铌酸锂的性质及应用
铌酸锂晶体简介

晶体类型:中 心对称,空间 群为P4/mmm
晶格常数: a=b=3.21Å,
c=5.14Å
原子间距: Li+和Nb5+间
距分别为 0.78Å和
0.58Å
晶体结构特点: 层状结构,Li+ 和Nb5+交替排 列形成层状结构, 层与层之间以弱 的范德华力相互
作用
PART TWO
铌酸锂晶体在光 学领域的应用, 如光调制器、光 波导和光子晶体 等。
光学领域:铌酸 锂晶体具有独特 的光学性质,可 用于制造新型光 学器件和光子晶 体。
声学领域:利用 铌酸锂晶体的声 学特性,可开发 出高性能的超声 波换能器和声学 滤波器。
传感器领域:铌 酸锂晶体可以用 于压力、温度、 磁场等物理量的 检测,具有高灵 敏度和快速响应 的特点。
新能源领域:利 用铌酸锂晶体的 离子电导特性, 可开发出高效能 的全固态电池和 燃料电池。
利用铌酸锂晶体 的电光效应,可 以实现高速光信 号处理和光通信。
铌酸锂晶体在光 学相位共轭方面 的应用,可以用 于图像处理、光 学通信和激光雷 达等领域。
铌酸锂晶体在光 学频率转换方面 的应用,可以实 现不同频率激光 之间的转换,具 有广泛的应用前 景。
声波传播速度测量 声波导引 声波聚焦与成像 声波滤波与调制
铌酸锂晶体在电子学中用作声光器件和电光器件的基片材料。 铌酸锂晶体具有较高的非线性系数,可用于制作倍频器、调制器等器件。 铌酸锂晶体在电子学中还被用作表面等离子体共振传感器和光学传感器的基底材料。 铌酸锂晶体的透明性和稳定性使其成为电子显示器的理想材料之一。
铌酸锂晶体在生物医学领域的应用,如药物传递和癌症治疗。 介绍铌酸锂晶体在医学影像技术中的应用,如超声成像和光学成像。 探讨铌酸锂晶体在生物传感器和诊断技术中的应用,例如用于检测生物分子和细胞。 介绍铌酸锂晶体在再生医学和组织工程中的应用,如用于构建人工器官和组织。
铌酸锂的性质及应用

铌酸锂的性质及应用一、晶体基本介绍铌酸锂LINbO3,LN晶体是一种集压电、铁电、热释电、非线性、电光、光弹、光折变等性能于一体的多功能材料,具有良好的热稳定性和化学稳定性,可以利用提拉法生长出大尺寸晶体,而且易于加工,成本低,是少数经久不衰、并不断开辟应用新领域的重要功能材料;目前,已经在红外探测器、激光调制器、光通讯调制器、光学开关、光参量振荡器、集成光学元件、高频宽带滤波器、窄带滤波器、高频高温换能器、微声器件、激光倍频器、自倍频激光器、光折变器件如高分辨的全息存储、光波导基片和光隔离器等方面获得了广泛的实际应用,被公认为光电子时代光学硅的主要侯选材料之一;基于准相位匹配技术的周期极化铌酸锂PeriodieallyPoledLiNbO3,PPLN,可以最大程度地利用其有效非线性系数,广泛应用于倍频、和频/差频、光参量振荡等光学过程,在激光显示和光通信领域具有广阔的应用前景,因而成为非常流行的非线性光学材料;二、基本化学性质铌酸锂晶体简称LN,属三方晶系,钛铁矿型畸变钙钛矿型结构,AB03型晶体结构的一种类型;其原子堆积为ABAB堆积,并形成畸变的氧八面体空隙,1/3被A离子占据,1/3被B离子占据,余下1/3则为空位;此类结构的主要特点是:A 和B两种阳离子的离子半径相近,且比氧离子半径小得多;分子式为LiNbO3,分子量为;相对密度,晶格常数a= nm,c= nm,熔点1240℃,莫氏硬度5,折射率n0=,ne=λ=600 nm,界电常数ε=44,ε=29.5,ε=84,ε=30,一次电光系数γ13=γ23=10×10m/V,γ33=32×10m/V.