数理统计的三大分布

合集下载

数理统计分布类型

数理统计分布类型

数理统计分布类型数理统计是数学和统计学的交叉学科,研究收集、整理、分析和解释数据的方法和原则。

其中,分布类型是数理统计的重要概念之一。

统计分布是指一组数据按照一定规律的分布情况,根据数据分布的形状和特点,可以将统计分布分为不同的类型。

常见的数理统计分布类型有正态分布、均匀分布、伯努利分布、二项分布、泊松分布、几何分布、指数分布、正态分布、t分布和F分布等。

以下将逐一介绍这些常见的分布类型。

1.正态分布:正态分布(或高斯分布)是数理统计中最常见的一种分布类型。

正态分布的密度函数呈钟形曲线,对称且具有峰值,其分布的均值、方差决定了曲线的位置和形状。

正态分布在自然界和社会现象中广泛存在,如身高、体重、考试成绩等。

2.均匀分布:均匀分布是指数据在给定区间内的分布是均匀的,即每个数据点出现的概率相等。

均匀分布的密度函数是一个常数,对应的分布函数是线性的。

均匀分布常用于模拟随机数产生、建立实验设计等领域。

3.伯努利分布:伯努利分布是一种离散型的分布,只有两个可能的取值(例如0和1),其中一个取值的概率为p,另一个取值的概率为1-p。

伯努利分布常用于描述二项式试验中的成功和失败的概率。

4.二项分布:二项分布是由多次独立的伯努利试验组成的概率分布,其中每个试验只有两个可能的结果(例如成功和失败)。

二项分布可以用于描述多次独立重复试验中成功次数的分布情况。

5.泊松分布:泊松分布是一种用于描述单位时间或空间内事件发生次数的概率分布。

泊松分布假设事件以恒定的平均速率独立地发生,其参数λ表示单位时间或空间内事件的平均发生次数。

6.几何分布:几何分布是一种描述第一次成功发生需要的独立试验次数的概率分布。

每次试验只有两个可能的结果(例如成功和失败),成功的概率为p,几何分布描述了第一次成功发生之前需要进行的试验次数的分布情况。

7.指数分布:指数分布是描述时间间隔或空间间隔的分布,它的特点是具有无记忆性。

指数分布可以用于描述等待时间、服务时间、设备故障时间等。

高等教育自学考试 概率论与数理统计期末自学 复习重要知识点

高等教育自学考试 概率论与数理统计期末自学 复习重要知识点

概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。

2.常用离散型分布:(1)两点分布(0-1分布): 若一个随机变量X 只有两个可能取值,且其分布为12{},{}1(01)P X x p P X x p p ====-<<,则称X 服从12,x x 处参数为p 的两点分布。

两点分布的概率分布:12{},{}1(01)P X x p P X x pp ====-<<两点分布的期望:()E X p =;两点分布的方差:()(1)D X p p =-(2)二项分布:若一个随机变量X 的概率分布由式{}(1),0,1,...,.k kn k n P x k C p p k n -==-=给出,则称X 服从参数为n,p 的二项分布。

记为X~b(n,p)(或B(n,p)).两点分布的概率分布:{}(1),0,1,...,.k k n kn P x k C p p k n -==-= 二项分布的期望:()E X np =;二项分布的方差:()(1)D X np p =-(3)泊松分布:若一个随机变量X 的概率分布为{},0,0,1,2,...!kP X k ek k λλλ-==>=,则称X 服从参数为λ的泊松分布,记为X~P (λ)泊松分布的概率分布:{},0,0,1,2,...!kP X k ek k λλλ-==>=泊松分布的期望:()E X λ=;泊松分布的方差:()D X λ=4.连续型随机变量:如果对随机变量X 的分布函数F(x),存在非负可积函数()f x ,使得对于任意实数x ,有(){}()xF x P X x f t dt-∞=≤=⎰,则称X 为连续型随机变量,称()f x 为X 的概率密度函数,简称为概率密度函数。

