二次型与不等式
二次函数与一元二次方程不等式6种常见考法归类(原卷版)

2.3 二次函数与一元二次方程、不等式6种常见考法归类1、一元二次不等式的概念2一般地,对于二次函数y =ax 2+bx +c ,我们把使ax 2+bx +c =0的实数x 叫做二次函数y =ax 2+bx +c 的零点.3、二次函数与一元二次方程、不等式的解的对应关系有两个相等的实数根y =ax 2+bx +c (a >0)的图象在x 轴上方的点的横坐标x 的集合;ax 2+bx +c <0(a >0)的解集就是一元二次函数y =ax 2+bx +c (a >0)的图象在x 轴下方的点的横坐标x 的集合. 4、简单的分式不等式的解法(1)ax +bcx +d>0(<0)∅(ax +b )(cx +d )>0(<0). (2)ax +bcx +d ≥0(≤0)∅⎩⎪⎨⎪⎧(ax +b )(cx +d )≥0(≤0),cx +d ≠0. 总之,简单的分式不等式可以转化为一元二次不等式求解. 图示如下: 思考 x -3x +2>0与(x -3)(x +2)>0等价吗?x -3x +2≥0与(x -3)(x +2)≥0等价吗? 答案x -3x +2>0与(x -3)(x +2)>0等价;x -3x +2≥0与(x -3)(x +2)≥0不等价,前者的解集中没有-2,后者的解集中有-2.5、一元二次不等式恒成立问题(1)转化为一元二次不等式解集为R 的情况,即 ax 2+bx +c >0(a ≠0)恒成立∅⎩⎪⎨⎪⎧ a >0,Δ<0;ax 2+bx +c <0(a ≠0)恒成立∅⎩⎪⎨⎪⎧a <0,Δ<0.(2)分离参数,将恒成立问题转化为求最值问题. 6、利用不等式解决实际问题的一般步骤 (1)选取合适的字母表示题目中的未知数.(2)由题目中给出的不等关系,列出关于未知数的不等式(组). (3)求解所列出的不等式(组). (4)结合题目的实际意义确定答案. 7、解一元二次不等式的一般步骤(1)将一元二次不等式化为一端为0的形式(习惯上二次项系数大于0). (2)求出相应一元二次方程的根,或判断出方程没有实根. (3)画出相应二次函数示意草图,方程有根的将根标在图中.(4)观察图象中位于x 轴上方或下方的部分,对比不等式中不等号的方向,写出解集.注:(1)若不等式对应的一元二次方程能够因式分解,即能够转化为几个代数式的乘积形式,则可以直接由一元二次方程的根及不等号方向得到不等式的解集.(2)若不等式对应的一元二次方程能够化为完全平方式,不论取何值,完全平方式始终大于或等于零,则不等式的解集易得.(3)若上述两种方法均不能解决,则应采用求一元二次不等式的解集的通法,即判别式法. 8、解含参数的一元二次不等式的步骤特别提醒:(1)对应方程的根优先考虑用因式分解确定,分解不开时再求判别式Δ,用求根公式计算. (2)在解含参数的一元二次型的不等式时,往往要对参数进行分类讨论,为了做到分类“不重不漏”,讨论需从如下三个方面进行考虑:∅关于不等式类型的讨论:二次项系数a >0,a <0,a =0.∅关于不等式对应的方程根的讨论:两个不相等实数根(Δ>0),两个相等实数根(Δ=0),无实数根(Δ<0). ∅关于不等式对应的方程根的大小的讨论:x 1>x 2,x 1=x 2,x 1<x 2. 9、三个“二次”之间的关系(1)三个“二次”中,二次函数是主体,讨论二次函数主要是为了将问题转化为一元二次方程和一元二次不等式的形式来研究.(2)讨论一元二次方程和一元二次不等式又要将其与相应的二次函数相联系,通过二次函数的图象及性质来解决问题,关系如下:10、根据一元二次不等式解集求参数已知以a ,b ,c 为参数的不等式(如ax 2+bx +c >0)的解集,求解其他不等式的解集时,一般遵循(1)根据解集来判断二次项系数的符号.(2)根据根与系数的关系把b ,c 用a 表示出来并代入所要解的不等式. (3)约去 a ,将不等式化为具体的一元二次不等式求解. 11、分式不等式的解法(1)对于比较简单的分式不等式,可直接转化为一元二次不等式或一元一次不等式组求解,但要注意等价变形,保证分母不为零.(2)对于不等号右边不为零的较复杂的分式不等式,先移项再通分(不要去分母),使之转化为不等号右边为零,然后再用上述方法求解.注:解分式不等式的思路是转化为整式不等式求解.化分式不等式为标准形式的方法:移项,通分,不等式右边化为0,左边化为乘积的形式.特别地,形如y 1y 2>a (a ≠0)的分式不等式,可同解变形为12y 2>0,故可转化为解y 2(y 1-ay 2)>0.12、一元二次不等式恒成立问题的解法(1)转化为对应的二次函数图象与x 轴的交点问题,考虑两个方面:x 2的系数和对应方程的判别式的符号. (2)转化为二次函数的最值问题:分离参数后,求相应二次函数的最值,使参数大于(小于)这个最值. 注:(1)一般地,一元二次不等式ax 2+bx +c >0(≥0)对于x ∅R 恒成立的条件是⎩⎪⎨⎪⎧a >0,Δ=b 2-4ac <0(≤0);一元二次不等式ax 2+bx +c <0(≤0)对于x ∅R 恒成立的条件是⎩⎪⎨⎪⎧a <0,Δ=b 2-4ac <0(≤0).