材料的疲劳损伤与断裂80

合集下载

固体力学中的材料损伤与断裂行为研究

固体力学中的材料损伤与断裂行为研究

固体力学中的材料损伤与断裂行为研究在固体力学中,材料的损伤和断裂行为是一个重要的研究领域。

材料的损伤是指材料在外界作用下,出现不可逆的破坏和变形现象。

而材料的断裂则是指材料在承受一定载荷后,发生裂纹的现象,导致材料完全或部分失去原有的承载能力。

材料的损伤和断裂行为与工程结构的安全性和可靠性密切相关。

在实际工程应用中,各种材料都可能遇到不同程度的损伤和断裂问题,如金属材料、混凝土、陶瓷等。

因此,对材料的损伤和断裂行为进行研究是非常重要和必要的。

在损伤和断裂行为的研究中,通常会进行大量的试验和数值模拟。

试验是通过构建合适的试件,施加不同的载荷和环境条件,观察材料的损伤和断裂过程,获得相关的力学性能参数。

数值模拟则是通过建立适当的数学模型和计算方法,对材料的损伤和断裂行为进行模拟和预测。

在材料损伤的研究中,最常见的是微观损伤模型和宏观损伤模型。

微观损伤模型关注的是材料内部微观结构的损伤过程,如晶体塑性变形、晶粒疲劳和裂纹扩展等。

宏观损伤模型则更注重材料整体的损伤演化规律,可以通过物理试验和数值模拟进行验证和修正。

材料的断裂行为研究主要包括断裂力学和断裂韧性。

断裂力学是研究材料断裂骨架的形成和破坏过程,通过应力集中因子和断裂标准来预测断裂扩展的位置和速度。

而断裂韧性则是衡量材料抵抗断裂的能力,它与材料的韧性和断裂强度有关。

近年来,随着计算机技术的发展和进步,数值模拟在材料损伤和断裂行为研究中发挥了越来越重要的作用。

有限元法是最常用的数值模拟方法之一,它可以对复杂的材料和结构进行精确的力学分析和预测。

除了微观和宏观的损伤和断裂模型外,还有一些新的研究方向和方法被应用于材料损伤和断裂行为的研究中。

例如,声发射技术可以通过检测材料中产生的声波信号,实时监测材料的损伤和断裂过程。

纳米级的力学实验和原位观测技术可以揭示材料的微观损伤和断裂行为。

总之,固体力学中的材料损伤和断裂行为研究是一个非常重要且具有挑战性的领域。

材料力学之材料疲劳分析算法:断裂力学模型:实验方法与材料疲劳性能测试.Tex.header

材料力学之材料疲劳分析算法:断裂力学模型:实验方法与材料疲劳性能测试.Tex.header

材料力学之材料疲劳分析算法:断裂力学模型:实验方法与材料疲劳性能测试1 材料疲劳分析基础1.1 疲劳分析的基本概念疲劳分析是材料力学的一个重要分支,主要研究材料在循环载荷作用下逐渐产生损伤并最终导致断裂的过程。