Γ22=-γ12=-γ61=×10m/V,非线性系数d31=×10 m/V,d22=+×10m/V,d33=-47×10m/V;铌酸锂是一种铁电晶体,居里点1140℃,自发极化强度50×10C/cm';经过畸化处理的铌酸锂晶体具有压电、铁电、光电、非线性光学、热电等多性能的材料,同时具有光折变效应;三、生长方法1、双柑祸连续加料法九十年代初,日本国立无机材料研究所采用了双坩埚连续加料技术生长化学计量比铌酸锂晶体;将烧结好的多晶料放于同心双坩埚中,外坩埚中的熔体可以通过底部的小孔流入内坩埚中,晶体生长装置配备粉末自动供给系统,根据单位时间内生长的晶体质量向外坩埚中加入与晶体组分相同的铌酸锂粉料,避免了生长过程中由于分凝造成的熔体组分的改变,从而可生长出高质量和光学均匀性的单晶;2、助熔剂法以氧化钾为助熔剂从化学计量比LiNb03熔体中生长SLN晶体;助熔剂的引入,降低了SLN的熔点,当氧化钾的浓度达到6wt%时,熔体温度大约降低了100℃3、气相输运平衡技术气相输运平衡技术,是把薄的晶片放在富锂的气氛中进行高温热处理,使Li离子通过扩散进入到晶格中,从而提高晶片中的锂含量;Bordui等利用这一技术获得了具有不同组分的单晶;该方法只能制备薄的晶片,很难获得大块单晶;四、晶体掺杂掺镁、锌、铟或四价铅均可以提高晶体的抗光折变能力;掺铁、铜可以提高晶体的光折变性能,用于制作全息存储原型器件;掺钛可以改变晶体的折射率,用于制作光波导结构和器件;所谓光折变效应是指当入射到晶体上的激光功率密度超过一定限度的时候,晶体的折射率将发生一定的变化;光折变效应开拓了铌酸锂晶体在全息存储,光放大等方面的应用,同时它在一定程度上限制了频率转换,光参量振荡等方面的应用;杂质的种类、浓度和价态以及晶体的氧化、还原等化学处理也会对光折变性能产生影响;掺MgO的妮酸铿晶体,可使其抗激光损伤阈值成百倍的提高;普通铌酸锂晶体最重要的缺点之一就是,易受光折变损伤,通常消除这一效应的方法是将LN晶体保持在升温的状态400K或更高;另一条防止光折变损伤的途径是MgO掺杂;五、光学性质1、紫外可见光谱晶体的透过范围覆盖紫外、可见和近红外波段,可见光波段的透过率达到75%—80%;CLN晶体的吸收边位于,SLN晶体头部SLN-H和尾部SLN-T的吸收边分别在和,MgOSLN晶体的吸收边为;与同成分铌酸锂晶体相比,近化学计量比铌酸锂及掺镁晶体的吸收边朝着短波方向移动;2、折射率铌酸锂晶体是光学负单轴晶,只有折射率no和ne,其光轴方向为Z向;随着Li 含量提高,o光折射率几乎不变,e光折射率明显降低,导致双折射率增大;掺镁导致近化学计量比铌酸锂晶体o光折射率减小,而e光折射率增大,双折射率减小;六、铌酸锂晶体在光电技术中的应用铌酸锂晶体是一种电光晶体r32=32mp/v现已成为重要的光波导材料;用LN晶体制作光波导器件已有很长历史,技术最成熟;用LN晶体制作集成光学器件可用于光纤陀螺,其特点是精度高和稳定性好,成本低;LN光波导器件的特点:a.电光效应大;b.制作波导的方法简单易行,性能再现性良好;c.光吸收小;d.损耗低,对波长依赖性小;e.基片尺寸大;利用LN晶体的光折变性能可制作光学体全息存储器件;具体实现方法是采用两束光一束为参考光,另一束作为全息光在记录媒质中,形成光栅结构的衍射,全息图便被记录在晶体内,理论上存储容量高达1012一1013 bits/cm³;LN晶体居里点高,压电效应强d15=10 –11C/N,机电耦合系数高;频率常数2400-3560Hzm;在制作喷气机压力加速度计,钻探用压力传感器,大功率换能器,军方使用的声纳技术等领域已被广泛应用;南京大学的闵乃本院士等在LN晶片上制作出周期性交替变化的正负铁电畴PPLN,构成超晶格材料;PPLN亦可应用于声学领域,例如,用PPLN已制作出几百至几千兆的谐振器和滤波器;七、铌酸锂调制器在外加电场的作用下,晶体的折射率、光吸收和光散射特性发生了变化,由此而产生的效应称为电光效应;当晶体折射率的改变与所加电场成正比时,即电场的一次项,这种电光效应称为线性电光效应,由Pokels于1893年发现,也称为Pokels 