匀变速直线运动教学设计

合集下载

匀变速直线运动(教案)

匀变速直线运动(教案)

匀变速直线运动一、教学目标1.知识与技能(1)知道什么是匀变速直线运动,理解匀变速直线运动的特点;(2)掌握匀变速直线运动速度时间图像的特点;(3)理解加速度的概念,知道加速度是表示速度变化快慢的物理量;(4)知道加速度是矢量,加速度的方向始终与速度的变化量方向一致,知道加速度与速度的变化量的关系。

2.过程与方法(1)通过类比数学中已学过的一次函数图像的得出过程引导学生绘制速度-时间图像,对学生进行科学研究方法的熏陶。

(2)通过加速度概念的建立和定义式的得出过程,了解和体会比值定义法在科学研究中的应用。

3.情感、态度与价值观(1)利用实例动画激发学生的求知欲、激励其探索精神。

(2)培养区分事物的能力及抽象思维能力二、教学重点和难点1.重点:(1)正确理解速度—时间图像的物理意义(2)正确理解加速度的概念和物理意义2.难点:速度、速度变化量和速度变化率之间的联系和区别三、教学资源多媒体课件四、教学过程(一)课题引入复习导入:上节课我们学习了描述物体运动的几个物理量。

如:路程、位移、时刻、时间、速度和速率。

问题:汽车里的里程表记录的是位移还是路程?(路程),描述物体运动快慢是哪个物理量?(速度)那么我们初中学过速度不变的运动是?(匀速直线运动)。

可是在现实生活中速度往往要发生变化,这节课我们就来学习一种最典型的变速运动——匀变速直线运动。

(二)新课教学本节课有三部分内容:1.匀变速直线运动的概念教师:首先物体做直线运动,那么如何体现匀变呢?举例启发学生:一个物体从静止开始做直线运动,1 s 末速度为2m/s,速度均匀增加,以后的情况应该是?学生:2 s 末速度为4m/s,3 s 末速度为6m/s……教师:很好。

匀变速直线运动就可定义为:做变速直线运动的物体,如果在任意相等的时间内,速度的变化量都相等,这种运动叫作匀变速直线运动。

所以说其特点是:(板书)任意相等的时间内,速度的变化量都相等。

(板书)速度的变化量例:某质点直线向东运动,t=0时刻速度大小为3 m/s,t=2s 时速度大小变为为2 m/s,求前两秒内速度的变化量。

匀变速直线运动实验教案

匀变速直线运动实验教案

一、实验目的通过本次实验,学生应当能够掌握匀变速直线运动的基本概念及运动学公式,学会正确测量和记录运动物体的位移、速度和加速度,掌握并行运算方法和实验误差分析方法,培养科学实验精神,以及加强科学合作精神,提高实验技能和合作能力,培养学生的实验创新能力。

二、教学准备1.实验器材:运动学实验仪、计时器、电脑和数据处理软件、计算器等。

2.实验原理:本实验通过运动学实验仪测量匀变速直线运动,并利用计算器和电脑进行数据处理和误差分析,获得物体的位移、速度和加速度等数据,加深对匀变速直线运动基本概念和公式的理解。