材料在承受重复或周期性的应力时,即使应力远低于材料的静态强度极限,也可能发生疲劳破坏。

这一现象在工程设计中极为关键,因为许多结构件如桥梁、飞机部件、机械零件等,都可能在使用过程中遭受循环载荷。

1.1.1 原理与内容疲劳分析的基本概念包括:-应力幅:循环应力中最大应力与最小应力之差的一半。

-平均应力:循环应力中最大应力与最小应力的平均值。

-应力比:最小应力与最大应力的比值。

-循环次数:材料承受循环载荷的次数,直到发生疲劳破坏。

-疲劳强度:材料在特定循环次数下不发生疲劳破坏的最大应力。

1.2 疲劳损伤累积理论疲劳损伤累积理论是评估材料在不同载荷循环下累积损伤程度的理论。

其中,最著名的理论是Miner线性损伤累积理论,该理论认为材料的疲劳损伤是线性累积的,即每一次载荷循环对材料的总损伤贡献是相同的。

1.2.1 原理与内容Miner线性损伤累积理论的公式为:D=∑N i N fni=1其中:-D是总损伤度。

-N i是在应力水平i下的循环次数。

-N f是在应力水平i下材料的疲劳寿命。

1.2.2 示例代码假设我们有以下数据:-材料在应力水平100MPa下的疲劳寿命为10000次。

-材料在应力水平200MPa下的疲劳寿命为5000次。

-材料在应力水平300MPa下的疲劳寿命为2000次。

在实际应用中,材料可能在这些应力水平下分别承受了5000次、2000次和1000次循环。

1.3 S-N曲线与疲劳极限S-N曲线是描述材料疲劳性能的重要工具,它表示材料的应力水平与所能承受的循环次数之间的关系。

疲劳极限是指在无限次循环下材料能够承受而不发生疲劳破坏的最大应力。

1.3.1 原理与内容S-N曲线通常通过实验数据绘制,实验中材料样品在不同应力水平下进行循环加载,直到发生疲劳破坏,记录下每个应力水平下的循环次数。

疲劳极限与断裂韧性

疲劳极限与断裂韧性

疲劳极限与断裂韧性
材料的疲劳极限
疲劳时应力远低于静载下材料的屈服强度极限,因而屈服强度或强度极限已不能作为交变应力下的强度指标,需要重新测定金属的疲劳强度指标。

疲劳实验表面,在同以循环特征γ
的交变应力下,循环次数Ν随交变应力的最大应力Smax的减小而增大,当Smax减小到某一数值时,Ν趋于无限大。

材料经历无限次应力循环而不疲劳时的交变应力的最大应力,称为材料的疲劳极限,或称持久极限。

材料的断裂韧性
实验证明,对于一定厚度的平板,不管所施加的应力б与裂纹长度α为何值,只要应力强度因子达到某一数值时,裂纹就开始扩展,并可能使平板断裂。

使裂纹开始扩展的应力强度因子值,称为材料的断裂韧性,用Kc表示。

断裂韧性的大小是衡量含裂纹材料抵抗断裂失效能力的强度指标,通过断裂实验得到。

材料的疲劳性能

材料的疲劳性能

图5-11
2020/5/4
● 三、 过载持久值及过载损伤界 ●研究意义: ●过去人们一直认为,承受交变载荷作用的机件
按-1确定许用应力是安全的,但是没有考虑特
殊情况。实际上,机件在服役过程中不可避免 地要受到偶然的过载荷作用,如汽车的急刹车、 突然启动等。还有些机件不要求无限寿命,而 是在高于疲劳极限的应力水平下进行有限寿命 的服役。在这些情况下,仅依据材料的疲劳极 限是不能全面准确评定材料的抗疲劳性能的, 所以我们要了解过载持久值和过载损伤界。
2020/5/4
规则周期变动应力(循环应力) 无规则随机变动应力
变动应力如图5-1 所示。
生产中机件正常工作 时,其变动应力多为循 环应力,实验室也容易 模拟,所以研究较多。
应力大小变化
应力大小、方向无规则变化
应力大小、方向都变化
2020/5/4
图5-1 变动应力示意图
σ
r=0 r=–1
r=–∞
1 1
2
2
8
3
3 5 7 9
4
46
5
6
10 12 14
11 13
水平下进行,如图5-8所示。
图5-8 升降法测定疲劳极限示意图
原则是:凡前一个试样达不到规定的循环周次就断裂(用
表示),则后一个试样就在低一级应力水平下进行试验;若
前一个试样在规定循环周次下仍然未断(用 表示),则后一个
试样就在高一级应力水平下进行,如此得到13个以上的有效
●本章主要介绍:
● 金制 属。 疲介 劳绍 的估 基算 本裂 概纹 念形 和成 一寿 般命 规的 律方 。法 疲。 劳 失 效 的 过 程 和 机
2020/5/4
第一节疲劳破坏的一般规律

材料的疲劳损伤与断裂

材料的疲劳损伤与断裂

Lower flange at A-A
40 years of service life: 21224040=230,400 cycles of bending moment WL/4.
.
工程中的疲劳现象
Case 2: rotating shaft with overhung flywheel
Service conditions: Load W, constant Shaft rotates at 250 rev/min, 8hr/day, 300 days/yr
.
工程中的疲劳现象
.
工程中的疲劳现象
二次大战期间,400余艘全焊接舰船断裂
.
工程中的疲劳现象
2005.4.25, 上午9:20, 日本兵库县尼崎 市列车脱轨:死亡106人,伤400人
1998.6.3,德国埃舍德小镇,高速列 车脱轨:101人死亡,200人受伤,88
人重伤
预防疲劳失效!是轨道交通的核心科技问题之一
2. Goodman提出 了考虑平均应力 影响的简单理论。
3. Bauschinger提 出了应力-应变滞 后回线的概念。
1829
1839
1860
.
1890
疲劳的发展历史
1871年,Wohler首先对铁路车轴进行了系统的疲劳研究, 发展了旋转弯曲疲劳试验,. S-N曲线及疲劳极限概念。
疲劳的发展历史
.
疲劳损伤的微观机制
.
疲劳损伤的微观机制
Cyclic Slip - initial arrangements
.
Cyclic Hardening
疲劳损伤的微观机制
Surface relief
Shear cracks formation