效应,一般发生于无对称中心晶体中,该效应是电光调制的基础;当晶体折射率的改变与所加电场强度的平方成正比时,即电场的二次项,这种电光效应由Kerr在1875年发现,称为二次电光效应或称为Kerr电光效应,二次电光效应存在于一切晶体中;对LiNbO3晶体来说,线性电光效应比二次电光效应显著的多,因此调制器主要利用其线性电光效应进行调制;铌酸锂电光调制器的工作原理简单的描述为,当晶体特定方向施加电场作用时,由于电光效应导致晶体折射率的改变,继而引起晶体中传输光波的额外相位变化,从而达到调制光波的目的;常见的电光强度调制器是马赫-曾德尔MZ调制器,光波在光波导中传输至第一个3dB耦合器处,光波被分成相等的两路,光波在每个支路路分别通过光波导传送至第二个3dB耦合器处,两列波最后相干叠加;。
最新铌酸锂的性质及应用资料

铌酸锂的性质及应用一、晶体基本介绍铌酸锂(LINbO3,LN)晶体是一种集压电、铁电、热释电、非线性、电光、光弹、光折变等性能于一体的多功能材料,具有良好的热稳定性和化学稳定性,可以利用提拉法生长出大尺寸晶体,而且易于加工,成本低,是少数经久不衰、并不断开辟应用新领域的重要功能材料。
目前,已经在红外探测器、激光调制器、光通讯调制器、光学开关、光参量振荡器、集成光学元件、高频宽带滤波器、窄带滤波器、高频高温换能器、微声器件、激光倍频器、自倍频激光器、光折变器件(如高分辨的全息存储)、光波导基片和光隔离器等方面获得了广泛的实际应用,被公认为光电子时代光学硅的主要侯选材料之一。
基于准相位匹配技术的周期极化铌酸锂(PeriodieallyPoledLiNbO3,PPLN),可以最大程度地利用其有效非线性系数,广泛应用于倍频、和频/差频、光参量振荡等光学过程,在激光显示和光通信领域具有广阔的应用前景,因而成为非常流行的非线性光学材料。
二、基本化学性质铌酸锂晶体简称LN,属三方晶系,钛铁矿型(畸变钙钛矿型)结构,AB03型晶体结构的一种类型。
其原子堆积为ABAB堆积,并形成畸变的氧八面体空隙,1/3被A离子占据,1/3被B离子占据,余下1/3则为空位。
此类结构的主要特点是:A和B两种阳离子的离子半径相近,且比氧离子半径小得多。
分子式为LiNbO3,分子量为147.8456。
相对密度4.30,晶格常数a=0.5147 nm,c=1.3856 nm,熔点1240℃,莫氏硬度5,折射率n0=2.797,ne=2.208(λ=600 nm),界电常数ε=44,ε=29.5,ε=84,ε=30,一次电光系数γ13=γ23=10×10m/V,γ33=32×10m/V.Γ22=-γ12=-γ61=6.8×10m/V,非线性系数d31=-6.3×10 m/V,d22=+3.6×10m/V,d33=-47×10m/V。
铌酸锂热释电系数

铌酸锂热释电系数铌酸锂热释电系数是指铌酸锂材料在温度变化下产生的热电势变化与温度变化率之比。
铌酸锂是一种具有独特性质的功能陶瓷材料,它在高温下具有优异的热稳定性和热电性能,因此被广泛应用于热敏元件、温度传感器、热电冷却器等领域。
铌酸锂的热释电效应是指材料在温度变化时产生的电势变化。
这种效应是基于铌酸锂晶体结构的非对称性导致的。
铌酸锂晶体中的铌离子和锂离子在晶格中呈现出不同的位置和偏移,当温度发生变化时,晶格结构会发生变化,从而导致铌离子和锂离子的位置和偏移发生变化,进而产生电势变化。
铌酸锂热释电系数的大小与铌酸锂材料的热电性能密切相关。
热释电系数越大,材料在温度变化下产生的热电势变化就越大,热敏元件的灵敏度就越高。
因此,提高铌酸锂热释电系数是改善热敏元件性能的关键之一。