(2)在解关于x 的不等式ax 2+bx +c >0(≥0)对一切x 恒成立问题时,应注意对二次项的系数进行讨论,需研究二次项系数为0时是否满足题意. 13、解不等式应用题的步骤考点一 一元二次不等式的解法 考点二 含参数的一元二次不等式的解法 (一)对二项式系数的讨论 (二)对判别式的讨论 (三)对两根大小的讨论考点三 根据一元二次不等式的解集求参数 考点四 简单的分式不等式的解法 考点五 一元二次不等式的恒成立问题 考点六 一元二次不等式的实际应用考点一 一元二次不等式的解法1.(2023春·辽宁铁岭·高二校联考期末)已知集合{}|1M x x =>-,{}260N x x x =--<∣,则M N ⋂= .2.(2023秋·广东佛山·高一佛山市第二中学校考开学考试)解下列一元二次不等式: (1)23710x x -≤; (2)2104x x -+<; (3)2340x x -+>.3.(2023秋·高一校考课时练习)解下列不等式: (1)22320x x --> (2)2350x x -+> (3)2620x x --+≥ (4)2414x x -≥-4.(2023·上海·高一专题练习)二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,则y >0的解集为( ) A .{x |2<x <1} B .{x |1<x <2} C .{x |1<x ≤2}D .{x |x <0或x >3}5.(2023秋·上海黄浦·高一上海市光明中学校考期中)关于x 的不等式2230x x --<解集是 .考点二 含参数的一元二次不等式的解法(一)对二项式系数的讨论6.(2023秋·北京·高一北京市第五十中学校考阶段练习)解不等式()2110ax a x -++>.7.(2023秋·高一校考课时练习)解关于x 的不等式: ()22110ax a x a -+++<.8.(2023秋·北京西城·高一北京铁路二中校考期中)设a ∈R ,解关于x 的不等式:()2330ax a x -++≤.9.(2023秋·黑龙江鹤岗·高一鹤岗一中校考期中)已知222()(1)2(1)f x ax a x a =-+++,a ∈R ,求关于x 的不等式()0f x ≥的解集. (二)对判别式的讨论10.(2023·全国·高三专题练习)解下列关于x 的不等式210x ax ++<. 11.(2023·全国·高一假期作业)解关于x 的不等式2210x mx m -++>. (三)对两根大小的讨论12.(2023·全国·高一假期作业)若01a <<,解不等式()10a x x a ⎛-⎫ ⎪⎝⎭->.13.(2023·江苏·高一假期作业)解关于x 的不等式()()2231220x a x a --+->14.(2023秋·高一校考单元测试)已知函数2()(21)2f x ax a x =-++. (1)当2a =时,解关于x 的不等式()0f x ≤; (2)若0a >,解关于x 的不等式()0f x ≤..15.(2023·全国·高三对口高考)解关于x 的不等式: (1)22(1)40ax a x -++< (2)(1)(2)02a x a x -+->-考点三 根据一元二次不等式的解集求参数16.(2023秋·福建福州·高一福州三中校考阶段练习)已知不等式20x ax b ++<的解集是{}24x x -<<,则a b +=( )A .10B .6C .0D .217.(2023秋·陕西西安·高一统考期末)已知不等式250ax x b -+>的解集是{}32x x -<<-,则a b +的值为( )A .7-B .7C .17-D .1718.(2023秋·广西柳州·高一柳铁一中校联考阶段练习)已知关于x 的不等式mx n >的解集是{}<2x x ,则关于x 的不等式()()30mx n x +->的解集是( )A .{|2x x <或3}x >B .{}2<<3x xC .{|2x x <-或3}x >D .{}2<<3x x -19.(2023秋·福建泉州·高一校考阶段练习)若关于x 的不等式220x x a -+<的解集是{|2}x b x <<,则a b += ( )A .1-B .152-C .92-D .9-20.【多选】(2023秋·河南郑州·高一郑州市第四十七高级中学校考期末)已知关于x 的不等式20ax bx c ++>解集为{3xx <-∣或4}x >,则下列结论正确的有( ) A .0a >B .不等式0bx c +>的解集为{6}xx <-∣ C .0a b c ++>D .不等式20cx bx a -+<的解集为14xx ⎧<-⎨⎩∣或13x ⎫>⎬⎭ 21.(2023秋·内蒙古通辽·高一校考期中)已知不等式210ax bx +->的解集为1123x x ⎧⎫-<<-⎨⎬⎩⎭,则不等式20x bx a --≥的解集为( )A .{3|x x ≤-或2}x -≥B .{|32}x x --≤≤C .{|23}x x ≤≤D .{|2x x ≤或3}x ≥22.