材料的疲劳与断裂

合集下载

金属材料的疲劳与断裂机制

金属材料的疲劳与断裂机制

金属材料的疲劳与断裂机制随着科学技术的不断发展,金属材料在我们的生活中扮演着越来越重要的角色。

无论是制作机器、建筑结构还是汽车、航空航天等领域,金属材料都是不可或缺的材料之一。

与此同时,金属材料的疲劳与断裂问题也越来越引起人们的关注。

在本文中,我们将探讨金属材料的疲劳与断裂机制。

首先,我们需要明确什么是疲劳及其机制。

疲劳是指材料在交替载荷循环下,出现的渐增裂纹扩展和终至断裂的现象。

简单来讲,就是材料长时间的受外力而发生的老化现象,最终造成材料损坏甚至断裂。

而疲劳的机制则是由于金属材料中晶界(晶粒之间的交界面)会在多次反复受载荷下产生微小的位移,从而使晶界附近的原子缺陷不断累积,导致晶界上的裂纹扩展和终于断裂。

那么,如何预测和延缓金属材料的疲劳断裂呢?这时就需要了解金属材料断裂的机理。

材料断裂涉及到多个层面,从宏观到微观逐步深入。

宏观上,断裂的形式可以分为脆性断裂和塑性断裂两种。

脆性断裂指材料在受到载荷时,很快就突然断裂了,而塑性断裂指在受到载荷时,材料逐渐失去强度向外延伸,最终断裂。

微观上,材料的断裂机制主要由原子、晶粒等层面的力学和物理因素所控制。

为了预测和延缓金属材料的疲劳断裂,我们可以采取多种措施。

一是降低工作环境中的载荷大小、频率和气温等,从而降低材料的应力水平;二是在金属材料预制过程中,添加特殊的合金元素,如铬、锰等,来增强材料的抗疲劳性能;三是定期检查和维护设备,避免设备老化或失修导致疲劳断裂等。

另外,金属材料的疲劳与断裂问题也给材料科学家带来了创新的机会。

如今,新型材料的研究和开发正在不断向前推进。

有些新型材料如高韧性合金、纳米材料等,通过调整其内部结构和力学性质,可以使其具有更好的疲劳抗性和延展性,更适合于特定的应用场合。

同时,理论模拟计算技术的不断发展也为对金属材料疲劳与断裂机制进行基础研究提供了新的研究手段。

总之,金属材料的疲劳与断裂问题对我们日常生活和工业生产都有重要的影响。

疲劳极限与断裂韧性

疲劳极限与断裂韧性

疲劳极限与断裂韧性
材料的疲劳极限
疲劳时应力远低于静载下材料的屈服强度极限,因而屈服强度或强度极限已不能作为交变应力下的强度指标,需要重新测定金属的疲劳强度指标。