提高铌酸锂热释电系数的方法主要有两种:一种是通过改变铌酸锂晶体结构来增加材料的非对称性,例如通过掺杂其他离子或改变晶体生长条件来实现;另一种是通过合成纳米材料来增加材料的界面效应和表面效应,从而提高热释电性能。
在实际应用中,铌酸锂热释电系数的大小对于热敏元件的性能起着至关重要的作用。
例如,在温度传感器中,铌酸锂热释电系数的大小决定了传感器的灵敏度和温度测量范围;在热电冷却器中,铌酸锂热释电系数的大小决定了冷却效果的好坏。
除了铌酸锂热释电系数的大小,铌酸锂材料的其他性能也会对热敏元件的性能产生影响。
例如,材料的热导率决定了热敏元件的响应速度;材料的机械性能决定了元件的可靠性和使用寿命。
铌酸锂热释电系数是衡量铌酸锂材料热敏性能的重要指标之一。
通过研究铌酸锂热释电系数的大小以及影响因素,可以进一步优化铌酸锂材料的热敏性能,提高其在热敏元件领域的应用价值。
铌酸锂 透明波段

铌酸锂透明波段
铌酸锂是一种重要的非线性光学晶体,广泛用于激光技术、光通信、光电子学等领域。
它在透明波段(即光学波长范围)的光学特性对于光学器件的设计和应用至关重要。
在透明波段,铌酸锂晶体通常表现出以下特性:
1.高透明度:铌酸锂晶体在透明波段具有很高的透明度,能够有效地传输光信号,减少光损耗,适用于制备高效率的光学器件。
2.广泛的透明波段:铌酸锂晶体的透明波段覆盖了可见光和红外光区域,通常在400纳米至5000纳米的波长范围内具有良好的透明性。
3.非线性光学特性:铌酸锂晶体在透明波段表现出良好的非线性光学特性,例如二次谐波产生、光学参量振荡等,可用于产生高质量的激光输出和频率转换。
4.热光学性能:透明波段下铌酸锂晶体的热光学性能也需要考虑,因为高功率光束通常会引起晶体的光学性能衰减和热失真,需要适当的热管理措施。
综上所述,铌酸锂晶体在透明波段具有重要的光学特性,广泛应用于光通信、激光雷达、光学传感等领域的光学器件中。
对其透明波段的光学特性的了解有助于更好地设计和应用铌酸锂晶体制备的光学器件。
铌酸锂晶体及其应用概述

铌酸锂晶体及其应用概述铌酸锂晶体是一种非线性光学晶体,具有广泛的应用前景。
本文将从铌酸锂晶体的基本特性、生长方法和物理性质入手,探讨其在光学通信、激光技术和光电子学等领域的应用。
一、铌酸锂晶体的基本特性铌酸锂晶体(LiNbO3)是一种双向交变电场晶体,属于三方晶系,晶胞参数a=b=5.148Å,c=13.863Å,空间群R3c。
它的特殊之处在于,它是一种非中心对称晶体,具有二阶非线性光学效应,其线性光学系数很大,具有良好的光学透明性,是光学通信、激光技术和光电子学领域非常重要的功能晶体。
铌酸锂晶体具有很高的折射率和良好的非线性光学性能,具有很好的光学透明性,特别是在红外区域。
铌酸锂晶体具有很大的电光效应和压电效应,可以实现光学信号和电学信号之间的转换。
二、铌酸锂晶体的生长方法1. Czochralski法生长Czochralski法是目前生长铌酸锂晶体的主要方法之一。
它是利用熔体温度梯度以及晶体与熔体之间的界面形成来生长晶体的。
这种方法生长出的晶体具有很好的纯度和晶体结构,并且尺寸比较大。
2. 水热法生长水热法是一种比较新颖的生长铌酸锂晶体的方法,该方法能够生长出比较大的晶胞尺寸的晶体,并且在生长过程中还可以控制很多晶体成分的不均匀分布。
该方法可以控制生长晶体的形状,并可以便捷地加工成所需形状和尺寸的晶体。
1. 光学通信铌酸锂晶体在光学通信领域中的重要性越来越高。
它具有优异的非线性光学效应,可以用于光学开关、光学调制等应用。
它的电光效应可以将电学信号转化为光学信号,从而实现光与电的互转换。
2. 激光技术铌酸锂晶体在激光技术中也有广泛应用。
其二阶非线性光学效应可以用于产生二次谐波,从而实现紫外激光的产生。
在光学晶体中,铌酸锂晶体也是用于激光器Q开关的重要材料。
