2101043.0m F •⨯-。

试求出氖的相对介电常数。

单位体积粒子数253231073.24.221010023.6⨯=⨯⨯=N e r N αεε=-)1(0 12402501085.81043.01073.211--⨯⨯⨯⨯+=+=∴εαεer N5.试写出洛伦兹有效电场的表达式。

适合洛伦兹有效电场时,电介质的介电系数r ε和极化率α有什么关系?其介电系数的温度系数的关系式又如何表示。

(完整)高电压技术复习题(2)

(完整)高电压技术复习题(2)

1、电子极化具有以下四种类型:电子位移极化;离子位移极化;转向极化;空间电荷极化。

2、电子位移极化电场中的所有电介质内都从在电子位移极化,它是弹性的并不引起能量损耗,完成极化的时间极短,该时间已于可见光相近;单元粒子的电子极化电矩与温度有关,温度的变化只是通过介质密度的变化(即介质单位体积中粒子数的变化)才使介质的电子位移极化率发生变化。

3、离子位移极化在大多数情况下,离子位移极化有微量的能量损耗。

电介质的离子位移极化率随温度的升高而略有增大。

这是由于温度升高时电介质的体积膨胀,离子间的距离增大,离子间相互作用的弹性力减弱的结果。

4、转向极化外电场愈强,极性分子的转向定向就愈充分,转向极化就愈强烈。

转向极化的建立需较长的时间。

并伴有能量损耗。

5、空间电荷极化以上三种极化都是带电质点的弹性位移或转向形成的空间电荷极化的机理与上述不同,它是由带电质点(电子或正、负离子)的移动而形成的;在电场作用下,带电质点在电介质中移动时可能被晶格缺陷捕获或在两层介质的界面上堆积,造成电荷在电介质中新的分布从而产生电矩。

这种极化称为空间电荷极化。

5、气体介质的相对介电常数由于气体物质分子间的距离相对很大,即气体的密度很小,气体的极化率也就很小,故一切气体的相对介电常数都接近于1。

任何气体的相对介电常数均随温度的升高而减小,随压力的增大而增大,但其影响过程都很小。

6、中性液体介质中性液体介质的相对介电常数不大,其值在1.8~2.8范围内;7、极性液体介质低温时分子间的黏附力强,转向较难,转向极化对介电常数的贡献较小,随着温度的升高,分子间的黏附力减弱,转向极化对介电常数的贡献就较大,介电常数随之增大;另一方面,温度升高时,分子的热运动加强,对极性分子定向排列的干扰也随之增强,阻碍转向极化的完成,所以当温度进一步升高时介电常数反而趋向减小。

当频率相当低时,极性分子来得及跟随电场交变转向,介电常数较大,并且接近于直流电压下测得的介电常数,当频率超过某一临界值时,极性分子的转向就跟不上电场的变化,介电常数就开始减小,随着频率的增高介电常数最终接近于自由电子位移极化所引起的介电常数值。

固体电化学

固体电化学

固体电化学任何一个电化学装置都是由电介质和两个电极相互连接组成的。

或用于传感器,或用于化学电源。

为提高其性能就要对这三部分及他们之间的相互作用进行研究。

这不仅应对固体电解质本身的电学性质(电导率、离子电导率及与环境的关系、使用条件)进行研究;并且还要研究电介质与电极间的相互作用。

本章将介绍电化学的有关基本知识。

第一节固体电解质的电导和极化一电导和极化固体电解质中存在离子的大量空位,在电场作用下,离子可以迁移,离子在迁移过程中受到的阻力是电阻,我们常用电阻(欧姆)的倒数电导(1/欧姆)来表示离子导体样品的导电能力。

⒈、离子迁移率和离子电导率离子的移动速度为V(cm/s ), 与电场强度E(V/cm )成正比.(E= dφ/dx; 电压梯度V/cm)V= U E其中U是离子的迁移率:单位电场强度作用下载流子的迁移速度。