【多选】(2023秋·福建福州·高一福建省福州第一中学校考期中)已知关于x 的不等式23344a x xb ≤-+≤,下列结论正确的是( )A .当1a b <<时,不等式23344a x xb ≤-+≤的解集为∅ B .当2a =时,不等式23344a x xb ≤-+≤的解集可以为{}xc xd ≤≤∣的形式 C .不等式23344a x x b ≤-+≤的解集恰好为{}xa xb ≤≤∣,那么43b =或4b = D .不等式23344a x xb ≤-+≤的解集恰好为{}xa xb ≤≤∣,那么4b a -= 23.(2023秋·四川泸州·高一统考期末)已知函数()()2f x x a b x a =-++.(1)若关于x 的不等式()0f x <的解集为{}13x x -<<,求a ,b 的值; (2)当1b =时,解关于x 的不等式()0f x >.24.(2023·湖南长沙·高二长郡中学校考学业考试)若关于x 的不等式2242ax x ax -<-只有一个整数解,则实数a 的取值范围是( )A .112a <≤ B .12a << C .12a ≤< D .11a -<<25.【多选】(2023春·浙江温州·高二统考学业考试)关于x 的不等式22(12)20ax a x a +--<的解集中恰有3个正整数解,则a 的值可以为( )A .1-B .32C .74D .2考点四 简单的分式不等式的解法26.(2023·上海杨浦·同济大学第一附属中学校考三模)不等式11x<-的解集是27.(2023秋·云南曲靖·高一校考阶段练习)不等式302x x +>+的解集是 . 28.(2023秋·陕西渭南·高二统考期末)不等式102xx-≥+的解集为 . 29.(2023·全国·高三对口高考)已知集合3442x P xx ⎧⎫+=≥⎨⎬-⎩⎭,则P = . 30.(2023秋·陕西西安·高一校考期中)(1)解关于x 的不等式2340+->x x ; (2)解关于x 的不等式115xx -≥-. 考点五 一元二次不等式的恒成立问题31.(2023秋·黑龙江哈尔滨·高一哈尔滨三中校考阶段练习)已知函数()()()2124f x m x mx m m =+-+-∈R .(1)若不等式()0f x <的解集为R ,求m 的取值范围; (2)解关于x 的不等式()f x m ≥.32.(2023春·江苏南京·高二南京市中华中学校考阶段练习)设()()212f x ax a x a =+-+-. (1)若不等式()2f x ≥-对一切实数x 恒成立,求实数a 的取值范围; (2)解关于x 的不等式()()1R f x a a <-∈.33.(2023秋·四川遂宁·高一射洪中学校考阶段练习)设2(1)2y ax a x a =+-+-. (1)若不等式2y ≥-对一切实数x 恒成立,求实数a 的取值范围;(2)解关于x 的不等式()2(1)10R ax a x a +--<∈.34.(2023秋·高一单元测试)设()()212=--+-∈y x a x a a R .(1)若不等式()2122--+-≥-x a x a 对一切实数x 恒成立,求实数a 的取值范围;(2)解关于x 的不等式()2120--+-<x a x a .考点六 一元二次不等式的实际应用35.(2023秋·广西桂林·高一校考期中)将进货单价40元的商品按50元一个售出,能卖出500个;若此商品每涨价1元,其销售量减少10个.为了赚到最大利润,售价应定为 元.36.(2023秋·浙江温州·高一校联考期中)为了宣传第56届世乒赛,某体育用品商店购进一批乒乓球拍,每副进价200元,售价260元,每月可以卖出160副.由于疫情原因,商家决定降价促销,根据市场调查,每降价10元,每月可多卖出80副,降价后,商家要使每月的销售利润最大,应该将售价定为 元. 37.(2023春·北京密云·高二统考期末)一个车辆制造厂引进了一条摩托车整车装配流水线,这条流水线生产的摩托车数量x (单位:辆)与创造的价值y (单位:元)之间的关系为:2202200y x x =-+.如果这家工厂希望在一个星期内利用这条流水线创收60000元以上,请你给出一个该工厂在这周内生成的摩托车数量的建议,使工厂能够达成这个周创收目标,那么你的建议是 .38.(2023春·河南安阳·高二林州一中校考阶段练习)某地每年消耗木材约20万立方米,每立方米售价480元,为了减少木材消耗,决定按%t 征收木材税,这样,每年的木材消耗量减少52t 万立方米,为了既减少木材消耗又保证税金收入每年不少于180万元,t 的取值范围是( )A .[]1,3B .[]2,4C .[]3,5D .[]4,639.(2023秋·四川绵阳·高一绵阳中学校考阶段练习)某种衬衫进货价为每件30元,若以40元一件出售,则每天能卖出40件;若每件提价1元,则每天卖出件数将减少一件,为使每天出售衬衫的净收入不低于525元,则每件衬衫的售价的取值范围是 .(假设每件衬衫的售价是m )。
含参数“二次型”不等式恒成立问题的解法

含参数“二次型”不等式恒成立问题的解法
作者:陈珊珊
来源:《数学大世界·下旬刊》2019年第01期