3.实验内容:(1)测量物体匀变速直线运动过程中的位移、速度和加速度等参数。

(2)加深对匀变速直线运动的基本概念和公式的理解。

(3)掌握并行运算方法和实验误差分析方法。

三、实验过程1.实验步骤:(1)按照实验器材的说明书,组装和调校运动学实验仪,并在电脑上安装和配置数据处理软件。

(2)选择合适的物体,将其固定在运动学实验仪的支架上,并调整好初始位置和初始速度,保证可以在实验器材的工作范围内进行运动。

(3)启动计时器和数据处理软件,按照实验步骤,记录下物体在匀变速直线运动过程中的运动状态的位移、速度和加速度等参数。

(4)根据实验数据,进行并行运算和误差分析,获得更加准确的物体运动参数和精度,进行结果分析和合理评估,确定实验结果的可靠性。

2.数据处理方法:(1)按照运动学公式和数据处理软件的指导,将记录下的位移、速度和加速度等参数进行并行运算,获得更加准确的运动参数,并进行误差分析。

(2)根据误差分析结果,评估结果的可靠性和准确性,并进行结果分析和适当的重复实验。

(3)汇总和整理结果,制作实验报告和图表,并进行口头或书面报告。

四、实验注意事项1.实验器材要安全可靠,使用前要检查和调试,确保正常工作。

2.实验环境要相对稳定,避免干扰和影响实验结果。

3.实验数据要准确记录和处理,避免漏失和错误。

4.实验过程要按照步骤进行,不得违背安全和操作规程,确保实验成功。

匀变速直线运动教案

匀变速直线运动教案

匀变速直线运动教案第一章:匀变速直线运动的概念1.1 学习目标了解匀变速直线运动的定义及特点掌握速度、加速度、位移等基本概念1.2 教学内容匀变速直线运动的定义及特点速度、加速度、位移的定义及计算公式速度-时间图、位移-时间图的绘制及分析1.3 教学方法采用讲授法,讲解匀变速直线运动的概念及特点利用图形、动画等辅助教学,帮助学生直观理解1.4 教学活动引入实际例子,引导学生思考匀变速直线运动的特点讲解速度、加速度、位移的定义及计算公式绘制速度-时间图、位移-时间图,进行分析讨论1.5 作业与评估布置相关习题,巩固所学知识对学生的作业进行评估,了解掌握情况第二章:匀变速直线运动的规律2.1 学习目标掌握匀变速直线运动的规律学会运用公式计算匀变速直线运动的相关物理量2.2 教学内容匀变速直线运动的规律公式初速度、末速度、平均速度的关系加速度与速度、位移的关系2.3 教学方法采用讲授法,讲解匀变速直线运动的规律及公式利用例题,引导学生运用公式进行计算2.4 教学活动讲解匀变速直线运动的规律公式运用例题,进行公式计算及分析进行分组讨论,互相交流学习心得2.5 作业与评估布置相关习题,巩固所学知识对学生的作业进行评估,了解掌握情况第三章:匀变速直线运动的图像分析3.1 学习目标学会绘制及分析匀变速直线运动的速度-时间图、位移-时间图掌握图线与物理量的关系3.2 教学内容速度-时间图、位移-时间图的绘制方法图线与速度、加速度、位移等物理量的关系利用图线分析匀变速直线运动的特点3.3 教学方法采用讲授法,讲解速度-时间图、位移-时间图的绘制方法利用图形、动画等辅助教学,帮助学生直观理解3.4 教学活动讲解速度-时间图、位移-时间图的绘制方法绘制图线,进行分析讨论引入实际例子,进行图线分析,引导学生思考3.5 作业与评估布置相关习题,巩固所学知识对学生的作业进行评估,了解掌握情况第四章:匀变速直线运动的应用4.1 学习目标学会运用匀变速直线运动的规律解决实际问题培养学生的实际应用能力4.2 教学内容匀变速直线运动在实际问题中的应用运动物体的速度、位移、时间的计算实例分析:自由落体运动、抛体运动等4.3 教学方法采用讲授法,讲解匀变速直线运动在实际问题中的应用利用例题,引导学生运用规律解决实际问题4.4 