单位:(cm2/Vs)。

载流子产生的电流密度I 与导电粒子浓度C、粒子带电量(q = Z e)及粒子的迁移速度U 成正比:I = C q V具有多种电荷载体的固体电解质在电场中产生的总电流密度I等于各种载流子产生的分电流密度之和: I =∑I =I i +I e +I hI = ∑C k q k V k = ∑C k q k U k E k固体电解质中载流子的电导率 σ :单位长度单位截面电介质的电阻的倒数,或:当长度为1厘米的1立方厘米物体两端加1伏电压时,通过的电流安培数:因为: I =∑σk E kσ = ∑ σk = ∑ C k q k U k如果是混合导体,σi 为离子电导率,σe 为电子电导率;σ 为固体电解质的总电导率。

3、离子迁移数和电子迁移数固体电解质中离子及电子迁移数是导电离子及电子的电导率在固体电解质总电导率中所占的比例。

可用下式表示:t i i i=∑σσ σσe e t = t I = 1 - t e对于少量缺陷的固体电解质材料(电导率比较低),根据热力学理想溶液特性,其电导率与温度的关系为:⎪⎪⎭⎫ ⎝⎛-=kT E o o T exp σσ 固体电解质的电导率均随温度的升高而增大。

材料物理性能课后习题解答_北航

材料物理性能课后习题解答_北航

材料物理习题集第一章 固体中电子能量结构和状态(量子力学基础)1. 一电子通过5400V 电位差的电场,(1)计算它的德布罗意波长;(2)计算它的波数;(3)计算它对Ni 晶体(111)面(面间距d =2.04×10-10m )的布拉格衍射角。

(P5)12341311921111o '(2)6.610 =(29.1105400 1.610)=1.67102K 3.7610sin sin 2182hh pmE m d dλπλθλλθθ----=⨯⨯⨯⨯⨯⨯⨯=⨯==⇒=解:(1)=(2)波数=(3)22. 有两种原子,基态电子壳层是这样填充的;;s s s s s s s 2262322626102610(1)1、22p 、33p (2)1、22p 、33p 3d 、44p 4d ,请分别写出n=3的所有电子的四个量子数的可能组态。

(非书上内容)3. 如电子占据某一能级的几率是1/4,另一能级被占据的几率为3/4,分别计算两个能级的能量比费米能级高出多少k T ?(P15)1()exp[]11ln[1]()()1/4ln 3()3/4ln 3FF F F f E E E kT E E kT f E f E E E kT f E E E kT=-+⇒-=-=-=⋅=-=-⋅解:由将代入得将代入得4. 已知Cu 的密度为8.5×103kg/m 3,计算其E 0F 。

(P16)2203234262333118(3/8)2(6.6310)8.510 =(3 6.0210/8)291063.5=1.0910 6.83Fh E n m J eVππ---=⨯⨯⨯⨯⨯⨯⨯⨯=解:由5. 计算Na 在0K 时自由电子的平均动能。

(Na 的摩尔质量M=22.99,.0ρ⨯33=11310kg/m )(P16)220323426233311900(3/8)2(6.6310) 1.01310 =(3 6.0210/8)291022.99=5.2110 3.253 1.085FF h E n mJ eVE E eVππ---=⨯⨯⨯⨯⨯⨯⨯⨯===解:由由 6. 若自由电子矢量K 满足以为晶格周期性边界条件x x L ψψ+()=()和定态薛定谔方程。

材料物理性能课后习题答案_北航出版社_主编

材料物理性能课后习题答案_北航出版社_主编

材料物理习题集第一章 固体中电子能量结构和状态(量子力学基础)1. 一电子通过5400V 电位差的电场,(1)计算它的xxxx 波长;(2)计算它的波数;(3)计算它对Ni 晶体(111)面(面间距d=2.04×10-10m )的布拉格衍射角。

(P5)12341311921111o '(2)6.610 =(29.1105400 1.610) =1.67102K 3.7610sin sin 2182h h p mE m d d λπλθλλθθ----=⨯⨯⨯⨯⨯⨯⨯=⨯==⇒=解:(1)=(2)波数=(3)2 2. 有两种原子,基态电子壳层是这样填充的,请分别写出n=3的所有电子的四个量子数的可能组态。