疲劳实验表面,在同以循环特征γ
的交变应力下,循环次数Ν随交变应力的最大应力Smax的减小而增大,当Smax减小到某一数值时,Ν趋于无限大。

材料经历无限次应力循环而不疲劳时的交变应力的最大应力,称为材料的疲劳极限,或称持久极限。

材料的断裂韧性
实验证明,对于一定厚度的平板,不管所施加的应力б与裂纹长度α为何值,只要应力强度因子达到某一数值时,裂纹就开始扩展,并可能使平板断裂。

使裂纹开始扩展的应力强度因子值,称为材料的断裂韧性,用Kc表示。

断裂韧性的大小是衡量含裂纹材料抵抗断裂失效能力的强度指标,通过断裂实验得到。

材料疲劳断裂的改善方法

材料疲劳断裂的改善方法

材料疲劳断裂的改善方法
材料疲劳断裂是指材料在受到循环载荷作用下逐渐发展并最终导致断裂的现象。

为了改善材料的疲劳断裂性能,可以采取以下方法:
1. 材料选择,选择具有较高抗疲劳性能的材料,如高强度钢、铝合金等,以提高材料的抗疲劳能力。

2. 表面处理,通过表面处理方式如喷丸、表面渗碳、氮化等提高材料表面的强度和耐疲劳性能,延长材料的使用寿命。

3. 结构设计,合理设计零部件结构,避免应力集中和缺口等缺陷,采用圆角、过渡半径等设计措施,减小应力集中,从而提高疲劳强度。

4. 表面涂层,采用表面涂层技术,如热喷涂、镀层等方式改善材料的表面性能,提高抗疲劳性能。

5. 热处理,通过热处理方式如回火、正火等改善材料的组织结构和性能,提高材料的抗疲劳能力。

6. 残余应力控制,通过冷加工、热处理等方式控制材料的残余
应力,减小应力集中,提高疲劳寿命。

7. 疲劳监测与预测,建立疲劳损伤的监测与预测体系,对材料
进行定期检测,及时发现疲劳损伤并采取相应措施。

综上所述,改善材料疲劳断裂的方法包括材料选择、表面处理、结构设计、表面涂层、热处理、残余应力控制以及疲劳监测与预测
等多种途径,通过综合应用这些方法可以有效提高材料的抗疲劳性能,延长材料的使用寿命。