教学活动讲解匀变速直线运动在实际问题中的应用运用规律解决实际问题,进行例题计算及分析进行分组讨论,互相交流学习心得4.5 作业与评估布置相关习题,巩固所学知识对学生的作业进行评估,了解掌握情况第五章:匀变速直线运动的实验研究5.1 学习目标掌握匀变速直线运动的实验方法及技巧学会运用实验数据验证匀变速直线运动的规律5.2 教学内容匀变速直线运动的实验原理及方法实验仪器的使用及数据采集实验结果的分析与处理5.3 教学方法采用实验法,引导学生进行匀变速直线运动的实验讲解实验原理及方法,指导学生进行实验操作5.4 教学活动进行匀变速直线运动的实验学会使用实验仪器,采集数据分析实验结果,验证匀变速直线运动的规律5.5 作业与评估对学生的实验报告进行评估,了解掌握情况第六章:匀变速直线运动的动力学因素6.1 学习目标理解牛顿第二定律在匀变速直线运动中的应用掌握力、质量、加速度之间的关系6.2 教学内容牛顿第二定律的表述及应用力的合成与分解质量、力、加速度之间的关系式6.3 教学方法采用讲授法,讲解牛顿第二定律及动力学因素的概念利用示例,展示力的合成与分解在匀变速直线运动中的应用6.4 教学活动分析匀变速直线运动中的动力学因素运用牛顿第二定律解决实际问题进行小组讨论,探讨力、质量、加速度之间的关系6.5 作业与评估布置相关习题,巩固所学知识对学生的作业进行评估,了解掌握情况第七章:匀变速直线运动的外力作用7.1 学习目标分析匀变速直线运动中外力的作用理解重力、摩擦力等外力对物体运动的影响7.2 教学内容重力、摩擦力等外力的性质及作用外力在匀变速直线运动中的影响规律外力作用下的匀变速直线运动特点7.3 教学方法采用讲授法,讲解外力作用的概念及特点利用示例,展示外力对匀变速直线运动的影响7.4 教学活动分析匀变速直线运动中外力的作用运用所学知识解决实际问题进行小组讨论,探讨外力对物体运动的影响7.5 作业与评估布置相关习题,巩固所学知识对学生的作业进行评估,了解掌握情况第八章:匀变速直线运动的合成与分解8.1 学习目标理解匀变速直线运动的合成与分解原理学会运用合成与分解解决实际问题8.2 教学内容运动的合成与分解概念合成与分解在匀变速直线运动中的应用运用合成与分解解决实际问题8.3 教学方法采用讲授法,讲解合成与分解原理及应用利用示例,展示合成与分解在匀变速直线运动中的应用8.4 教学活动分析匀变速直线运动的合成与分解运用合成与分解解决实际问题进行小组讨论,分享学习心得8.5 作业与评估布置相关习题,巩固所学知识对学生的作业进行评估,了解掌握情况第九章:匀变速直线运动的问题求解策略9.1 学习目标掌握匀变速直线运动问题的求解方法学会运用图解法、公式法等解决实际问题9.2 教学内容匀变速直线运动问题的求解方法图解法、公式法在实际问题中的应用求解策略的选取与运用9.3 教学方法采用讲授法,讲解求解方法及策略利用示例,展示图解法、公式法在实际问题中的应用9.4 教学活动分析匀变速直线运动问题的求解方法运用图解法、公式法解决实际问题进行小组讨论,探讨求解策略的选取与应用9.5 作业与评估布置相关习题,巩固所学知识对学生的作业进行评估,了解掌握情况第十章:匀变速直线运动综合训练10.1 学习目标综合运用匀变速直线运动的知识解决实际问题提高学生的综合分析和问题解决能力10.2 教学内容匀变速直线运动综合训练题目综合分析和问题解决方法的指导10.3 教学方法采用指导法,引导学生进行综合训练提供综合训练题目及解题思路10.4 教学活动进行匀变速直线运动综合训练学生展示解题过程和结果教师点评并指导解题方法10.5 作业与评估完成综合训练题目对学生的综合训练成果进行评估重点解析本文教案主要介绍了匀变速直线运动的概念、规律、图像分析、应用、动力学因素、外力作用、合成与分解、问题求解策略以及综合训练等内容。

