第18章 Logistic回归思考与练习参考答案
《应用回归分析》课后题答案解析

《应用回归分析》部分课后习题答案第一章回归分析概述1.1 变量间统计关系和函数关系的区别是什么?答:变量间的统计关系是指变量间具有密切关联而又不能由某一个或某一些变量唯一确定另外一个变量的关系,而变量间的函数关系是指由一个变量唯一确定另外一个变量的确定关系。
1.2 回归分析与相关分析的联系与区别是什么?答:联系有回归分析和相关分析都是研究变量间关系的统计学课题。
区别有 a.在回归分析中,变量y称为因变量,处在被解释的特殊地位。
在相关分析中,变量x和变量y处于平等的地位,即研究变量y与变量x的密切程度与研究变量x与变量y的密切程度是一回事。
b.相关分析中所涉及的变量y与变量x全是随机变量。
而在回归分析中,因变量y是随机变量,自变量x可以是随机变量也可以是非随机的确定变量。
C.相关分析的研究主要是为了刻画两类变量间线性相关的密切程度。
而回归分析不仅可以揭示变量x对变量y的影响大小,还可以由回归方程进行预测和控制。
1.3 回归模型中随机误差项ε的意义是什么?答:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y与x1,x2…..xp的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。
1.4 线性回归模型的基本假设是什么?答:线性回归模型的基本假设有:1.解释变量x1.x2….xp是非随机的,观测值xi1.xi2…..xip是常数。
2.等方差及不相关的假定条件为{E(εi)=0 i=1,2…. Cov(εi,εj)={σ^23.正态分布的假定条件为相互独立。
4.样本容量的个数要多于解释变量的个数,即n>p.1.5 回归变量的设置理论根据是什么?在回归变量设置时应注意哪些问题?答:理论判断某个变量应该作为解释变量,即便是不显著的,如果理论上无法判断那么可以采用统计方法来判断,解释变量和被解释变量存在统计关系。
logistic回归模型

Logistic回归模型
• 列联表中的数据是以概率的形式把属性变量联系 起来的,而概率p的取值在0与1之间,因此,要把
概率 p (x)与 x 之间直接建立起函数关系是不合
适的。即 (x) x
Logistic回归模型
• 因此,人们通常把p的某个函数f(p)假设为变量的 函数形式,取 f ( p) ln (x) ln p
1 (x) 1 p
• 称之为logit函数,也叫逻辑斯蒂变换。 • 因此,逻辑斯蒂变换是取列联表中优势的对数。
当概率在0-1取值时,Logit可以取任意实数,避免 了线性概率模型的结构缺陷。
Logistic回归模型
假设响应变量Y是二分变量,令 p P(Y 1) ,影响Y
的因素有k个 x1, xk,则称:
多项logit模型
• 前面讨论的logit模型为二分数据的情况,有时候 响应变量有可能取三个或更多值,即多类别的属 性变量。
• 根据响应变量类型的不同,分两种情况:
–响应变量为定性名义变量; –响应变量为定性有序变量;
• 当名义响应变量有多个类别时,多项logit模型应 采取把每个类别与一个基线类别配成对,通常取 最后一类为参照,称为基线-类别logit.