(非书上内容)3. 如电子占据某一能级的几率是1/4,另一能级被占据的几率为3/4,分别计算两个能级的能量比费米能级高出多少kT ?(P15)4. 已知Cu 的密度为8.5×103kg/m3,计算其(P16)5. 计算Na 在0K 时自由电子的平均动能。

(Na 的摩尔质量M=22.99,)(P16)6. 若自由电子矢量K 满足以为晶格周期性边界条件和定态xx 方程。

试证明下式成立:eiKL=17.d h r K K cos r /2θϕ=*hkl *hkl 已知晶面间距为,晶面指数为( k l )的平行晶面的倒易矢量为,一电子波与该晶面系成角入射,试证明产生布拉格反射的临界波矢量的轨迹满足方程。

8. 试用布拉格反射定律说明晶体电子能谱中禁带产生的原因。

(P20)9. 试用晶体能带理论说明元素的导体、半导体、绝缘体的导电性质。

答: (画出典型的能带结构图,然后分别说明)10. 过渡族金属物理性质的特殊性与电子能带结构有何联系?(P28)答:过渡族金属的d 带不满,且能级低而密,可xx 较多的电子,夺取较高的s 带中的电子,降低费米能级。

补充习题1. 为什么镜子颠倒了左右而没有颠倒上下?2.只考虑xx 力学,试计算在不损害人体安全的情况下,加速到光速需要多少时间? 3. 已知下列条件,试计算空间两个电子的电斥力和万有引力的比值4. 画出原子间引力、斥力、能量随原子间距变化的关系图。

高电压提纲附答案 (2)

高电压提纲附答案 (2)

高电压复习纲要学习情境一1、云母绝缘材料由哪几部分组成?云母制品的种类及用途答:组成:介电材料,补强材料,粘结剂种类:云母带:具有良好的电气和力学性能,在室温下具有柔软性,可以连续包绕电机线圈,经浸渍或模压成型为电机线圈主绝缘云母板:柔软云母板在常态时具有柔软性,任意弯曲而不破裂;塑型云母板在常温下是硬质板状材料,加热时变软,继续加热加压可以塑制成不同形状的绝缘构件云母箔:一般在电机、电器中用作卷烘式绝缘以及转子铜排绝缘2、钢化玻璃的用途答:用途:钢化玻璃绝缘子、制真空器件、发光器件显示外壳、绝缘。

3、常见的合成树脂材料有哪些?热塑性树脂与热固性树脂的区别?答:种类:交联聚乙烯,酚醛树脂,环氧树脂,聚乙烯,聚氯乙烯区别:热塑性树脂是加热成型后冷却硬固,再加热又软化,可以多次反复成型。

具有可溶性的树脂热固性树脂在热压成型后成为不溶熔的固化物,再加热也不软化,也就是只能塑制一次4、六氟化硫气体的性质答:物理性质:常态下,纯净的SF6气体为无色无味,无毒,不燃的惰性气体,容易液化化学性质:非常稳定,在空气中不燃烧,不助燃。