材料力学中的断裂和疲劳分析

材料力学中的断裂和疲劳分析

材料力学中的断裂和疲劳分析在工程领域中,对材料的强度和耐久性进行评估和分析是至关重要的。

而在材料力学中,断裂和疲劳分析是两个重要的研究方向。

本文将从理论和应用两个方面,介绍材料力学中的断裂和疲劳分析。

首先,我们来介绍断裂分析。

断裂是指在外部加载下,材料的破坏。

断裂分析的目的是通过研究材料的断裂机制,预测和防止材料的破坏。

断裂分析的核心是断裂力学,它通过分析应力场、应变场和裂纹尖端处的应力强度因子来揭示裂纹扩展的行为。

在断裂力学中,有两个经典理论被广泛应用:线弹性断裂力学和弹塑性断裂力学。

线弹性断裂力学适用于处理材料的线弹性阶段,即只存在弹性变形,不发生塑性变形的情况。

而弹塑性断裂力学则适用于材料同时发生弹性和塑性变形的情况。

对于断裂力学的研究,一个重要的参数是断裂韧性。

断裂韧性是描述材料抵抗裂纹成长的能力,通常通过KIC来表示。

KIC是裂纹尖端处单位断裂韧性的衡量指标,一般情况下,KIC越大,材料的抗裂纹扩展能力越强。

断裂韧性的评估对于确保材料的可靠性和耐久性至关重要。

接下来,我们来了解疲劳分析。

疲劳是指在循环加载下,材料经历应力的反复变化而引起的破坏。

疲劳是材料工程中非常常见的一种破坏模式,因此对于疲劳强度的评估和分析也是非常重要的。

疲劳分析的核心是疲劳强度理论。

常见的疲劳强度理论有极限应力理论、极限变形理论和能量理论等。

这些理论通过对应力和应变历程的分析,确定了材料的疲劳强度边界,从而指导工程实践中的材料选择和设计。

除了理论研究,疲劳分析中还有实验方法。

疲劳试验是评估材料疲劳性能的重要手段。

通过在标准试样上施加循环加载,可以测定材料的疲劳寿命和疲劳强度。

这些试验结果可以为工程实践中的疲劳分析提供可靠的参考。

近年来,随着计算机技术的快速发展,有限元分析成为疲劳分析的重要方法之一。

有限元分析可以通过数值计算模拟材料在复杂载荷下的应力和应变分布情况,从而预测材料的疲劳寿命和破坏位置。

这一方法不仅减少了试验成本和时间,还提高了分析的准确性和可靠性。

材料断裂时的三种常见断裂模式

材料断裂时的三种常见断裂模式
韧性断裂的特点:灰色的粗糙表面;高低不平;可能有剪切唇(在断裂边缘与载荷成45°角);截面收缩;断口微观形貌 通常有韧窝。
最后需要说明的是,在一个断裂材料中,其可能有多种断裂模式,比如既有疲劳断裂又有脆性断裂等。但我们只要知道
了材料断裂的几种基本模式,通过对断口的分析,让我们用一种相对容易的方法了解产品机械失效事故中可能的根本原因。
的断口表面外观特征为无光泽的纤维状。大多数多晶体金属的拉伸试验的延性断裂有三个明显的阶段。首先,试样开始出现局 部“颈缩”,并在“颈缩”区域产生小的分散的空穴,接着这些小空穴不断增加和扩大并聚合成微裂纹,裂纹方向一般垂直于拉应 力方向。最后,裂纹沿剪切面扩展到试件表面,剪切面的方向与拉伸轴线近似成45°。这三个阶段就构成了通常所见的典型 的“杯锥”失效断面。因为延性断裂在断裂前出现大量的塑性变形,有明显的失效预兆,韧性断裂一般由超载所引起,它对构件 和环境造成的危险性要小于脆性断裂。
一.疲劳断裂(Fatigue Fracture) 疲劳断裂是由于结构或接头本身存在缺陷,如咬边(undercut), 裂纹(Crack),夹渣(Slag inclusion),气孔 (porosity),电弧擦伤(Arc Strike)以及机械损伤(Mechanical Damage)等等导致应力集中,在小于屈服应力的周期载荷 的作用下发生了断裂(fracture)。 疲劳断裂的特点:断裂面和载荷方向呈90°角;断裂面非常光滑;如果存在多个初始断裂点,可能会有阶梯状;由于载荷 的作用,可能存在显示断裂过程的条纹(Beach Mark)。 二.脆性断裂(Brittle Fracture) 构件或接头在降低环境温度或者操作温度时,在厚度较大、脆性较大同时存在较大的残余应力(Residual Stress)的材 料上,由于缺口(Notch)的存在和载荷的增加,就会产生脆性断裂。在多晶体材料中,断裂是沿着各个晶体内部的解理面产 生的.但由于材料中各个晶体及解理面的方向是变化的,因而断裂表面在外观上呈现粒状。脆性断裂有时主要沿晶界产生,因

材料的疲劳损伤与断裂

材料的疲劳损伤与断裂

Lower flange at A-A
40 years of service life: 21224040=230,400 cycles of bending moment WL/4.
.
工程中的疲劳现象
Case 2: rotating shaft with overhung flywheel
Service conditions: Load W, constant Shaft rotates at 250 rev/min, 8hr/day, 300 days/yr
.
工程中的疲劳现象
.
工程中的疲劳现象
二次大战期间,400余艘全焊接舰船断裂
.
工程中的疲劳现象
2005.4.25, 上午9:20, 日本兵库县尼崎 市列车脱轨:死亡106人,伤400人
1998.6.3,德国埃舍德小镇,高速列 车脱轨:101人死亡,200人受伤,88
人重伤
预防疲劳失效!是轨道交通的核心科技问题之一
2. Goodman提出 了考虑平均应力 影响的简单理论。
3. Bauschinger提 出了应力-应变滞 后回线的概念。
1829
1839
1860
.
1890
疲劳的发展历史
1871年,Wohler首先对铁路车轴进行了系统的疲劳研究, 发展了旋转弯曲疲劳试验,. S-N曲线及疲劳极限概念。
疲劳的发展历史
.
疲劳损伤的微观机制
.
疲劳损伤的微观机制
Cyclic Slip - initial arrangements
.
Cyclic Hardening
疲劳损伤的微观机制
Surface relief
Shear cracks formation