5.常用的连续型分布: (1)均匀分布:若连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<-=其它,0,1)(bx a a b x f ,则称X 在区间(a,b )上服从均匀分布,记为X~U(a,b)均匀分布的概率密度:⎪⎩⎪⎨⎧<<-=其它,0,1)(b x a a b x f 均匀分布的期望:()2a bE X +=;均匀分布的方差:2()()12b a D X -= (2)指数分布:若连续型随机变量X 的概率密度为00()0xe xf x λλλ-⎧>>=⎨⎩,则称X 服从参数为λ的指数分布,记为X~e (λ)指数分布的概率密度:00()0xe xf x λλλ-⎧>>=⎨⎩指数分布的期望:1()E X λ=;指数分布的方差:21()D X λ=(3)正态分布:若连续型随机变量X的概率密度为22()2()x f x x μσ--=-∞<<+∞则称X 服从参数为μ和2σ的正态分布,记为X~N(μ,2σ)正态分布的概率密度:22()2()x f x x μσ--=-∞<<+∞正态分布的期望:()E X μ=;正态分布的方差:2()D X σ=(4)标准正态分布:20,1μσ==,2222()()x t xx x e dtϕφ---∞=标准正态分布表的使用: (1)()1()x x x φφ<=--(2)~(0,1){}{}{}{}()()X N P a x b P a x b P a x b P a x b b a φφ<≤=≤≤=≤<=<<=-(3)2~(,),~(0,1),X X N Y N μμσσ-=故(){}{}()X x x F x P X x P μμμφσσσ---=≤=≤={}{}()()a b b a P a X b P Y μμμμφφσσσσ----<≤=≤≤=-定理1: 设X~N(μ,2σ),则~(0,1)X Y N μσ-=6.随机变量的分布函数: 设X 是一个随机变量,称(){}F x P X x =≤为X 的分布函数。

三大抽样分布(1)概率论与数理统计习题 概率论与数理统计)

三大抽样分布(1)概率论与数理统计习题 概率论与数理统计)


x2 x2

~ F (1,1)
4. 正态总体的样本均值与样本方差的分布
正态总体 N ( , 2 ) 的样本均值和样本方差
有以下两个重要定理.
定理一
设 X1, X 2, , X n 是来自正态总体N (, 2 )
的样本, X 是样本均值, 则有
(1) X ~ N (, 2 / n).即 X ~ N (0,1)
样本, X , S 2 分别是样本均值和样本方差, 则有
X ~ t(n 1).
S/ n
证明
因为 X ~ N (0,1), / n
(n 1)S 2
2
~ 2(n 1),
且两者独立, 由 t 分布的定义知
X (n 1)S 2 ~ t(n 1). / n 2(n 1)
n
2
πn

1
n 2


1

t2 n


n1 2


,
t
t 分布的概率密度曲线如图
显然图形是关于
t 0对称的.
当 n 充分大时, 其
图形类似于标准正
态变量概率密度的
图形. 因为lim h(t)
1
t2
e 2,
n

所以当 n 足够大时 t 分布近似于 N (0,1) 分布,
1,
因为 1 F
~ F (n2 , n1 ),
所以
P
1 F

F1
(n2
,
n1
)

1


,
比较后得
F1
(n2 ,

概率论与数理统计课件 三大分布

概率论与数理统计课件 三大分布

X1 X 2 X 3 ~N(0,1), ( X1 X 2 X 3 )2 ~ 2 (1),
3
3
X4 X5 X6 ~N(0 , 3)
X4 X5 X6 ~N(0,1), ( X4 X5 X6 )2 ~ 2 (1),
3
3
2020/11/10
数理统计—三大分布
7
例2 设X1, X2 , X3 , X4为来自正态总体N (0, 4) 的简单
y
性质: 1
F1 (n1, n2 ) F (n2 , n1 )
O
F (n1 , n2 ) x
2020/11/10
数理统计—三大分布
16
例1 求(1)F0.01(5,4),(2)F0.95(3,7)。
解 (1) F0.01(5,4) 15.5
(2)
F0.95 (3,7)
1 F0.05 (7,3)
2
3.例题 已知连续型随机变量X 的概率密度函数为 f ( x) 1 e , x2 2 x1 求EX,DX
2020/11/10
数理统计—三大分布
3
6.3.1 2 分布
1、定义
X1, X2 , , Xn 独立同分布的随机变量, 并且Xi
2
X
2 1
X
2 2
X
2 n
N (0,1)
服从的分布称为自由度为n的 分2 布.记为 2 ~ 2 (n)
t (n) t1 (n) y
2020/11/10
t (n) O t (n) x t1 (n)
数理统计—三大分布
13
6.3.3 F 分布
1、定义 设X ~ 2 (n1 ),Y ~ 2(n2 ), 且X与Y 独立, 则随机变量