• 为二分数据的逻辑斯ln 1蒂pp回归g(模x1,型,,xk简) 称逻辑斯蒂 回归模型。其中的k个因素称为逻辑斯蒂回归模型 的协变量。
• 最重要的逻辑斯蒂回归模型是logistic线性回归模 型,多元logit模型的形式为:
ln
p 1 p
0
1x1
k xk
Logistic回归模型
• 其中,0, 1, , k 是待估参数。根据上式可以得到
多项logit模型
医学统计学知到章节答案智慧树2023年湖南中医药大学

医学统计学知到章节测试答案智慧树2023年最新湖南中医药大学第一章测试1.参数是指总体的统计指标。
()参考答案:对2.概率的取值范围为[-1,1]。
()参考答案:错3.统计学中资料类型包括()参考答案:等级资料;计数资料;计量资料4.医学统计学的研究内容包括研究设计和研究分析两个方面。
()参考答案:对5.样本应该对总体具有代表性。
()参考答案:对第二章测试1.抽样单位的数目越大,抽样误差越大。
()参考答案:错2.以下不属于概率抽样的是()参考答案:雪球抽样3.整群抽样的优点()参考答案:易于理解,简单易行4.概率抽样主要包括简单随机抽样、分层抽样、系统抽样、整群抽样和便利抽样。
()参考答案:错5.进行分层抽样时要求()参考答案:各群内差异越小越好第三章测试1.在正态性检验中,P>0.05时可认为资料服从正态分布。
()参考答案:对2.在两样本均数比较的t检验中,无效假设是()参考答案:两总体均数相等3.在两样本率比较的卡方检验中,无效假设是()参考答案:两总体率相等4.配对设计资料,若满足正态性和方差齐性。
要对两样本均数的差别作比较,可选择()参考答案:配对t检验5.用最小二乘法确定直线回归方程的原则是各观测点距直线纵向距离平方和最小。
()参考答案:对第四章测试1.定量数据即计量资料()参考答案:对2.定量数据的统计描述包括集中趋势、离散趋势和频数分布特征。
()参考答案:对3.定量数据的总体均数的估计只有点估计这一种方法。
()参考答案:错4.定性数据是指计数资料。
()参考答案:错5.动态数列是以系统按照时间顺序排列起来的统计指标。
()参考答案:对第五章测试1.单个样本t检验要求样本所代表的总体服从正态分布、()参考答案:对2.配对t检验要求差值d服从正态分布。
()参考答案:对3.Wilcoxon符号秩和检验属于非参数检验。
()参考答案:对4.配对设计可以用于控制研究误差。
()参考答案:对5.配对t检验中,P<0.05时说明两处理组差异无统计学意义。
多元线性回归参考答案

多元线性回归参考答案多元线性回归是统计学中一种常用的数据分析方法,它可以用来建立多个自变量与一个因变量之间的关系模型。
在实际应用中,多元线性回归被广泛用于预测、预测和解释变量之间的关系。
本文将介绍多元线性回归的基本概念、模型建立和解释结果的方法。
多元线性回归的基本概念是建立一个线性方程,其中有多个自变量和一个因变量。
方程的形式可以表示为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y表示因变量,X1、X2、...、Xn表示自变量,β0、β1、β2、...、βn表示回归系数,ε表示误差项。
回归系数表示自变量对因变量的影响程度,而误差项则表示模型无法解释的部分。
在建立多元线性回归模型之前,需要满足一些前提条件。
首先,自变量之间应该是线性关系,即自变量与因变量之间的关系可以用一条直线来表示。
其次,误差项应该是独立同分布的,并且服从正态分布。
最后,自变量之间不应该存在多重共线性,即自变量之间不应该有高度相关性。
建立多元线性回归模型的方法有很多,其中最常用的是最小二乘法。
最小二乘法的思想是通过最小化实际观测值与模型预测值之间的残差平方和来确定回归系数的估计值。
具体而言,通过求解最小化目标函数来得到回归系数的估计值。
目标函数可以表示为:min Σ(yi - (β0 + β1xi1 + β2xi2 + ... + βnxin))^2其中,yi表示第i个观测值的因变量的值,xi1、xi2、...、xin表示第i个观测值的自变量的值,β0、β1、β2、...、βn表示回归系数的估计值。
在得到回归系数的估计值之后,我们可以进行模型的解释和预测。
模型的解释可以通过回归系数的显著性检验来进行。
显著性检验可以判断回归系数是否与因变量存在显著的关联。
常用的显著性检验方法包括t检验和F检验。
t检验用于检验单个回归系数是否显著,而F检验用于检验整个模型是否显著。
模型的预测可以通过将自变量的值代入回归方程来进行。
回归分析习题答案

回归分析习题答案回归分析习题答案回归分析作为一种常用的统计方法,被广泛应用于各个领域。
它能够帮助研究者理解变量之间的关系,并预测未来的趋势。
在回归分析的学习过程中,习题是不可或缺的一部分,通过解答习题,我们可以更好地掌握回归分析的原理和应用。