结构材料的疲劳与断裂分析

结构材料的疲劳与断裂分析

结构材料的疲劳与断裂分析疲劳与断裂是结构材料领域中重要的研究方向之一。

本文将就疲劳与断裂分析的基本原理、应用方法以及相关工程实例进行介绍和讨论。

一、疲劳分析疲劳是结构材料在交变应力作用下的损伤积累过程。

疲劳分析的目的是通过对材料的疲劳性能进行评估,为结构的寿命预测和优化设计提供依据。

A. 疲劳机理1. 应力集中:应力集中是导致疲劳破坏的主要原因之一。

在结构材料中,存在各种应力集中因素,如几何形状的不连续性、孔洞、切口等。

这些应力集中因素会导致应力集中,从而增加了疲劳破坏的可能性。

2. 微裂纹扩展:在结构材料的疲劳过程中,微裂纹的扩展是一个重要的损伤机制。

当材料受到交变应力作用后,应力集中处的微裂纹开始扩展,逐渐导致疲劳破坏。

B. 疲劳评估方法1. 高周疲劳:高周疲劳是指工作循环数大于10^4次的情况。

常用的高周疲劳评估方法有SN曲线法、TF曲线法等。

SN曲线法通过实验得到应力与寿命的关系曲线,用于寿命预测和材料性能评估。

2. 低周疲劳:低周疲劳是指工作循环数小于10^4次的情况。

对于低周疲劳,常用的评估方法有塑性应变能法、能量积累法等。

这些方法通过评估材料的能量损耗和塑性应变能来进行疲劳寿命预测。

二、断裂分析断裂是结构材料在受到过大应力作用下发生的破坏。

断裂分析的目的是评估材料的断裂性能,为结构设计提供参考。

A. 断裂机理1. 裂纹扩展:在结构材料受到应力作用时,裂纹的孔洞周围会产生高应力集中,导致裂纹扩展并最终引发断裂破坏。

裂纹扩展过程可以使用线弹性力学理论和断裂力学原理进行分析。

2. 断裂模式:材料的断裂模式包括拉伸、压缩、剪切等。

不同的断裂模式对应不同的应力应变行为和断裂形态,需要通过实验和数值模拟进行评估和描述。

B. 断裂评估方法1. 线性弹性断裂力学:线性弹性断裂力学使用线性弹性力学理论对裂纹尖端附近应力状态进行分析,以确定断裂参数,如应力强度因子和断裂韧性。

这些参数对于评估材料的断裂性能和裂纹扩展行为至关重要。

材料的疲劳和断裂行为

材料的疲劳和断裂行为

材料的疲劳和断裂行为疲劳和断裂是材料工程中的重要研究领域。

疲劳是指材料在经历了重复加载或应力变化后,由于内部微观缺陷逐渐积累,最终导致材料的失效。

而断裂则是指材料在承受高应力或者外力集中作用下发生裂纹扩展的现象。

本文将深入探讨材料的疲劳和断裂行为,并分析其机理和影响因素。

一、疲劳行为材料的疲劳行为广泛存在于我们生活和工作的各个领域。

例如,金属材料在机械工程中的零部件、桥梁结构和飞机构件等地方,由于长期受到复杂的力学载荷,易出现疲劳失效。

疲劳失效不仅会给工程的安全性和可靠性带来威胁,也会增加维修和更换的成本。

1. 疲劳断裂机理在受疲劳加载作用下,材料内部的微观缺陷会逐渐积累导致裂纹的形成和扩展。

这些微观缺陷包括晶界、夹杂物、夹层、腐蚀坑等。

当应力斑马纹通过这些缺陷时,会导致位错的生成和扩展,从而引起材料的疲劳断裂。

2. 疲劳寿命与应力幅关系材料的疲劳寿命与应力幅之间存在一定的关系。

应力幅越大,疲劳寿命越短;应力幅越小,疲劳寿命越长。

这是由于应力幅增加会导致材料内部位错、裂纹等缺陷的生成和扩展速度增加,从而缩短了材料的使用寿命。

3. 影响疲劳行为的因素除了应力幅外,疲劳行为还受到多种因素的影响。

其中包括材料的力学性能、表面质量、温度、湿度、载荷频率、环境介质等。