【摘要】纵观近几年的全国高考数学试题可以发现,函数与不等式问题一直是重点考查的内容,所占分值比例较高。
而含参数“二次型”不等式恒成立问题可以说是“年年登场”,此类问题对大部分学生来讲难度不小。
因此,本文重点谈谈如何求解含参数不等式恒成立问题。
【关键词】参数;二次函数;不等式;解法
二次函数是高中数学知识板块的重要组成部分,也是高考考查的一大热点。
命题时多与其他知识交汇融合,特别是含参类不等式问题,一直是高考重点考查的题型。
此类问题的求解常常需结合数形结合、分类讨论、化归与转化等思想方法,是高考的一大难点。
“二次型”不等式恒成立问题一般都要转化为求函数的最值问题。
下面从三个方面来介绍含参数的“二次型”不等式的解法。
从以上解法可以看出,一般含参类不等式恒成立问题的处理方法大都可以转化为函数的最值问题,这也是我们处理这类问题的常规思路。
本文仅介绍了判别式法、分离参数法和变换主元,构造新函数法三种解答方法。
实际上,另外还有数形结合法、函数性质法、整体代换法、
反证法等多种解法,需要大家在平時的学习和练习中多归纳、多总结。
不等式的解法

复习重点:不等式的解法,主要有一元一次、一元二次、一元高次不等式,分式不等式,无理不等式,指数、对数不等式及含绝对值的不等式的解法;在复习中强调基本方法及易错点。
复习难点:含字母系数的二次型不等式,无理不等式解法,数形结合的方法解不等式,及不等式变形的等价性问题。
(一)各种类型不等式基本解法中的易错点:1.二次型不等式:ax2+bx+c>0(<0)易错点:<1>是否为二次不等式;<2>含字母表示的二根的大小。
2.一元高次不等式:a(x-x1)(x-x2)……(x-x n)>0。
易错点:<1>a>0时,从右上方开始穿线;<2>奇穿偶切,如(x-2)2(x+1)3>0.各因式的幂指数为奇数时穿过ox轴,若幂指数为偶数时,与ox轴相切不穿过;<3>孤立点容易遗漏。
如:(x-3)(x+2)2(x-1)≥0(x-3)(x-1)≥0或x=-2。
3.分式不等式:,易错点:<1>方法的规范,化为(1)的形式;<2>等价性;如(2)。
4.无理不等式<1>易错点:①遗漏情况(2);②不等式组(1),省略f(x)≥0,可简化运算。
<2>注:g(x)=0为孤立点,易遗漏。
5.含绝对值不等式:注意:<1>方法的选择:分段去绝对值号;用等价不等式解或数形结合方法解决。
<2>形如的基本解法:<i>分段讨论;<ii>数形结合。
6.指数不等式及对数不等式基本类型:<1>同底型;<2>a f(x)<b、log a f(x)<b型用定义;<3>换元法解。
易错点:<1>定义域:对数式中底数、真数的限制条件;<2>利用函数单调性,要分成底数大于1还是在0与1之间考虑。
解不等式问题重点注意:i.等价变形;ii.数形结合的方法。
二次型不等式方法总结

(1)若不等式组03434x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域被直线43y kx =+分为面积相等的两部分,则k 的值是( )A.73 B.37 C.43 D.34(2)已知D 是由不等式组2030x y x y -≥⎧⎨+≥⎩,所确定的平面区域,则圆224x y +=在区域D 内的弧长为( )A.4π B.2πC.34πD.32π(3)在平面直角坐标系中,若不等式组101010x y x ax y +-≥⎧⎪-≤⎨⎪-+≥⎩(a 为常数)所表示的平面区域内的面积等于2,则a 的值为( )A.-5B.1C.2D.3(4)y 2x 0x y 2y x 0x y 30-≤⎧⎪--≥⎨⎪+-≤⎩若m 在区域内取得最大值的最优解有无穷个,则m 的值为(5)在平面直角坐标系xOy ,已知平面区域{(,)|1,A x y x y =+≤且0,0}x y ≥≥,则平面区域{(,)|(,)}B x y x y x y A =+-∈的面积为不等式应用1、设,x y 为实数,若2241,x y xy ++=则2x y +的最大值是 .。
若将题目改成:设0,0>>y x ,若2241,x y xy ++=则2x y +的最大值是 ,2x y +取值范围为____________.变式1、若实数y x ,满足02422=+++y y x x ,则y x +2的取值范围是_____________.变式2、已知正数y x ,满足,14222=++y xy x 则y x 2+的取值范围为__________.变式11、已知实数y x ,满足,4441=++y x则y x 22+的最大值为_____.课后作业:2、若正数x ,y 满足3x+y=5xy ,则4x+3y 的最小值是( ) A .2 B .3 C .4 D .5变式1:若,2ln 8ln 2ln ,0,0=+>>y x y x 则yx 311+的最小值为________变式2:已知a >0,b >0且a≠1,若函数y=log a x 过点(a+2b ,0),则的最小值为( )A .B .C .D .2变式3、设实数m ,n 满足m >0,n <0,且,则4m+n ( )A .有最小值9 B .有最大值9C .有最大值1D .有最小值1变式4、已知x >0,y >0,且x+8y ﹣xy=0.求:(∈)xy 的最小值; (∈)x+y 的最小值.变式5.设a >0,b >0.若4a+b=ab ,则a+b 的最小值是( )A .1B . 5C . 7D . 9变式6、已知a >0,b >0,且a+3b=ab ,则ab 的最小值为( )A . 6B . 12C . 16D .224、若b a ,为实数,满足522=+b a ,求b a 2+的最大值变式1:2522=+b a ,求b a ab 25++的最大值为_____________.变式2:已知,122=+b a 求)2)(1(++b a 的最大值。