数理统计主要知识点

数理统计主要知识点

数理统计主要知识点数理统计是统计学的重要分支,旨在通过对概率论和数学方法的研究和应用,解决实际问题上的不确定性和随机性。

本文将介绍数理统计中的主要知识点,包括概率分布、参数估计、假设检验和回归分析。

一、概率分布概率分布是数理统计的基础。

它描述了一个随机变量所有可能的取值及其对应的概率。

常见的概率分布包括:1. 均匀分布:假设一个随机变量在某一区间内取值的概率是相等的,则该随机变量服从均匀分布。

2. 正态分布:正态分布是最常见的连续型概率分布,其概率密度函数呈钟形曲线,具有均值和标准差两个参数。

3. 泊松分布:泊松分布描述了在一定时间内发生某个事件的次数的概率分布,例如在一天内发生交通事故的次数。

4. 二项分布:二项分布描述了进行一系列独立实验,每次实验成功的概率为p时,实验成功的次数在n次内取特定值的概率。

二、参数估计参数估计是根据样本数据来推断随机变量的参数值。

常见的参数估计方法包括:1. 最大似然估计:假设数据服从某种分布,最大似然估计方法寻找最能“解释”数据的那个分布,计算出分布的参数值。

2. 矩估计:矩估计方法利用样本矩来估计分布的参数值,例如用样本均值估计正态分布的均值,样本方差估计正态分布的方差。

三、假设检验假设检验是为了判断一个统计假设是否成立而进行的一种统计方法。

它包括假设、检验统计量和显著性水平三个重要概念。

1. 假设:假设指的是要进行验证的观察结果,分为零假设和备择假设两种。

2. 检验统计量:检验统计量是为了检验零假设而构造的统计量,其值代表目标样本符合零假设的程度。

3. 显著性水平:显著性水平是用来决定是否拒绝零假设的标准,通常为0.01或0.05。

四、回归分析回归分析是用来研究和描述两个或多个变量之间关系的统计方法。

它可以帮助人们了解因果关系,做出预测和控制因素的效果。

1. 简单线性回归:简单线性回归是一种简单的回归分析方法,它描述一个因变量和一个自变量之间的线性关系。

2. 多元线性回归:多元线性回归描述多个自变量和一个因变量之间的关系,通过多元回归模型可以找到最佳的回归系数,从而用来预测未来的结果。

概率论与数理统计各种分布总结

概率论与数理统计各种分布总结

概率论与数理统计各种分布总结概率论与数理统计中有许多不同的概率分布,每个分布都具有不同的特征和应用。

下面是一些常见的概率分布的总结:1. 均匀分布(Uniform Distribution):在一个区间内的所有取值都具有相等的概率。

它可以是离散的(离散均匀分布)或连续的(连续均匀分布)。

2. 二项分布(Binomial Distribution):描述了在一系列独立的伯努利试验中成功次数的概率分布。

每个试验只有两个可能结果(成功和失败),并且成功的概率保持不变。

3. 泊松分布(Poisson Distribution):用于描述在给定时间或空间单位内发生某事件的次数的概率分布。

它通常用于模拟稀有事件的发生情况。

4. 正态分布(Normal Distribution):也称为高斯分布,是最常见的连续概率分布之一。

它具有钟形曲线的形状,对称且具有明确的均值和标准差。

许多自然现象和测量数据都可以近似地用正态分布来描述。

5. 指数分布(Exponential Distribution):描述了连续随机事件之间的时间间隔的概率分布。