材料的疲劳和断裂行为

材料的疲劳和断裂行为

材料的疲劳和断裂行为疲劳和断裂是材料工程中的重要研究领域。

疲劳是指材料在经历了重复加载或应力变化后,由于内部微观缺陷逐渐积累,最终导致材料的失效。

而断裂则是指材料在承受高应力或者外力集中作用下发生裂纹扩展的现象。

本文将深入探讨材料的疲劳和断裂行为,并分析其机理和影响因素。

一、疲劳行为材料的疲劳行为广泛存在于我们生活和工作的各个领域。

例如,金属材料在机械工程中的零部件、桥梁结构和飞机构件等地方,由于长期受到复杂的力学载荷,易出现疲劳失效。

疲劳失效不仅会给工程的安全性和可靠性带来威胁,也会增加维修和更换的成本。

1. 疲劳断裂机理在受疲劳加载作用下,材料内部的微观缺陷会逐渐积累导致裂纹的形成和扩展。

这些微观缺陷包括晶界、夹杂物、夹层、腐蚀坑等。

当应力斑马纹通过这些缺陷时,会导致位错的生成和扩展,从而引起材料的疲劳断裂。

2. 疲劳寿命与应力幅关系材料的疲劳寿命与应力幅之间存在一定的关系。

应力幅越大,疲劳寿命越短;应力幅越小,疲劳寿命越长。

这是由于应力幅增加会导致材料内部位错、裂纹等缺陷的生成和扩展速度增加,从而缩短了材料的使用寿命。

3. 影响疲劳行为的因素除了应力幅外,疲劳行为还受到多种因素的影响。

其中包括材料的力学性能、表面质量、温度、湿度、载荷频率、环境介质等。

材料的力学性能如强度、韧性、硬度等,对材料的疲劳行为具有重要影响。

同时,表面质量的好坏、温度和湿度的变化也会引起材料内部微观缺陷的形成和扩展。

二、断裂行为除了疲劳行为外,材料的断裂行为也是值得重视的。

断裂指的是材料在受到高应力或者外力集中作用下发生裂纹扩展的现象。

在工程实践中,为了减缓断裂失效对工程结构和设备造成的危害,需要对材料的断裂行为进行深入研究。

1. 断裂机理材料的断裂机理可以分为静态断裂和动态裂纹扩展两个阶段。

静态断裂是指在裂纹形成之前,材料的应力集中到达临界值,导致断裂开始。

而动态裂纹扩展则是指裂纹在外力作用下迅速扩展,直到材料完全失效。

材料的疲劳与断裂行为研究

材料的疲劳与断裂行为研究

材料的疲劳与断裂行为研究疲劳与断裂行为是材料科学与工程领域的重要研究方向之一。

疲劳是材料在循环加载下的损伤和失效过程,而断裂是在承受外力作用下材料的破裂过程。

研究材料的疲劳与断裂行为对于制定合理的材料设计和工程应用具有重要意义。

1. 引言材料的疲劳与断裂行为是由内在的微观结构和外部环境因素共同决定的。

了解材料的疲劳断裂机制以及其对材料性能和使用寿命的影响,对于材料的可靠性和安全性具有重要意义。

2. 材料疲劳行为研究2.1 疲劳寿命预测疲劳寿命预测是研究材料疲劳行为的重要方法。

通过建立疲劳寿命预测模型,可以评估材料在不同循环载荷下的寿命。

常用的疲劳寿命预测方法包括应力寿命曲线和损伤累积规律等。

2.2 循环载荷下的损伤行为在循环载荷下,材料内部会产生损伤积累,导致疲劳失效。

损伤行为的研究有助于了解材料的疲劳机制。

常见的损伤行为包括微裂纹扩展、晶界滑移等。

3. 材料断裂行为研究3.1 断裂力学理论断裂力学理论是研究材料断裂行为的重要工具。

通过断裂力学理论的应用,可以预测材料在受力下的断裂行为,并对材料的断裂强度进行评估。

3.2 断裂韧性的研究断裂韧性是衡量材料抵抗断裂的能力。

通过研究材料的断裂韧性,可以评估材料在应力集中区域的抗裂纹扩展能力。

常见的断裂韧性测试方法包括冲击试验和拉伸试验等。