在150摄氏度下不与水、酸、碱、卤素及绝缘材料作用,在500摄氏度以下不分解,但温度超过600摄氏度时,SF6气体将产生部分热分解5、变压器的主绝缘和纵绝缘答:主绝缘:是绕组与接地部分之间以及绕组之间的绝缘纵绝缘:是指同一绕组的匝间、层间以及与静电屏之间的绝缘6、何为游离?按照能量来源的不同,游离分为哪几种形式?气体中带点质点的消失形式有哪几种?答:游离定义:中性原子从外界获得足够的能量,使原子中的一个或几个电子完全脱离原子核的束缚而成为自由电子和正离子(即带点质点)的过程游离形式:按照能量来源不同,可分为:碰撞游离,光游离,热游离,表面游离消失形式;带电质点受电场力的作用流入电极;带电质点的扩散;带电质点的复合7、汤逊理论的要点是什么?适用条件是什么?答:要点:均匀电场中,气体间隙的击穿主要由电子的碰撞游离和正离子撞击阴极表面造成的表面游离所引起的适用条件:在均匀电厂,低气压,短间隙的条件8、巴申定律的主要内容是什么?答:击穿电压Ub是气压P和间隙距离d乘积的函数:Ub=f(Pd)9、流注理论的要点是什么?适用条件是什么?答:要点:电子的碰撞游离和空间光游离是形成自持放电的主要因素,空间电荷对电场的畸变作用是产生光游离的重要原因适用条件:不均匀电场,高气压,长间隙的条件10、何为电晕放电?它有何危害?限制电晕的方法有哪些?答:定义:当电场极不均匀时,随间隙上所加电压的升高,在曲率半径小的电极附近,电场强度将先达到引起游离过程的数值,间隙在这一局部区域形成自持放电在高场强区,会出现蓝紫色的晕光,并发出“咝咝”的响声危害:产生能量损耗;产生高频电磁波,干扰信号;产生臭氧,氮氧化物,有腐蚀作用方法:改进电极形状,增大电极的曲率半径;对输电线路采用分裂导线11、何为极性效应?正棒——负棒和负棒——正棒间隙击穿电压和起晕电压之间的关系答:定义:对于电极形状不对称的不均匀电场间隙,如棒-板间隙,棒的极性不同,间隙的起晕电压和击穿电压不同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. 电介质中的电子跳跃电导
常用的绝缘高分子介质材料多由非晶体或非
晶体与晶体相共存所构成。
图3-5 不规则结晶系的能带结构和电子跃迁模型 (a)电子电位图 (b)能带图 (c)无电场时势图 (d)有电场时势能图
由原子周期性排列所形成能带仅能在各个局部区 域中存在,在不规则的原子分布区能带间断,在具有 非晶态结构的区域电子不能像在晶体导带中那样自由 运动,电子从一个小晶区的导带迁移到相邻小晶区的 导带要克服一势垒(见图3-5)。
固体电介质的电导按导电载流子种类可分为离 子电导和电子电导两种,前者以离子为载流子,而 后者以自由电子为载流子。在弱电场中,主要是离 子电导
3.2.1 固体电介质的离子电导 3.2.2 固体电介质的电子电导 3.2.3 固体电介质的表面电导
返回
3.2.1 固体电介质的离子电导
固体电介质按其结构可分为晶体和非晶体两 大类。对于晶体,特别是离子晶体的离子电导机
1 Rs Gs
(3-25)
s
1ห้องสมุดไป่ตู้
s
(3-26)
1. 电介质表面吸附的水膜对表面电导率的影响
介质的表面电导受环境湿度的影响极大。任何 介质处于干燥的情况下,介质的表面电导率 s 很小, s 但一些介质处于潮湿环境中受潮以后,往往 有明 s 显的上升(或 下降)(见图3-10)。可以假定, 由于湿空气中的水分子被吸附于介质的表面,形成 一层很薄的水膜。因为水本身为半导体 ( 105 m),所以介质表面的水膜将引起较大 的表面电流,使 s增加。
式中,n——空间电荷的体积浓度; De——电子的扩散系数。
返回
3.2.3 固体电介质的表面电导
通过固体介质的表面还有一种表面电导电流Is。 此电流与固体介质上所加电压U成正比,即
I s GsU
(3-22)
式中,Gs——固体介质的表面电导,单位为S。