本文将回答一些常见的回归分析习题,帮助读者更好地理解回归分析的概念和方法。
1. 问题:某公司想要预测销售额与广告投入之间的关系,他们收集了过去12个月的数据,包括每个月的广告投入和销售额。
请用简单线性回归模型拟合数据,并预测下个月的销售额。
答案:简单线性回归模型可以表示为:销售额= β0 + β1 * 广告投入。
通过最小二乘法估计参数,可以得到回归方程。
使用软件或计算器进行计算,得到β0和β1的估计值。
然后,将下个月的广告投入代入回归方程,即可得到预测的销售额。
2. 问题:某研究人员想要研究学生的考试成绩与学习时间之间的关系。
他们随机选择了100名学生,记录了他们的学习时间和考试成绩。
请用多元线性回归模型拟合数据,并解释模型中的系数。
答案:多元线性回归模型可以表示为:考试成绩= β0 + β1 * 学习时间+ β2 *年级+ ε。
其中,学习时间和年级是自变量,考试成绩是因变量。
通过最小二乘法估计参数,可以得到回归方程。
系数β1表示学习时间对考试成绩的影响,系数β2表示年级对考试成绩的影响。
如果β1和β2的估计值显著不为零,说明学习时间和年级对考试成绩有显著影响。
3. 问题:某研究人员想要研究气温对冰淇淋销量的影响。
他们收集了每天的气温和冰淇淋销量数据,发现两者呈现正相关关系。
请用非线性回归模型拟合数据,并解释模型中的参数。
答案:非线性回归模型可以表示为:冰淇淋销量= β0 + β1 * 气温+ β2 * 气温^2 + ε。
其中,气温是自变量,冰淇淋销量是因变量。
通过最小二乘法估计参数,可以得到回归方程。
系数β1表示气温对冰淇淋销量的线性影响,系数β2表示气温对冰淇淋销量的非线性影响。
logistic回归模型例题

logistic回归模型例题在统计学和机器学习中,逻辑回归模型是一种常用的分类算法。
它可以用于解决二分类问题,并根据输入特征预测样本属于某个类别的概率。
本文将详细介绍逻辑回归模型,并通过一个例题来展示其应用。
逻辑回归模型的基本原理是基于线性回归模型,但在输出结果上使用了逻辑函数(或称为sigmoid函数),将线性变换的结果映射到0到1之间的概率值。
逻辑函数的数学表达式为:f(x) = 1 / (1 + exp(-x))。
其中,x为线性组合的结果。
我们以一个银行客户分类的例子来说明逻辑回归模型的应用。
假设银行根据客户的收入和年龄等特征,来判断该客户是否会购买一款新的金融产品。
客户的收入和年龄即为输入特征,购买与否即为输出结果。
首先,我们需要准备一个包含训练数据的数据集。
我们可以从银行的数据库中提取一部分客户的数据作为训练数据集。
对于每个客户,我们需要记录其收入、年龄和是否购买的信息。
这样就形成了一个包含多行数据的数据集,每行数据有两个输入特征和一个输出结果。
接下来,我们需要对数据进行预处理。
预处理的目的是将数据转化为数学模型可以处理的形式。
对于逻辑回归模型而言,通常需要对数据进行标准化处理,使得不同特征的数值范围一致。
这可以通过z-score标准化或min-max标准化等方法实现。
然后,我们需要将数据集分为训练集和测试集。
训练集用于训练逻辑回归模型的参数,而测试集用于评估模型的性能。
通常,我们将数据集按照一定比例划分,例如将数据集的80%用作训练集,20%用作测试集。
接下来,我们可以使用逻辑回归模型来进行训练。
逻辑回归模型的训练过程涉及到最大化似然函数或最小化损失函数的优化过程。
这个过程可以通过梯度下降算法来实现,逐步调整模型参数,使得模型的拟合效果越来越好。
训练完成后,我们可以通过模型预测新样本的分类结果。
对于一个新的客户,我们可以将其收入和年龄作为输入特征输入到模型中,并得到该客户购买的概率。
logisticregression用法 -回复

logisticregression用法-回复Logistic回归(logistic regression)是一种常用的统计学习方法,主要用于分类问题。
本文将以其中括号内内容为主题,对logistic回归的用法进行详细介绍,并提供一步一步的操作指南。
一、引言(150字)在机器学习领域中,分类问题是一个非常重要的研究方向。
而在分类问题中,logistic回归作为一种简单而有效的分类模型广泛应用于许多实际场景中。
本文将介绍logistic回归的基本概念、目标函数、参数估计方法以及模型评估等关键内容,并通过具体的案例演示其实用性。
二、logistic回归的基本概念(300字)1. 概念介绍:logistic回归是一种广义线性模型,通过将线性函数的输出通过一个逻辑函数(sigmoid函数)进行转换,将线性回归的结果映射到[0,1]之间的概率值,从而进行分类预测。
2. 逻辑函数(sigmoid函数):逻辑函数是logistic回归的核心部分,其形式为f(x) = 1 / (1 + e^(-x)),将任意实数映射到[0,1]之间。