4. 材料的疲劳与断裂行为相互关系研究疲劳和断裂行为之间存在着密切的相互关系。

材料的疲劳行为会影响其断裂行为,而材料的断裂行为又会影响其疲劳寿命。

因此,研究材料的疲劳与断裂行为之间的相互关系,对于理解材料的整体性能和应用具有重要意义。

5. 结论疲劳与断裂行为是材料科学与工程中的重要研究方向。

通过研究材料的疲劳与断裂行为,可以为材料设计和工程应用提供有价值的参考。

未来的研究中,需要进一步深入研究材料的疲劳与断裂机制,提高材料的疲劳强度和断裂韧性,以满足不同工程领域对材料性能的需求。

参考文献:[1] Smith J, Zhang Y. Fatigue crack growth prediction[J]. International Journal of Fatigue, 1990,12(2):159-169.[2] Rice J R. A path independent integral and the approximate analysis of strain concentration by notches and cracks[J]. Journal of Applied Mechanics, 1968,35(2):379-386.[3] Lawn B R. Fracture of brittle solids[M]. Cambridge University Press, 1993.。

4.疲劳与疲劳断裂解析

4.疲劳与疲劳断裂解析
典型的疲惫断口的宏观形貌构造可分为疲惫核心 、疲惫源区、疲惫裂纹的选择进展区、裂纹的快速扩 展区及瞬时断裂区等五个区域。一般疲惫断口在宏观 上也可粗略地分为疲惫源区、疲惫裂纹扩展区和瞬时 断裂区三个区域,更粗略地可将其分为疲惫区和瞬时 断裂区两个局部。大多数工程2 构件的疲惫断裂断口上 13
3 疲惫断口形貌及其特征
2
25
5 影响疲惫缘由及措施
4、装配与联接效应 装配与联接效应对构件的疲惫寿命有很大的影响。
正确的拧紧力矩可使其疲惫寿命提高5倍以上。简洁消失的问题是,认 为越大的拧紧力对提高联接的牢靠性越有利,使用实践和疲惫试验说明,这 种看法具有很大的片面性。
5.使用环境 环境因素〔低温、高温及腐蚀介质等〕的变化,使材料的疲惫强度显 著降低,往往引起零件过早的发生断裂失效。例如镍铬钢〔0.28%C,11.5 % Ni,0.73%Cr〕,淬火并回火状态下在海水中的条件下疲惫强度大约只是 在大气中的疲惫极限的20%。
2
14
1、疲惫裂纹源区 疲惫裂纹源区是疲惫裂纹萌生的策源地,是疲惫破坏的起点, 多处于机件的外表,源区的断口形貌多数状况下比较平坦、光 亮,且呈半圆形或半椭圆形。
由于裂纹在源区内的扩展速率缓慢,裂纹外表受反复挤压、摩 擦次数多,所以其断口较其他两个区更为平坦,比较光亮。在 整个断口上与其他两个区相比,疲惫裂纹源区所占的面积最小 。
相垂直。
大多数的工程金属构件的疲惫失效都是以此种形式进 展的。特殊是体心立方金属及其合金以这种形式破坏的所占 比例更大;上述力学条件在试件的内部裂纹处简洁得到满足 ,但当外表加工比较粗糙或具有较深的缺口、刀痕、蚀坑、 微裂纹等应力集中现象时,正断疲惫裂纹也易在外表产生。
高强度、低塑性的材料、大截面零件、小应力振幅、 低的加载频率及腐蚀、低温条件2均有利于正断疲惫裂纹的萌 6
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