3. 光电子学铌酸锂晶体在光电子学中的应用也很广泛。
它的压电效应可以将机械信号转化为电学信号,通过触发铌酸锂晶体的电光效应,实现机械信号的光学转换。
铌酸锂集成光量子器件-概述说明以及解释

铌酸锂集成光量子器件-概述说明以及解释1.引言1.1 概述概述部分的内容应该是对整篇文章进行一个简要的介绍,引起读者的兴趣并让读者对文章的内容有初步的了解。
下面是一种可能的概述部分的内容:铌酸锂(LiNbO3)是一种广泛应用于光学领域的材料,具有优良的光学和电学性能。
在当前光量子领域的研究中,铌酸锂被广泛应用于集成光量子器件的制造中。
本文将深入探讨铌酸锂集成光量子器件的特性、原理以及其在光量子领域中的优势与应用前景。
在正文部分,我们将首先介绍铌酸锂的特性,包括其晶体结构、光学和电学性质。
接着,我们将详细解释集成光量子器件的原理,包括铌酸锂作为中心材料在光量子器件中的作用。
随后,我们将重点讨论铌酸锂集成光量子器件相比其他材料的优势,包括其高光学非线性、稳定性和调制速度等特点。
通过对这些优势的深入探讨,我们将展示铌酸锂集成光量子器件在光通信、光计算和量子信息处理等领域的潜在应用前景。
最后,结论部分将对铌酸锂集成光量子器件的应用前景进行总结,并展望未来的研究方向。
通过本文的介绍,读者将对铌酸锂集成光量子器件有一个全面的了解,以及对其在未来的应用和发展方向有进一步的认识。
相信本文对光量子领域的研究人员和光学器件开发者,以及对光子学感兴趣的读者将具有较大的参考价值。
1.2文章结构文章结构的设计是为了使读者能够更好地理解和掌握铌酸锂集成光量子器件的相关知识。
本文将按照以下方式组织内容:第一部分是引言,主要包括以下三个方面:1.1 概述: 在这一部分,我们将介绍铌酸锂集成光量子器件的基本概念和背景。
我们将介绍铌酸锂作为一种重要的晶体材料在光学和量子领域的应用,并简要介绍光量子器件的概念及其在信息科学和通信中的重要性。
1.2 文章结构: 在这一部分,我们将详细介绍本文的结构和各个部分的内容安排。
我们将说明正文分为三个主要部分:铌酸锂的特性、集成光量子器件的原理以及铌酸锂集成光量子器件的优势。
我们还会阐述结论部分,总结铌酸锂集成光量子器件的应用前景,并对未来的研究进行展望。
铌酸锂的性质及应用

铌酸锂的性质及应用 The Standardization Office was revised on the afternoon of December 13, 2020铌酸锂的性质及应用一、晶体基本介绍铌酸锂(LINbO3,LN)晶体是一种集压电、铁电、热释电、非线性、电光、光弹、光折变等性能于一体的多功能材料,具有良好的热稳定性和化学稳定性,可以利用提拉法生长出大尺寸晶体,而且易于加工,成本低,是少数经久不衰、并不断开辟应用新领域的重要功能材料。
目前,已经在红外探测器、激光调制器、光通讯调制器、光学开关、光参量振荡器、集成光学元件、高频宽带滤波器、窄带滤波器、高频高温换能器、微声器件、激光倍频器、自倍频激光器、光折变器件(如高分辨的全息存储)、光波导基片和光隔离器等方面获得了广泛的实际应用,被公认为光电子时代光学硅的主要侯选材料之一。
基于准相位匹配技术的周期极化铌酸锂 (PeriodieallyPoledLiNbO3,PPLN),可以最大程度地利用其有效非线性系数,广泛应用于倍频、和频/差频、光参量振荡等光学过程,在激光显示和光通信领域具有广阔的应用前景,因而成为非常流行的非线性光学材料。
二、基本化学性质铌酸锂晶体简称LN,属三方晶系,钛铁矿型(畸变钙钛矿型)结构,AB03型晶体结构的一种类型。
其原子堆积为ABAB堆积,并形成畸变的氧八面体空隙,1/3被A离子占据,1/3被B离子占据,余下1/3则为空位。
此类结构的主要特点是:A和B两种阳离子的离子半径相近,且比氧离子半径小得多。