基本不等式公式四个推导过程

基本不等式公式四个推导过程一、线性不等式的推导过程:1.首先,假设有两个实数a和b,且a≠b。
2.通过观察可以发现,当a>b时,a-b>0;当a<b时,a-b<0。
3.将这两种情况总结为一个公式:当a≠b时,a-b与a和b的大小关系一致,即(a-b>0)当且仅当(a>b)成立。
4.根据上述推导得到的公式,可以类似地推导出其他线性不等式的基本公式,如a+b>c+d时,a-c>b-d成立,等等。
二、二次不等式的推导过程:1. 首先,考虑一个二次函数y=ax^2+bx+c,其中a>0,即二次函数的开口朝上。
2. 对于二次函数y=ax^2+bx+c中的两个实数x1和x2,且x1≠x2,可以根据二次函数开口朝上的特点,得出y(x1)>y(x2)成立。
3. 将上述结论推广为二次函数y=ax^2+bx+c的基本不等式公式:当a>0时,x1≠x2,有y(x1)>y(x2);当a<0时,x1≠x2,有y(x1)<y(x2)。
4. 根据上述推导得到的公式,可以类似地推导出其他二次不等式的基本公式,如对于二次函数y=ax^2+bx+c和实数k,若a>0,且y(x1)>k,那么有y(x)>k成立,等等。
三、分式不等式的推导过程:1.首先,假设有两个实数a和b,且a≠b。
2.将a和b视为两个数的比例,即a/b,根据比例的性质可以得出以下结论:若a/b>1,则a>b;若a/b<1,则a<b。
3.将上述结论推广为分式不等式的基本公式:对于有理数a、b,且b≠0,如果a/b>1,则a>b;如果a/b<1,则a<b。
4.根据上述推导得到的公式,可以类似地推导出其他分式不等式的基本公式,如对任意有理数a、b、c,且b≠0,c≠0,若a/b>c,则a>c*b成立,等等。
四、绝对值不等式的推导过程:1.首先,考虑一个实数x,x的绝对值记为,x。
正定二次型不等式利普希茨

正定二次型不等式利普希茨全文共四篇示例,供读者参考第一篇示例:正定二次型不等式利普希茨正定二次型是数学中的一种重要概念,它在优化问题、控制理论等领域中有着广泛的应用。
在研究正定二次型的性质时,利普希茨连续性是一个重要的概念。
本文将简要介绍正定二次型以及利普希茨连续性,并讨论正定二次型不等式的利普希茨性质。
正定二次型是一个关于变量向量的二次型函数,具有很多重要的性质。
在数学中,一个二次型函数是指一个关于自变量的二次齐次多项式函数。
在正定二次型中,二次项的系数矩阵是一个对称正定矩阵,即对于任意非零向量x,都有x^T Ax > 0。
正定二次型在优化问题、控制理论等领域中有着广泛的应用,因为它具有很好的性质和结构。
利普希茨连续性是一个函数在某个区间上的连续性概念。
一个函数f(x)在区间[a, b]上是利普希茨连续的,如果存在一个正数L,使得对于所有的x, y∈[a, b],都有|f(x) - f(y)| ≤ L |x - y|。
利普希茨连续性是比一致连续性更强的一种连续性概念,它可以更好地描述函数在区间上的变化情况。
正定二次型不等式的利普希茨性质是指一个正定二次型函数在某个区间上的利普希茨连续性。
正定二次型函数一般是一个关于变量向量的二次型函数,因此它的性质和一般函数有所不同。
正定二次型不等式的利普希茨性质可以用来描述正定二次型函数在某个区间上的变化情况,从而更好地理解和分析这类函数。
正定二次型不等式的利普希茨性质具有很多重要的应用。
在优化问题中,正定二次型函数的利普希茨性质可以帮助我们更好地理解优化问题,设计更有效的优化算法。
在控制理论中,正定二次型函数的利普希茨性质可以帮助我们设计更稳定的控制系统,提高系统的性能和鲁棒性。
第二篇示例:正定二次型不等式利普希茨,是数学中一个非常重要的概念。
在数学分析、优化理论和控制理论中,正定二次型函数是一类非常常见的函数形式,它们在描述物理现象、解决实际问题以及优化算法中都有广泛的应用。
二次型的几个应用

a22x22 2a23x2x3 2a2nx2xn ann xn2
nn
aij xi x j
i1 j1
(aij aji ,i, j 1, 2,, n)
称为数域 P 上的一个 n 元二次型, 简称二次型. 当 aij 为实数时, 称 f 为实二次型. 当 aij 为复数时,
称 f 为复二次型. 如果二次型中只含有文字的平方项, 即
关于二次型的一般理论, 可参看文献[1-3,5-6], 一些专题研究可参看文献[7-9].