它通常用于模拟无记忆性事件的发生情况,如设备故障、到达时间等。

6. 卡方分布(Chi-Square Distribution):由正态分布的平方和构成的概率分布。

它在统计推断中广泛应用,特别是在假设检验和信赖区间的计算中。

7. t分布(Student's t-Distribution):用于小样本量情况下参数估计和假设检验。

与正态分布相比,t分布具有更宽的尾部,因此更适用于小样本数据。

8. F分布(F-Distribution):用于比较两个或多个样本方差是否显著不同的概率分布。

它经常用于方差分析和回归分析中。

这只是一些常见的概率分布的总结,还有其他许多分布,每个都在不同的领域和应用中起着重要的作用。

概率论与数理统计 7.2 数理统计中的三大分布

概率论与数理统计 7.2 数理统计中的三大分布
数理统计
7.2 数理统计中的三大抽样分布
在数理统计中,以标准正态变量为基石而构 造的三个著名统计量有着广泛的应用,这是因为 这三个统计量不仅有明确背景,而且其抽样分布 的密度函数有明显的数学表达式,它们被称为统 计中的“ 三大抽样分布 ” 。
1. 2 分布
数理统计
2分布是由正态分布派生出来的一种分布.
t1 (n) t (n)
o t (n)
x
t分布的上分位点t (n)可查表
求得,例t0.025(15) 2.1315.
当n 45时,对于常用的的值,可用正态近似 t (n) z
例3:X ~ t(15)
(1)求 0.01的上侧分位数; (2) P( X ) 0.05,求 ; (3)P( X ) 0.95 ,求 .
记为 t ~ t(n). t分布概率密度函数为:
f (t)
[(n 1)
2]
(1
t
2
)
n1 2
,
t
(n 2) n n
t 分布的图像
y N (0,1) 数理统计
t(n)
t分布的性质: 1. 设t ~ t(n),则E(t) 0, D(t) n (n 2) (n 2)
2. t分布的密度函数关于t 0对称.当n充分大时, 其图形近似于标准正态分布概率密度的图形,
F分布的上分位点的性质:
F1 (n1, n2 )
1 F (n2 , n1 )
F分布的上分位点可查表求得.例,
F0.95 (12,9)
1 F0.05 (9,12)
1 2.80
0.357
例4. F ~ F (24,15),求 1,2 使 P(F 2 ) 0.025 P(F 1) 0.025

统计学三大分布与正态分布的差异

统计学三大分布与正态分布的差异

申请大学学士学位论文大学学士学位论文统计学三大分布与正态分布的差异年级专业:学生:指导教师:统计学三大分布与正态分布的差异中文摘要统计学是应用数学的一个分支,主要通过利用概率论建立数学模型,收集所观察系统的数据,进行量化的分析、总结,并进而进行推断和预测,为相关决策者提供依据和参考。

它被广泛的应用在各门学科之上,从物理和社会科学到人文科学,甚至被用来工商业及政府的情报决策之上。

而对数据的分析过程中就需要利用到数据的分布来研究分类。

在实际遇到的许多随机现象都服从或近似服从正态分布。

而由正态分布构造的三大分布在实际中有广泛的应用,因为这三大分布不仅有明确的背景,而且其抽样分布的密度函数有明显表达式,研究三大分布与正态分布有助于研究实际事例,比如经济安全与金融保险领域、人口统计等。