分子式为LiNbO3,分子量为。
相对密度,晶格常数a= nm,c= nm,熔点1240℃,莫氏硬度5,折射率n0=,ne=(λ=600 nm),界电常数ε=44,ε=29.5,ε=84,ε=30,一次电光系数γ13=γ23=10×10m/V,γ33=32×10m/V.Γ22=-γ12=-γ61=×10m/V,非线性系数d31=×10 m/V,d22=+×10m/V,d33=-47×10m/V。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铌酸锂的性质及应用
一、晶体基本介绍
铌酸锂(LINbO3,LN)晶体是一种集压电、铁电、热释电、非线性、电光、光弹、光折变等性能于一体的多功能材料,具有良好的热稳定性和化学稳定性,可以利用提拉法生长出大尺寸晶体,而且易于加工,成本低,是少数经久不衰、并不断开辟应用新领域的重要功能材料。
目前,已经在红外探测器、激光调制器、光通讯调制器、光学开关、光参量振荡器、集成光学元件、高频宽带滤波器、窄带滤波器、高频高温换能器、微声器件、激光倍频器、自倍频激光器、光折变器件(如高分辨的全息存储)、光波导基片和光隔离器等方面获得了广泛的实际应用,被公认为光电子时代光学硅的主要侯选材料之一。
基于准相位匹配技术的周期极化铌酸锂(PeriodieallyPoledLiNbO3,PPLN),可以最大程度地利用其有效非线性系数,广泛应用于倍频、和频/差频、光参量振荡等光学过程,在激光显示和光通信领域具有广阔的应用前景,因而成为非常流行的非线性光学材料。
二、基本化学性质
铌酸锂晶体简称LN,属三方晶系,钛铁矿型(畸变钙钛矿型)结构,AB03型晶体结构的一种类型。
其原子堆积为ABAB堆积,并形成畸变的氧八面体空隙,1/3被A离子占据,1/3被B离子占据,余下1/3则为空位。
此类结构的主要特点是:A和B两种阳离子的离子半径相近,且比氧离子半径小得多。
分子式为LiNbO3,分子量为147.8456。
相对密度4.30,晶格常数a=0.5147 nm,c=1.3856 nm,熔点1240℃,莫氏硬度5,折射率n0=2.797,ne=2.208(λ=600 nm),界电常数ε=44,ε=29.5,ε=84,ε=30,一次电光系数γ13=γ23=10×10m/V,
γ33=32×10m/V.Γ22=-γ12=-γ61=6.8×10m/V,非线性系数d31=-6.3×10 m/V,d22=+3.6×10m/V,d33=-47×10m/V。
铌酸锂是一种铁电晶体,居里点1140℃,自发极化强度50×10C/cm'。
经过畸化处理的铌酸锂晶体具有压电、铁电、光电、非线性光学、热电等多性能的材料,同时具有光折变效应。
三、生长方法
1、双柑祸连续加料法
九十年代初,日本国立无机材料研究所采用了双坩埚连续加料技术生长化学计量比铌酸锂晶体。
将烧结好的多晶料放于同心双坩埚中,外坩埚中的熔体可以通过底部的小孔流入内坩埚中,晶体生长装置配备粉末自动供给系统,根据单位时间内生长的晶体质量向外坩埚中加入与晶体组分相同的铌酸锂粉料,避免了生长过程中由于分凝造成的熔体组分的改变,从而可生长出高质量和光学均匀性的单晶。
2、助熔剂法
以氧化钾为助熔剂从化学计量比LiNb03熔体中生长SLN晶体。
助熔剂的引入,降低了SLN的熔点,当氧化钾的浓度达到6wt%时,熔体温度大约降低了100 ℃
3、气相输运平衡技术
气相输运平衡技术,是把薄的晶片放在富锂的气氛中进行高温热处理,使Li 离子通过扩散进入到晶格中,从而提高晶片中的锂含量。
Bordui等利用这一技术获得了具有不同组分的单晶。
该方法只能制备薄的晶片,很难获得大块单晶。
四、晶体掺杂
掺镁、锌、铟或四价铅均可以提高晶体的抗光折变能力。