材料的力学性能如强度、韧性、硬度等,对材料的疲劳行为具有重要影响。

同时,表面质量的好坏、温度和湿度的变化也会引起材料内部微观缺陷的形成和扩展。

二、断裂行为除了疲劳行为外,材料的断裂行为也是值得重视的。

断裂指的是材料在受到高应力或者外力集中作用下发生裂纹扩展的现象。

在工程实践中,为了减缓断裂失效对工程结构和设备造成的危害,需要对材料的断裂行为进行深入研究。

1. 断裂机理材料的断裂机理可以分为静态断裂和动态裂纹扩展两个阶段。

静态断裂是指在裂纹形成之前,材料的应力集中到达临界值,导致断裂开始。

而动态裂纹扩展则是指裂纹在外力作用下迅速扩展,直到材料完全失效。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.材料弹性变形和金属塑性变形的本质?
2.材料的断裂是如何分类的?韧性断裂和脆性断裂的微观形貌各有哪些特征?
3.金属在怎样的外因条件下会发生韧性-脆性转变,为什么?
4.材料的静态韧性、冲击韧性和断裂韧性的物理意义和数学表达?
5.试比较σ与K 以及b σ与C K I 的区别与联系?
6.推到Griffith 脆断强度理论公式?★(很大可能会考到)
7.典型的疲劳寿命曲线是怎样的?分为几个区?疲劳极限的定义?
8.某正弦波疲劳试验的平均应力为100MPa ,应力限为200MPa ,试求加载的最大应力、最小应力、应力比和应力范围?
9.平均应力是怎样影响疲劳寿命的(作图说明)?试举出生产中人为改变平均应力提高疲劳寿命的工艺措施。

10.Miner 线性累计疲劳损伤定则是如何处理变幅载荷疲劳问题的?
11.疲劳失效的主要过程有三个:疲劳裂纹形成、疲劳裂纹扩展和当裂纹扩展达到临界尺寸时,发生最终的断裂。

宏观尺度的疲劳裂纹形成包括三个阶段:微裂纹的形成、微裂纹的长大和微裂纹的联接。

疲劳微裂纹的形成三种方式:表面滑移带开裂、夹杂物与基体相界面分离或夹杂物本身断裂,以及晶界或亚晶界开裂。

(这个题没抄全,只记得老师说三个代表了,大概也许应该是这个,三个三)
12.何谓第一类模拟疲劳试验和第二类模拟疲劳试验?
13.作图说明P-S-N 曲线与S-N 曲线的区别与联系。

14.示意画出S-N 曲线、P-S-N 曲线和用裂纹形成寿命分解的S-N 曲线。

分析疲劳数据分散性产生的基本原因。


15.试作图说明疲劳裂纹扩展的一般规律?如何估算裂纹扩展寿命?
16.试比较高温疲劳与热疲劳的区别与联系?与常温疲劳相比高温疲劳有何特点?
17.试比较C K I 、SCC K I 、th K ∆与I K 的区别与联系。

如何估算一个可能含
裂纹而无损检测合格的零件的最大许用服役应力?
18.无限寿命设计与有限寿命设计的基本思想是甚么?
19.简述“失效-安全”的概念。

20.简述损伤容限设计的基本思想。

21.“工程上要求构件各部位的服役应力不能超过屈服强度(2.0σ),因而研究塑性变形问题在工程上应用价值不大。

”这种说法正确否?为什么?
22.“在役飞机的零部件,特别是飞机发动机的零部件是绝对不能含有裂纹运行的,因此在航空领域研究和估算裂纹扩展寿命问题毫无意义,只要研究裂纹萌生寿命的问题即可”。

这种说法正确否?为什么?
23.颤振可认为是一种振幅较小、频率较高的疲劳载荷,通常情况下对材料不会造成损伤。

为什么航空发动机的某些构件在服役过程中会由于颤振而失效?。

相关文档
最新文档