1 二次型及其有关定义
在这一节, 我们首先回顾《高等代数》中关于二次型的一般理论. 设 P 是一个数域, aij P , n 个文
字 x1, x2,, xn 的二次齐次多项式
f (x1, x2,, xn ) a11x12 2a12x1x2 2a13x1x3 2a1nx1xn
y3 2
y4 ) ( y3
2 y4 ) 2 y4
2 y1
2 y2
2 y3
.
所含字母 y1 , y2 , y3 均在平方中出现, 属于定理(2.1.1)中的情况, 存在最小值. 对变换后的多项式配方, 得
y12
2 y22
y32 2
2 y1
2 y2
2 y3
3
( y1
1)2
2( y2
1)2 2
( y3
2
2)2
1 2
故当 y1 1, y2
1 2
,
y3
2
时,
上式有最小值 1 . 2
将 y1, y2, y3 代入 X
PY 中,
当
x1
7 2
2 y4 ,
x2
1 2
y4 ,
x3
数学学年论文毕业论文正定二次型的判断及应用

数学学年论文毕业论文正定二次型的判断及应用正定二次型的判断及应用摘要:在二次型中,正定二次型占有特殊的地位,本文总结了正定二次型的一些判断方法及其在证明不等式与极值问题中的应用。
关键词:正定二次型正定阵顺序主子式一、正定二次型的判断: 定理1、实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是它的正惯性指数等于n证明:设实二次型AXX x x x f n '=),,,(21 经线形替换X=PY 化为标准形222211nn y d y d y d f +++=)1(其中.,,2,1,n i R d i=∈由于p为可逆矩阵,所以n x x x ,,,21 不全为零时ny y y ,,,21 也不全为零,反之亦然.)(?如果f是正定二次型,那么当n x x x ,,,21 不全为零,即n y y y ,,,21 不全为零时,有2222211>+++=n n y d y d y d f)2(若有某个),1(n i d i ≤≤比方说.0≤n d 则对1,0121=====-n n y y y y 这组不全为零的数,代入)1(式后得.0≤=n d f 这与f是正定二次型矛盾.因此,必有),,2,1.(0n i d i =>即f的正惯性指数等于n )(?如果f的正惯性指数等于,n 则),,2,1(,0n i d i=>于是当n x x x ,,,21 不全为零,即当n y y y ,,,21 不全为零时)2(式成立,从而f是正定型定理2、实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是对任何n 维实的非零列向量X 必有0>'A X X证明:)(?由假设f是正定二次型,故存在实的非退化的线形替换,QY X=使22221ny y y AX X +++=')1(对,0≠X因Q 非奇异,故,0≠Y 于是由)1(可知0>'A X X)(?设AX X '的秩与正惯性指数分别为r 与,p 先证,p r =如,r p <则由惯性定理,存在非退化的线形替换,QY X=使得221221'rp p y y y y AX X ---++=+)2(由假设,对任何,0,0>'≠AX X X 但对列向量)0,,0,1,0,,0(≠'= Q X(因Q 是非奇异阵,1是X 的第1+p 个分量)却有1<-='A X X 这与假设矛盾.故pr =.再证nr=.如果,n r<则)2(式应化为nr y y y AX X r <+++=,22221')3(于是取 0)1,0,,0(≠'= Q X由)3(即得,0='A X X又与假设矛盾,故,p n r ==即f是正定二次型定理3、实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是f的规范形为2222121),,,(nn y y y x x x f +++=证明:)(?实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型,则由定理1可知f 的正惯性指数为n ,则二次型AXX x x x f n '=),,,(21 可经过非退化实线形替换成2222121),,,(nn y y y x x x f +++=)(?f的规范形为2222121),,,(n n y y y x x x f +++= ,则f的正惯性指数为,n 由定理1可知f为正定二次型定理4、实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是矩阵A 与单位矩阵合同证明:)(?实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型,则由定理3,可知f的规范形为2222121),,,(nn y y y x x x f +++=此即存在非退化线形替换(CY X=其中C 可逆),使得2222121)()(),,,(nn y y y ACYC Y CY A CY AXX x x x f +++=''='='=所以,E ACC ='因此矩阵A 单位矩阵合同)(?矩阵A 单位矩阵合同,则存在可逆矩阵,C 使得EACC =',令CYX=则2222121)()(),,,(nn y y y ACYC Y CY A CY AX X x x x f +++=''='='=因此,由证明4,可知f是正定二次型定理5、实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是矩阵A 的主子式全大于零证明:)(?实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型,以kA 表示A的左上角k 阶矩阵,下证),,,2,1(,0n k A k =>考虑以k A 为矩阵的二次型jki kj i ij k xx a x x x g ∑∑===1121),,,(由于)0,,0,,,,(),,,(2121 k k x x x f x x x g =所以当k x x x ,,,21 不全为零时,由f 正定二次型可知,0>g从而g 为正定二次型,固.0>k A)(?