掺铁、铜可以提高晶体的光折变性能,用于制作全息存储原型器件。
掺钛可以改变晶体的折射率,用于制作光波导结构和器件。
所谓光折变效应是指当入射到晶体上的激光功率密度超过一定限度的时候,晶体的折射率将发生一定的变化。
光折变效应开拓了铌酸锂晶体在全息存储,光放大等方面的应用,同时它在一定程度上限制了频率转换,光参量振荡等方面的应用。
杂质的种类、浓度和价态以及晶体的氧化、还原等化学处理也会对光折变性能产生影响。
掺MgO的妮酸铿晶体,可使其抗激光损伤阈值成百倍的提高。
普通铌酸锂晶体最重要的缺点之一就是,易受光折变损伤,通常消除这一效应的方法是将LN晶体保持在升温的状态(400K或更高)。
另一条防止光折变损伤的途径是MgO掺杂。
五、光学性质
1、紫外可见光谱
晶体的透过范围覆盖紫外、可见和近红外波段,可见光波段的透过率达到75%—80%。
CLN晶体的吸收边位于320.1nm,SLN晶体头部(SLN-H)和尾部(SLN-T)的吸收边分别在305.0nm和305.6nm,MgOSLN晶体的吸收边为304.3nm。
与同成分铌酸锂晶体相比,近化学计量比铌酸锂及掺镁晶体的吸收边朝着短波方向移动。
2、折射率
铌酸锂晶体是光学负单轴晶,只有折射率no和ne,其光轴方向为Z向。
随着Li含量提高,o光折射率几乎不变,e光折射率明显降低,导致双折射率增大;掺镁导致近化学计量比铌酸锂晶体o光折射率减小,而e光折射率增大,双折射率减小。
六、铌酸锂晶体在光电技术中的应用
铌酸锂晶体是一种电光晶体(r32=32mp/v)现已成为重要的光波导材料。
用
LN晶体制作光波导器件已有很长历史,技术最成熟。
用LN晶体制作集成光学器件可用于光纤陀螺,其特点是精度高和稳定性好,成本低。
LN光波导器件的特点:a.电光效应大;b.制作波导的方法简单易行,性能再现性良好;c.光吸收小;d.损耗低,对波长依赖性小;e.基片尺寸大。
利用LN晶体的光折变性能可制作光学体全息存储器件。
具体实现方法是采用两束光(一束为参考光,另一束作为全息光)在记录媒质中,形成光栅结构的衍射,全息图便被记录在晶体内,理论上存储容量高达1012一1013 bits/cm³。
LN晶体居里点高,压电效应强(d15=7.8*10 –11C/N),机电耦合系数高0.68 ;频率常数2400-3560Hz*m。
在制作喷气机压力加速度计,钻探用压力传感器,大功率换能器,军方使用的声纳技术等领域已被广泛应用。
南京大学的闵乃本院士等在LN晶片上制作出周期性交替变化的正负铁电畴(PPLN),构成超晶格材料。
PPLN亦可应用于声学领域,例如,用PPLN已制作出几百至几千兆的谐振器和滤波器。
七、铌酸锂调制器
在外加电场的作用下,晶体的折射率、光吸收和光散射特性发生了变化,由此而产生的效应称为电光效应。
当晶体折射率的改变与所加电场成正比时,即电场的一次项,这种电光效应称为线性电光效应,由Pokels于1893年发现,也称为Pokels效应,一般发生于无对称中心晶体中,该效应是电光调制的基础。
当晶体折射率的改变与所加电场强度的平方成正比时,即电场的二次项,这种电光效应由Kerr在1875年发现,称为二次电光效应或称为Kerr电光效应,二次电光效应存在于一切晶体中。
对LiNbO3晶体来说,线性电光效应比二次电光效应显著的多,因此调制器主要利用其线性电光效应进行调制。
铌酸锂电光调制器的工作原理简单的描述为,当晶体特定方向施加电场作用时,由于电光效应导致晶体折射率的改变,继而引起晶体中传输光波的额外相位变化,从而达到调制光波的目的。
常见的电光强度调制器是马赫-曾德尔(MZ)调制器,光波在光波导中传输至第一个3dB耦合器处,光波被分成相等的两路,光波在每个支路路分别通过光波导传送至第二个3dB耦合器处,两列波最后相干叠加。