理论
Basquin 提出了S 与N的关 系式。
Bairstow 给出了形 变滞后与 疲劳破坏 的关系。
1. 光镜和电子显微镜 的发展促进了人们对 传统疲劳破坏机制的 研究。 2. 电液伺服疲劳试验 机的出现。 3.疲劳发展成为重要 的学科领域。
提出了PSB的概念,观察 到了疲劳辉纹,P-M累
积损伤理论。 机理
ASTM E206-72
在某点或某些点承受交变应力,且在足够多的循环扰动作 用之后形成裂纹或完全断裂的材料中所发生的局部永久结构 变化的发展过程,称为疲劳。
疲劳的基本概念
疲劳的分类——重要的学科体系
疲劳的基本概念
交变应力,是指随时间变化的应力。也可更一般地称为 交变载荷(载荷可以是力、应力、应变、位移等)
疲劳的基本概念
应力比R
R=-2/0=∞
S R= -1
S R=0
R=-2/1=-2
S R=1
0
t
Smax=-Smin
对称循环
0
Smin=0
t
脉冲循环
0
Smax=Smin
t
静载
疲劳的基本概念
频率 f=N/t 波形
f =100 Hz, t=100 h, N=ft=3.6 107 (cycles)
S
工程中的疲劳现象
转子轴
工程中的疲劳现象
整机结构强度试验:机翼破坏试验
工程中的疲劳Βιβλιοθήκη 象上海 东方明珠电视塔高300m 球径45m
工程中的疲劳现象
Case 1: simply supported crane girder
行车大梁 Lower flange at A-A
Service conditioins: Load W, constant Two crane passes/hr, 12hr/day, 240 days/yr
S
Smax
S
S
S
0
恒幅循环
t
0
变幅循环
t
0 随机载荷
t
疲劳载荷的类型
疲劳的基本概念
恒幅循环参数
平均应力
Sm=(Smax+Smin)/2 (1) 应力幅
Sa=(Smax-Smin)/2 (2) 应力范围
S=Smax-Smin
(3)
应力比 R=Smin/Smax
设计:用Smax,Smin ,直观; 试验:用Sm,Sa ,便于加载; 分析:用Sa,R,突出主要控制参量, 便于分类讨论。
环境疲劳
疲劳的发展历史
疲劳的发展历史
十九世纪的疲劳发展
经验
德国矿业 工程师
Albert. 金属疲劳 的最初研
究。
巴黎大 学教授
JU. Poncelet 提出金 属疲劳 的概念。
试验
德国工程 师Wöhler 提出了应 力-寿命曲 线(S-N曲 线)和疲 劳极限的 概念。
1. Gerber研究了 平均应力对疲劳 寿命的影响。
2. 随着分析手段的提高,新材料和传统材料 疲劳破坏的微观机制得到进一步发展。
3. 疲劳模拟技术的发展成为研究疲劳的重要 方法,使人们对疲劳的认识进一步深入。
4. 超高周疲劳的研究逐渐成为研究的热点。 低周疲劳 高周疲劳 超高周疲劳
1970 1980
2000
疲劳的基本概念
疲劳的基本概念
What is fatigue ?
Engineering Fracture Mechanics -2014
材料的疲劳损伤与断裂
朱明亮 华东理工大学机械与动力工程学院
mlzhu@
主要内容
1 2 3 4
工程中的疲劳现象
工程中的疲劳现象
1954年1月, 英国慧星(Comet)号喷气客机坠入地中海(机身舱门拐角处开裂)
40 years of service life: 21224040=230,400 cycles of bending moment WL/4.
工程中的疲劳现象
Case 2: rotating shaft with overhung flywheel
Service conditions: Load W, constant Shaft rotates at 250 rev/min, 8hr/day, 300 days/yr
工程中的疲劳现象
工程中的疲劳现象
二次大战期间,400余艘全焊接舰船断裂
工程中的疲劳现象
2005.4.25, 上午9:20, 日本兵库县尼崎 市列车脱轨:死亡106人,伤400人
1998.6.3,德国埃舍德小镇,高速列 车脱轨:101人死亡,200人受伤,88
人重伤
预防疲劳失效!是轨道交通的核心科技问题之一
In a service life of 40 years the shaft accumulates 25060830040 =1.44109 cycles of bending moment, WL
工程中的疲劳现象
疲劳失效是工程中最重要、最常见的失效模式
疲劳研究的主要范畴
疲劳断裂
材料的疲劳
疲劳损伤
The process of progressive localized permanent structural change occurring in a material subjected to conditions which produce fluctuating stresses and strains at some point or points and which may culminate in crack or complete fracture after a sufficient number of fluctuations.
2. Goodman提出 了考虑平均应力 影响的简单理论。
3. Bauschinger提 出了应力-应变滞 后回线的概念。
1829
1839
1860
1890
疲劳的发展历史
1871年,Wohler首先对铁路车轴进行了系统的疲劳研究, 发展了旋转弯曲疲劳试验,S-N曲线及疲劳极限概念。
疲劳的发展历史
1910s-1960s疲劳发展
1. Manson-Coffin关 系。 2. 1963年Paris提出 da/dN-K关系。
工程运用
损伤容限设计, 疲劳与断裂力学 融合。
1910
1950
1960
疲劳的发展历史
1970s-今疲劳发展
损伤容限 方法运用 到具体的 设计规范 中,断裂 力学开始 在疲劳研 究中发挥 重要作用
1. 传统疲劳研究领域进一步拓展:蠕变疲劳, 热机械疲劳,微动疲劳,多轴疲劳…….
相关文档
最新文档