对二次型的元数n 作数学归纳法当1=n时,,)(21111x a x f =因为,011>a 所以f 正定,假设,1>n 且对1-n 元实二次型结论成立由于,01111>=a a 用111a a i -乘A 的第1列到第i 列,再用111a a i -乘第A 的第1行到第i 行),,,3,2(n i=经此合同变换后A ,可变为以下的一个矩阵000111A aB =因为矩阵A 与B 合同,所以B 是一个n 阶对称矩阵.从而1A也是对称矩阵.上述的变换不改变A 的主子式的值,因此B ,的主子式也全大于零,而B 的)2(n k k ≤≤阶主子式等于1A 的1-k 阶主子式乘以,11a 并且011>a 于是1A 的主子式全大于零,由归纳假设,1A 与1-n I 合同,所以A 与单位矩阵合同,此即f 是正定二次型定理6、实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是矩阵A 的顺序主子式全都大于零证明:)(?实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型,则由定理5可知A 的主子式全大于零,所以A 的顺序主子式也全大于零.)(?对二次型的元数n作数学归纳法当1=n时,,)(21111x a x f =由条件知,011>a 所以)(1x f 是正定的.假设充分性的判断对于1-n 元的二次型已经成立,现在来证n 元的情形.令1A =?----1,11,11,111n n n n a a a a=-nn n a a ,11α于是矩阵A 可以分块写成:A ='nna A αα1则1A 的顺序主子式也全大于零,由归纳法假定,1A 是正定矩阵则存在可逆的1-n 阶矩阵,G 使得1-='n E AG G令1C =100G于是''=???? ?????? ??'???? ??'='-nn n nn a G G E Ga A G ACC αααα111110010再令2C =--10'1a G E n则有?''-=''-ααG G a E C AC C C nn n 012112 令21C C C =dG G a nn =''-αα就有='d AC C11两边取行列式,dA C=2,则由条件,0>A 因此0>d.=??????? ?d d d 111111111所以矩阵A 与单位矩阵合同,因此A 是正定矩阵即f是正定二次型定理7、实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是矩阵TT T A('=是实可逆矩阵)证明:)(?实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型,则由定理4可知存在可逆矩阵,C 使得EAC C ='则 1111)()(----'='=CCCC A令1-=CT,则T T A '=)(?若,T T A '=则 )()(),,,(21TX TX TX T X AX X AX X x x x f n '=''='='=令TXY=则 2222121),,,(nn y y y Y Y x x x f +++='=所以f 为正定二次型.定理8、实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是ATT '正定矩阵(其中T 是实可逆矩阵) 证明:)(?实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型,则A是正定阵, 令(1Y X T=-其中T 可逆)则 A T Y T Y TY A TY x x x f n ''='=)()(),,,(21又因非退化线性替换不改变正定性,则ATYT Y x x x f n ''=),,,(21是正定二次型,所以AT T '是正定阵)(?ATT '是正定阵,令ATYT Y y y y g n ''=),,,(21 ,则),,,(21n y y y g 是正定二次型令TYX=则),,,(21n y y y g AXX x x x f n '==),,,(21 是正定二次型定理9、实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是矩阵A 的全部特征值都是正的证明:)(?实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型,则A是正定阵,又对于任意一个n 阶实对称矩阵,A 都存在一个n 阶正交矩阵,T 使得ATTAT T 1'-=成为对角形令AT T AT T 1'-==n λλ1则),,2,1(,0n i i =>λ否则与f为正定二次型相矛盾,则ATT1-特征值为n λλλ,,,21 均大于零,即为正的.又相似矩阵有相同特征值,则A 的特征值也均为正)(? A的全部特征值均为正的,则存在一个n 阶正交矩阵,T 使得AT T AT T 1'-==n λλ1其中),,2,1(n i i =λ为A 的特征值,此由相似矩阵有相同的特征值得到. 令,TY X=则222221121),,,(nn n y y y A T Y T Y AXX x x x f λλλ+++=''='=所以f为正定二次型定理10、实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是矩阵A 是正定阵证明:)(?实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型,则由正定阵的定义可知A 是正定阵.)(? A 是正定阵,则A 的顺序主子式全都大于零.由定理6可知f是正定二次型.二、实二次型的正定性证明不等式例1 设)(ij t T=是一个n 阶实非退化矩阵,求证:≤2T)(222121ni i ni i t t t +++∏=证明:若A 是正定矩阵,必有nna a a A 2211≤, 其中nn a a a ,,,2211 是A 的主对角线上的元素因为T 是实非退化矩阵,所以=nn n n n n nnnnn n t t t t t t t t t t t t t t t t t t T T 212222111211212221212111'=∑∑∑===nk knnk k nk k t t t 12122121是正定矩阵,由上述定理得)(112'∏∑==≤ni nk ki t T T =)(222121ni i ni i t t t +++∏=此即,≤2T)(222121ni i ni i t t t +++∏=三、实二次型的正定性在极值问题中的应用例1、求三元函数y y x zyxz y x f u642),,(222-++++==的极值解:先求三个一阶偏导数,令它们为0,解方程组得驻点,再求二阶偏导数得二次型的相应矩阵,A 由A 的正定性确定极值=-==+=??