如固体介质表面上加以两平行的平板电极,板 间距离为d,电极长度为l(图3-9),则Gs与l成正比, 与d成反比,可以写成
图3-5 不规则结晶系的能带结构和电子跃迁模型 (a)电子电位图 (b)能带图 (c)无电场时势图 (d)有电场时势能图
此时电子的迁移可通过热电子跃迁或隧道效 应通过势垒。在电场强度不十分强( V/m) 的情况下,隧道效应不明显,主要是局部能带的 导带上电子在热振动的作用下,跃过势垒相邻的 E 10 微晶带跃迁而形成电子跳跃电导。
l Gs s d
(3-23)
图3-9 表面电导计算图
s —介质的表 面电导率,它与介 质电导具有相同的 单位,亦为S。
此时亦可写成表面电流密度形式
Is U js s sE l l
式中,js——表面电流密度,单位为A/m。
(3-24)
表面电导亦可用表面电阻Rs和表面电阻率 s 来表示,它们与 Gs , s 有以下关系,即
90
图3-11 水滴在两类介质上的分布状态 (a)亲水介质 90 (b)疏水介质 90
一般非极性介质为非极性分子所组成,它们 对水的吸引力小于水分子的内聚力,所以吸附在 这类介质表面的水往往成为孤立的水滴,其接触 角 90,不能形成连续的水膜(图3-11b),所 以 s很小,且大气湿度的影响较小。
图3-11 水滴在两类介质上的分布状态 (a)亲水介质 90 (b)疏水介质 90
3. 电介质表面清洁度对表面电导率的影响
介质表面电导率 s 除受介质结构、环境湿度的 强烈影响外,介质表面的清洁度亦对 表面沾污特别是含有电解质的沾污,将会引起介质
s
影响很大。
表面导电水膜的电阻率下降,从而使 s 升高。
固体电介质在强电场下,主要是电子电导,这 在禁带宽度较小的介质和薄层介质中更为明显。
电介质中导电电子的来源包括来自电极和介质 体内的热电子发射,场致冷发射及碰撞电离,而其 导电机制则有自由电子气模型、能带模型和电子跳 跃模型等。
1. 晶体电介质的电子电导
根据晶体结构的能带模型,离子晶体和分子晶 体中的电子多处于价带之中,只有极少量的电子由 于热激发作用跃迁到导带,成为参与导电的载流子, 并在价带中出现空穴载流子。导带上的电子数和价 带上的空穴数主要取决于温度和晶体的禁带宽度 ug 及费米能级 。 uE 一般取下式来估计具有不同禁带宽度 u g的晶 体材料在不同温度下的电子和空穴本征浓度。
要使介质表面电导低,应该采用疏水介质,并 使介质表面保持干净。
小 结
固体电介质的电导分为三类: •离子电导 •电子电导 •表面电导 离子电导和电子电导是一种体积电流,而表 面电导是一种面电流 (本节完)
返回
这种现象通常形象化地称为隧道效应。
如图3-8a)所示,电子的波函数在II区间发生了 衰减,但是通过势垒后进入III区间内的粒子能量等 于原来的能量。
图3-8 隧道效应 (a)电子波函数的变化 (b)肖特基效应产生的势垒变化
如果在金属和介质的界面上加上强电场,如图 3-8b)所示,由于肖特基效应使势垒高度降到 , 同时从费米能级到相同势能的导带的宽度(x0)变 小,于是产生隧道现象。
其中m ——电子质量; D ——金属的功函数; u xo——沿x轴方向逸出金属的电子在x方向所应具 有的最低能量。
当外施电场E时,电场将使电子逸出金属的势垒 降低,电子容易发射,这一现象就是如图3-6所示的 肖特基(Schottky)效应。
图3-6 肖特基效应势垒图
当电子从金属电极发射时,如图3-6右下角附 图所示的金属表面感应正电荷,这时,电子受到感 应正电荷的作用力F(x),可以看成是以金属为对 称面,电子与其对称位置的等量正电荷之间的静电 引力(镜像法),从而可得热电子发射电流密度与 外电场E的关系式为
子来源于杂质。通常纯净的非极性有机介质的电导
1016 ~ 1017 S/m。 率极低,如聚苯乙烯在室温下