三、logistic回归的目标函数(500字)1. 基本原理:logistic回归的目标是最大化似然函数,通过使真实输出与预测输出之间的差异最小化来拟合模型。
2. 似然函数:似然函数是描述观测数据在给定模型参数下出现的概率的函数。
对于logistic回归而言,似然函数使用了二项分布,即预测分类为1和分类为0的概率。
基于这一概率,可以对模型参数进行估计,从而得到最佳拟合结果。
3. 目标函数:通过对似然函数取对数,得到目标函数,即对数似然函数。
对数似然函数的最大化等价于似然函数的最大化,实质上就是最小化分类错误的概率。
四、logistic回归的参数估计(400字)1. 求解最优参数:对目标函数进行最优化求解,可以使用梯度下降法或牛顿法等迭代优化算法。
通过不断迭代,找到使目标函数最小化的最优参数值。
(完整版)多元线性回归模型习题及答案

多元线性回归模型一、单项选择题1.在由30n =的一组样本估计的、包含3个解释变量的线性回归模型中,计算得多重决定系数为0.8500,则调整后的多重决定系数为( D )A. 0.8603B. 0.8389C. 0.8655D.0.8327 2.下列样本模型中,哪一个模型通常是无效的(B ) A.iC (消费)=500+0.8iI (收入)B. di Q (商品需求)=10+0.8i I (收入)+0.9i P (价格) C. si Q (商品供给)=20+0.75i P (价格)D. iY (产出量)=0.650.6i L (劳动)0.4i K (资本)3.用一组有30个观测值的样本估计模型01122t t t ty b b x b x u =+++后,在0.05的显著性水平上对1b 的显著性作t 检验,则1b 显著地不等于零的条件是其统计量t 大于等于( C )A.)30(05.0t B.)28(025.0t C.)27(025.0t D.)28,1(025.0F4.模型tt t u x b b y ++=ln ln ln 10中,1b 的实际含义是( B )A.x 关于y 的弹性B. y 关于x 的弹性C. x 关于y 的边际倾向D. y 关于x 的边际倾向5、在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近于1,则表明模型中存在( C )A.异方差性B.序列相关C.多重共线性D.高拟合优度6.线性回归模型01122......t t t k kt t y b b x b x b x u =+++++ 中,检验0:0(0,1,2,...)t H b i k ==时,所用的统计量服从( C )A.t(n-k+1)B.t(n-k-2)C.t(n-k-1)D.t(n-k+2)7. 调整的判定系数 与多重判定系数之间有如下关系( D )A.2211n R R n k -=-- B. 22111n R R n k -=---C. 2211(1)1n R R n k -=-+-- D. 2211(1)1n R R n k -=----8.关于经济计量模型进行预测出现误差的原因,正确的说法是( C )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第18章 Logistic 回归 思考与练习参考答案
一、最佳选择题
1. Logistic 回归与多重线性回归比较,( A )。
A .logistic 回归的因变量为二分类变量 B .多重线性回归的因变量为二分类变量
C .logistic 回归和多重线性回归的因变量都可为二分类变量
D .logistic 回归的自变量必须是二分类变量
E .多重线性回归的自变量必须是二分类变量 2. Logistic 回归适用于因变量为( E )。
A .二分类变量
B .多分类有序变量
C .多分类无序变量
D .连续型定量变量
E .A 、B 、C 均可 3. Logistic 回归系数与优势比OR 的关系为( E )。
A .>β0等价于OR >1
B .>β0等价于OR <1
C .β=0等价于OR =1
D .β<0等价于OR <1
E .A 、C 、D 均正确 4. Logistic 回归可用于( E )。
A.影响因素分析 B .校正混杂因素 C .预测 D .仅有A 和C E .A 、B 、C 均可
5. Logistic 回归中自变量如为多分类变量,宜将其按哑变量处理,与其他变量进行变量筛选时可用( D )。
A .软件自动筛选的前进法
B .软件自动筛选的后退法
C .软件自动筛选的逐步法
D .应将几个哑变量作为一个因素,整体进出回归方程
E .A 、B 、C 均可
二、思考题
1. 为研究低龄青少年吸烟的外在因素,研究者采用整群抽样,在某中心城区和远城区的初中学校,各选择初一年级一个班的全部学生进行调查,并用logistic 回归方程筛选影响因素。
试问上述问题采用logistic 回归是否妥当?