=+=??062042022z zU y y U x x U=-=-=321z y x得驻点)3,2,1(0--p222=??xU2=yx U2=zx U2=xy U222=??y U2=zy U2=xz U2=yz U222=??zU所以A =200020002 因为A 为正定阵,所以得极小值143*6)2(*4)1(*23)2()1()3,2,1(2220-=--+-++-+-=--=f p U参考文献:[1] 王向东《高等代数常用方法》科学出版社[2] 霍元极《高等代数》北京师范大学出版社 [3] 屠伯埙《高等代数》上海科技出版社 [4] 张盛祝《高等代数典型方法》信阳师范学院数学系Is deciding two times of judgments and the applicationAbstract: In two center, was deciding two time holds the special status, this article summarizes has been deciding in two times of so judgments methods and its in the proof inequality and the minimum problem application.Key words: Is deciding two time Is deciding The smooth principal minor。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次型与不等式
二次型是高等数学中的一个重要概念,它在数学、物理、工程等领域都有广泛的应用。
本文将介绍二次型的概念、性质以及与不等式的关系。
一、二次型的定义
二次型是指具有形式为 $Q(x)=x^{T}Ax$ 的函数,其中$xinmathbb{R}^{n}$,$A$ 是一个 $ntimes n$ 的实对称矩阵。
其中,$x^{T}$ 表示 $x$ 的转置,$Q(x)$ 称为二次型的值。
二次型的定义可以进一步解释为:对于一个 $n$ 元实数向量$x=(x_{1},x_{2},dots,x_{n})^{T}$,其对应的二次型值为
$Q(x)=sumlimits_{i=1}^{n}sumlimits_{j=1}^{n}a_{ij}x_{i}x_{j }$,其中 $a_{ij}$ 是实数。
二、二次型的性质
1. 对称性:若 $A$ 是一个实对称矩阵,则 $Q(x)=x^{T}Ax$ 是一个对称函数,即 $Q(x)=Q(x^{T})$。
2. 非负性:对于任意 $xinmathbb{R}^{n}$,有
$Q(x)geqslant0$。
当 $x
eq0$ 时,$Q(x)>0$。
3. 正定性:若对于任意非零向量 $xinmathbb{R}^{n}$,有
$Q(x)>0$,则称 $Q(x)$ 是正定的。
4. 半正定性:若对于任意非零向量 $xinmathbb{R}^{n}$,有$Q(x)geqslant0$,则称 $Q(x)$ 是半正定的。
5. 负定性:若对于任意非零向量 $xinmathbb{R}^{n}$,有
$Q(x)<0$,则称 $Q(x)$ 是负定的。
6. 半负定性:若对于任意非零向量 $xinmathbb{R}^{n}$,有$Q(x)leqslant0$,则称 $Q(x)$ 是半负定的。
7. 不定性:若存在非零向量 $x_{1},x_{2}inmathbb{R}^{n}$,使得 $Q(x_{1})>0$,$Q(x_{2})<0$,则称 $Q(x)$ 是不定的。
三、二次型与不等式的关系
二次型与不等式有着密切的关系。
下面分别介绍二次型在不等式中的应用。
1. 凸二次型与二次函数的最小值
对于一个凸二次型 $Q(x)$,其最小值可以通过求解 $Q(x)$ 的一次项系数为零的点来得到。
具体来说,设 $Q(x)=ax^{2}+bx+c$,则当 $x=-dfrac{b}{2a}$ 时,$Q(x)$ 取得最小值
$dfrac{4ac-b^{2}}{4a}$。
2. 二次型在约束条件下的最优值
对于一个二次型 $Q(x)$,我们希望在满足一定约束条件的前提下,找到使 $Q(x)$ 最小的向量 $x$。
这个问题可以通过拉格朗日乘子法来解决。
具体来说,假设约束条件为 $g(x)=0$,则最优值对应的 $x$ 满足如下方程组:
$$begin{cases} dfrac{partial}{partial x_{1}}(Q(x)-lambda g(x))=0 dfrac{partial}{partial x_{2}}(Q(x)-lambda g(x))=0 cdots dfrac{partial}{partial x_{n}}(Q(x)-lambda g(x))=0
g(x)=0 end{cases}$$
其中,$lambda$ 是拉格朗日乘子。
3. 二次型与不等式的关系
设 $Q(x)=x^{T}Ax$,$b$ 是一个 $n$ 元实数向量,则以下不等式等价:
$$Q(x)geqslant b^{T}x$$
$$Q(x)-b^{T}xgeqslant0$$
$$x^{T}Ax-b^{T}xgeqslant0$$
$$dfrac{1}{2}x^{T}Ax-x^{T}bgeqslant0$$
其中,当 $A$ 是正定矩阵时,第一个不等式成立;当 $A$ 是半正定矩阵时,第二个不等式成立;当 $A$ 是负定矩阵时,第三个不等式成立。
四、结论
二次型作为高等数学中的一个重要概念,在数学、物理、工程等领域都有广泛的应用。
本文介绍了二次型的概念、性质以及与不等式的关系,希望读者能够更好地理解和应用这一概念。