本文讨论了三大分布与正态分布,并将它们之间的密度函数进行比较说明.第二章介绍了正态分布的定义、性质,三大分布的定义、性质。

第三章介绍了正态分布与三大分布的密度函数,并将它们之间的密度函数进行比较关键词:正态分布;三大分布;密度函数The Difference between the Three Statistical Distributions andthe Normal DistributionAbstractStatistics is a branch of applied mathematics, the mathematical models are mainly established by the probability and statistics theory based on the collectingthe data, so as to conduct the quantitative analysis, and obtain the correct inference. It is widely used in the subjects, such as physical, social science, industrial and commercial field, and government intelligence decision. The process of the data analysis will need to use the data distributions to study.In practice, many random phenomena are obedient for the normal distributions, or approximately. And the three statistical distributions structured by the normal distributions have extensive applications, because these three distributions is explicitly background, and the sampling distribution density function have obvious expressions. Research on the distributions and normal distributions is useful for the study of economic security and financial insurance fields, population statistics, etc.This paper discusses the three statistical distributions and normal distributions, their density functions are compared.The second chapter presents the definition of the normal distribution, the distribution of nature, three definitions and properties.The third chapter covers a normal distribution and the density functions of the three distributions, and then the density functions are compared. Keywords: the normal distribution; Three distribution; Density function目录中文摘要 (2)英文摘要 (2)1 绪论 (5)1.1 问题的提出 (5)1.2 国外研究现状 (5)1.3 本文的主要工作 (6)2 基础知识介绍 (7)2.1 正态分布 (7)2.2 三大统计分布 (8)3 三大分布与正态分布的比较 (12)3.1 三大分布与正态分布的密度函数 (12)3.2 三大分布与正态分布的密度函数比较 (12)3.3 本章小结 (16)4 进一步工作 (16)参考文献 (17)致 (17)1 绪论统计学,最早是由Gottfried Achenwall(1749)所使用,代表对国家的资料进行分析的学问,也就是“研究国家的科学”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P( X x ) 1 F ( x ) , 则称x为随机变量X的上分位数. 其中0 1.
N (0,1), 2 (n),t(n),F (m, n)的上分位数分 别记为u,2 (n),t (n),F (m, n).
分位数的几何意义如下图所示:
f (x)
f(x)
O
2
(
n
)
f (x)
x
O
O t (n)
三 F分布
设随机变量X ~ 2 (m),Y ~ 2 (n),且X与Y 独立,
则随机变量
F X/m Y /n
的分布称为自由度为m与n的F分布,记为F ~ F (m, n),
其中m为分子自由度,n为分母自由度.其密度函数为
Γ (m n) 2 m n
xm 2
1
f ( x,m,n)
Γ
(m
2)Γ (n
x
F (m, n) x
分位数的性质:
(1) u1 u , t1 (n) t (n). 当n 30时,t (n) u .
(2) 当n充分大(n 40即可),有
2 (n)
1 2
(
u
2n 1)2 .
(3)
F
(m, n)
F1
1 (n, m)
.
学习了三大分布后,我们就可以去研究常用统计 量的分布。下一讲,我们将学习在正态分布的条件下, 常用统计量的分布——抽样分布.
2 2
~
2 (n2 ),并且相互独立,则
12
2 2
~
2
(
n1
n2 ).
(此性质可以推广到多个随机变量的情形)
性质4 2分布的极限分布是正态分布
设 2 ~ 2 (n),则对任意x,有
lim P{ 2 n x} x
1
e
t2 2
dt
( x).
n
2n
2
近似
即 2 (n) ~ N (n, 2n).
性质3 E(F ) n (n 2), n2
D(F ) 2n2 (m n 2) , m(n 2)2 (n 4)
(n 4).
F 分布是为纪念英国著名统计学家费歇 (R.A. Fisher,1890 1962)而命名的.它是数
理统计的重要分布之一.
四 分位数(点)
定义 设X的分布函数为F ( x), 若实数x 满足
n 2
1
e
x
2,
x
0;
0,
x 0.
(r) xr1exdx, r 0. 0
f(x) n1
n4
n 10
O
5 10 15 20
x
2分布的概率密度函数
2分布的性质:
性质1 分布的变量值始终为正;
性质2 E( 2 (n)) n,D( 2 (n)) 2n;
性质3 2分布的可加性
设12 ~ 2 (n1 ),
第五章 数理统计的基本知识 第二讲 数理统计的三大分布
主讲教师 胡发胜 教授
一 2分布
设X1 , X2 ,, Xn相互独立且都服从N (0,1),则称 随机变量
2
X12
X
2 2
X
2 n
所服从的分布称为自由度为n的 2分布,记为 2 (n).
其密度函数为
其中
f2
( x,n)

2n
1 2 (n
2)
x
m 2 n2 2)
(mx
mn
n) 2
,
x 0,
0,
x 0.
fF (x)
(1,10) (,10)
(10,10) (5,10)
O
x
F 分布概率密度函数
F 分布的性质:
性质1 若X ~ F (m, n),则1 / X ~ F (n, m); 性质2 若X ~ t(n),则 X 2 ~ F (1, n);
二 t分布
设随机变量X ~ N (0,1),Y ~ 2 (n),且X与Y 独立,
则随机变量
t X Y /n
所服从的分布称为自由度为n的t分布,记为t(n). 其密度函数为
ft ( x;n)
[(n 1) 2] (1
(n 2) n
x2 n
n1
) 2,
x .
ft (x)
n , N(0,1) n6
n2
O
x
t分布的密度函数: 低峰、厚尾
t分布的性质:
性质1 密度函数f ( x, n)是偶函数,且
lim f ( x, n)
1
x2
e 2 ( x).
n
2
即t分布的极限分布是标准正态分布.
性质2 设T t(n),则 当n 1时, E(T )不存在,t(1)是标准柯西分布, 当n 2时, E(T ) 0, 当n 3时, D(T ) n . n2
相关文档
最新文档