答:上述问题采用logistic回归不妥当,因为logistic回归中参数的极大似然估计要求样本结局事件相互独立,而研究的问题中低龄青少年吸烟行为不独立。
2. 分类变量赋值不同对logistic回归有何影响? 分析结果一致吗?
答:(1)若因变量交换赋值,两个logistic回归方程的参数估计绝对值相等,符号相反;优势比互为倒数,含义有所区别,实质意义一样;模型拟合检验与回归系数的假设检验结果相同。
(2)若改变自变量参照类或哑变量设置方法,logistic回归方程形式、参数含义虽有不同,但是模型实质与应用结果相同,可以根据研究需要选择不同赋值方法。
Logistic回归结果报告中,一定要说明分类变量赋值方法及其参照,否则无法理解模型意义。
3. 例18-6研究性别对吸烟行为的影响,采用logistic回归校正了年龄对居民吸烟行为的影响,请考虑有无其他混杂因素需要校正?
答:例18-6的主要目的是研究吸烟行为与性别的联系及其强度,例题采用logistic回归只校正了年龄对居民吸烟行为的影响。
事实上,除年龄外,仍有其他因素会影响吸烟行为与性别的联系强度,如家庭人均年收入、受教育程度、主动获取保健知识等。
建立回归模型时,首先应根据专业知识确定可能的影响因素,再采用logistic回归,将性别作为强制引入变量,对其他可能的影响因素进行变量筛选,最后将性别与筛选出的因素作为自变量建立logistic回归方程,从而正确回答校正混杂因素后吸烟行为与性别的联系及其强度。
4. 配对病例-对照研究资料若采用非条件logistic回归进行分析,对结果有何影响?
答:采用配对(匹配)方法的目的是对可能的混杂因素加以控制,有助于提高研究效率和可靠性。
配对设计的特点是对子内部控制的混杂变量一致,有较好的可比性。
配对(匹配)资料若采用非条件logistic回归进行分析,则忽视了这种可比性,降低了分析方法的检验效能。
三、计算题
探讨肾细胞癌转移有关的因素研究中,收集了26例行根治性肾切除术患者的肾癌标本资料(教材表18-19),有关变量说明如下,试进行logistic回归分析。
X:确诊时患者的年龄(岁)。
1
X:肾细胞癌血管内皮生长因子,其阳性表达由低到高共3个等级,分别赋值1、2、3。
2
X:肾细胞癌组织内微血管数。
3
X:肾细胞癌细胞核组织学分级,由低到高共4级,分别赋值1、2、3、4。
4
5X :肾细胞癌分期,由低到高共4期,分别赋值1、2、3、4。
Y :肾细胞癌转移情况,有转移=1,无转移=0。
教材表18-19 26例行根治性肾切除术患者的肾癌标本资料
数据摘自 倪宗瓒. 卫生统计学 4版,人民卫生出版社,2004。
解:
Logistic 回归分析结果显示:肾细胞癌转移与肾细胞癌血管内皮生长因子和肾细胞癌细胞核组织学分级有关。
肾细胞癌血管内皮生长因子2X 和肾细胞癌细胞核组织学分级4X 的回归系数均为正值,说明两个变量取值越大,则肾细胞癌转移的危险性越大。
在肾细胞癌细胞核组织学分级不变条件下,肾细胞癌血管内皮生长因子每增加一级,肾细胞癌转移的优势增至11.172倍,增加10.172倍;在肾细胞癌血管内皮生长因子不变条件下,肾细胞癌细胞核组织学分级每增加一级,肾细胞癌转移的优势增至8.136倍,增加7.136倍。