在工程上,为了改善这类介质的力学、物理和 老化性能,往往要引入极性的增塑剂、填料、抗氧 化剂、抗电场老化稳定剂等添加物,这类添加物的 引入将造成有机材料电导率的增加。
返回
3.2.2 固体电介质的电子电导
图3-10 几种电介质表面电阻率与空气相对湿度的关系 1-石蜡;2-琥珀;3-虫胶;4-陶瓷上珐琅层
2. 电介质的分子结构对表面电导率的影响 电介质按水在介质表面分布状态的不同, 可分为:
亲水电介质 疏水电介质
亲水介质包括离子晶体、含碱金属的玻璃以及 极性分子所构成的介质等,它们对水分子有强烈的 吸引作用。由于这类介质分子具有很强的极性,对 水分子的吸引力超过了水分子之间的内聚力,因而 水滴在介质表面上形成的接触角常小于 (图311a)。 0
3.2 固体电介质的电导
任何电介质都不可能是理想的绝缘体,它们内
部总是或多或少地具有一些带电粒子(载流子),
例如可以迁移的正、负离子以及电子、空穴和带电
的分子团。在外电场的作用下,某些联系较弱的载
流子会产生定向漂移而形成传导电流(电导电流或 泄漏电流)。表征电介质导电性能的主要物理量即 为电导率 或其倒数―电阻率 。
Si O2
B2O3
玻璃结构中的金属离子一般是一价碱金属离 子(如 Na , K 等)和二价碱土金属离子(如 Ca 2+ , Ba 2 ,Pb2 等)。这些金属离子是玻璃导电载流子 的主要来源,因此玻璃的电导率与其组成成分及 含量密切相关。
3. 有机电介质中的离子电导
非极性有机介质中不存在本征离子,导电载流
图3-7 一维矩形势垒模型
粒子要由区域I越过势垒II到达区域III,所需 的能量必须大于势垒的高度(即 u u0 ),但对于
电子等微观粒子,情况就不同了。
对于具有能量 u u0 的微观粒子,粒子可以由 区域I穿过势垒II到达区域III中,并且粒子穿过势 垒后,能量并没有减少,仍然保持在区域I时的能量,
如忽略介质本身的电子电流 I b ( I c I b ) 与电介质 中陷阱中心对电子的捕获空间,注入介质中的电子 与真空管中的电子相似,此空间电荷所引起的电流 包括漂移电流和扩散电流两部分。此时空间电荷限 制电流密度可写成
dn j s neE eDe dx
(3-21)
从金属向介质(真空相同)内发射电子时,由 于两者界面处有电位势垒存在,电流受到限制。在 没有电场作用时,由热能而使电子从金属发射的热 电子电流密度,由理查森—杜什曼(RichardsonDushman)式知 (3-19) j AT 2 e / kT
D
式中
4m ek2 A h3
D u xo u F
j AT 2 exp[ ( D e 3 E / 4 0 r ) / kT ] (3-20)
因此,肖特基效应电流密度对数lnj与 E 是线性关系.
4. 场致发射电流
在强电场下,当电子能 量低于势垒高度不很大,而 势垒厚度又很薄时,电子就 可能由于量子隧道效应穿过 势垒。以宽度为 ,高度为 的势垒组成一维矩形势场的 0 u l 模型如图3-7所示(在0 x l u 时, p u0;在 x 0, x l 时, p 0)。 u
eff
图3-8 隧道效应 (a)电子波函数的变化 (b)肖特基效应产生的势垒变化
5. 空间电荷限制电流
在强电场下介质往往具有电子性电导电流,此 时电子电流是电子从电极向介质中注入形成电极注 入电流 和电介质体内的电子电流 连续而成。 在稳态情况下应有 I I
IC
C
B
IC I B
如 I c I b ,则在介质中将有电荷积聚而出现空 间电荷。如 I c I b ,在阴极前形成正的空间电荷, 它将加强阴极处的电场强度,增加阴极的注入电流, 直至Ic升高到 I c 。反之,如 Ib I c,在阴极前 Ib 形成负的空间电荷,即积聚与电极同极性电荷。它 一方面削弱阴极表面的电场,使Ic降低;同时,由 于在介质中电子空间电荷的存在,引起空间电荷限 I c ,电子电导电流达到平衡。 Ib I s 制电流Is,直到
相关文档
最新文档