《主题一 第三节 匀变速直线运动》教学设计

《主题一 第三节 匀变速直线运动》教学设计

《匀变速直线运动》教学设计方案(第一课时)一、教学目标1. 理解匀变速直线运动的观点和特点。

2. 掌握匀变速直线运动的计算公式和基本运算方法。

3. 能够应用匀变速直线运动知识解决实际问题。

二、教学重难点1. 教学重点:匀变速直线运动的计算公式和应用。

2. 教学难点:理解匀变速直线运动的观点和特点,解决实际问题的思路和方法。

三、教学准备1. 准备教学器械:黑板、白板、笔、教学PPT等。

2. 搜集相关案例和实际问题,以便在教学中应用。

3. 安排学生进行课前预习,以便更好地理解教学内容。

4. 准备实验室或相关场地,以便进行实验或实地考察。

四、教学过程:1. 引入新课通过PPT展示一段汽车运动视频,提问学生观察到的现象。

引导学生得出结论:物体的运动速度会随时间发生变化,这就是匀变速直线运动。

再向学生介绍匀变速直线运动的主要特点:速度均匀变化,且变化过程中加速度保持不变。

2. 实验探究让学生动手操作打点计时器,进行匀变速直线运动的实验探究。

通过打点计时器记录数据,让学生观察纸带上的点迹,分析得出物体运动的加速度大小和方向。

通过实验探究,让学生更好地理解匀变速直线运动的观点和规律。

3. 教室互动设计一些问题,与学生进行互动交流。

例如:什么是加速度?加速度与速度的干系是什么?如何根据加速度判断物体的运动性质?通过互动,帮助学生更好地掌握匀变速直线运动的相关知识。

4. 案例分析以汽车刹车、火车启动等实际案例为例,引导学生分析物体在匀变速直线运动过程中的速度变化和加速度变化情况。

通过案例分析,让学生更好地理解匀变速直线运动的实际应用。

5. 教室小结回顾本节课的主要内容,帮助学生梳理所学知识,加深学生对匀变速直线运动的理解和掌握。

同时,鼓励学生提出疑问和建议,以便更好地改进教学方法和手段。

6. 作业安置为学生安置一些与匀变速直线运动相关的作业,如:自行设计匀变速直线运动的实验方案、分析实际案例等。

通过作业的安置,帮助学生稳固所学知识,提高学生对匀变速直线运动的应用能力。

匀变速直线运动规律教案1

匀变速直线运动规律教案1

第1节匀变速直线运动的规律.规律总结规律:运动学的根本公式.知识:匀变速直线运动的特点.方法:〔1〕位移与路程:只有单向直线运动时位移的大小与路程相等,除此之外均不相等.对有往返的匀变速直线运动在计算位移、速度等矢量时可以直接用运动学的根本公式,而涉及路程时通常要分段考虑.〔2〕初速度为零的匀变速直线运动的处理方法:通过分析证明得到以下结论,在计算时可直接使用,提高了效率和准确程度.①从运动开场计时,t秒末、2t秒末、3t秒末、…、n t秒末的速度之比等于连续自然数之比:v1∶v2∶v3∶…∶v n=1∶2∶3∶…∶n.②从运动开场计时,前t秒内、2t秒内、3t秒内、…、n t秒内通过的位移之比等于连续自然数的平方之比:s1∶s2∶s3∶…∶s n=12∶22∶32∶…∶n2.③从运动开使计时,任意连续相等的时间内通过的位移之比等于连续奇数之比:s1∶s2∶s3∶…∶s n=1∶3∶5∶…∶〔2n-1〕.④通过前s、前2s、前3s…的用时之比等于连续的自然数的平方根之比:t1∶t2∶t3∶…t n=1∶2∶3∶…∶n.⑤从运动开场计时,通过任意连续相等的位移所用的时间之比为相邻自然数的平方根之差的比:t1∶t2∶t3∶…t n=1∶)1(-∶2)23(-∶)1(--n n .⑥从运动开场通过的位移与到达的速度的平方成正比:s ∝v 2. 新题解答【例1】子弹在枪膛内的运动可近似看作匀变速直线运动,步枪的枪膛长约,子弹出枪口的速度为800m /s ,求子弹在枪膛中的加速度及运动时间.解析:子弹的初速度为零,应为信息,还有末速度、位移两个信息,待求的信息是加速度,各量的方向均一样,均设为正值.选择方程v t 2-v 02=2as 计算.加速度25222202m/s 104m/s 80.0208002⨯⨯=-=-=s v v a t 有多个根本方程涉及运动时间信息,分别是速度公式v t =v 0+at 、位移公式2021at t v s +=和平均速度公式2)(0t v v s v s t +==,因此可选择的余地很大.运动时间t =〔v t —v 0〕/a =〔800—0〕/4×105s =2×10-3s 点评:此题虽运算量不大,但假设要求对题目进展一题多解,那么涉及到几乎所有运动学根本公式.在解答过程中有意识地培养根据信息选择物理公式的能力,考察了对运动学公式的理解和掌握情况.同时此题还给出这样一个问题:加速度很大,速度是否一定很大,速度的变化是否一定很大,位移是否一定很大等问题,加深对位移、速度、加速度三者关系的理解.【例2】过山车是同学们喜爱的游乐工程.它从轨道最低端以30m/s的速度向上冲,其加速度大小为12m /s2,到达最高点后又以8m/s2的加速度返回.〔设轨道面与水平面成30°角,且足够高〕图3—6〔1〕求它上升的最大高度及上升所用的时间.〔2〕求返回最低端时的速度大小和返回最低端所用的时间.解析:此题因往返两次加速度大小不同,全程不能看作匀变速直线运动,因此需分段考虑.〔1〕设v0的方向为正方向,由题意可知,上升阶段v0=30m/s,a=-12m/s2,v t=0根据公式v t2-v02=2as可得过山车可通过的最大位移s=〔v t2-v02〕/2a=[〔02-302〕]/[2×〔-12〕]m=因轨道面与水平面成30°角,所以可上升的最大高度h=sαsin×s in30°m=根据公式v t=v0+at上升所用的时间t=〔v t-v0〕/a=〔0-30〕/〔-12〕s〔2〕因返回时加速度发生变化,不再能简单地理解为与上升时对称,所以的信息变为v'=0,a′=8m/s2,s=,根据v t2-v02=2as可得返回到最低端时的速度再根据公式v t=v0+at返回所用的时间t′=〔v —v0〕/at点评:运动学问题中有一种对称运动,如竖直上抛,有的同学可能会不假思索地运用对称性答复第二问而出现错误.通过对此题的理解,同学们应该了解到何时可以利用对称以简化题目,何时不能做如此简化处理.同时,此题也留有一定的可探究空间,为什么上、下的加速度不同?可供有能力的同学思考.【例3】高速公路给经济开展带来了高速度和高效率,但也经常发生重大交通事故.某媒体报道了一起高速公路连环相撞事故,撞毁的汽车到达数百辆,原因除雾天能见度低外,另一个不可回避的问题是大局部司机没有遵守高速公路行车要求.某大雾天能见度为50m,司机的反响时间为0.5s,汽车在车况良好时刹车可到达的最大加速度为5m/s2,为确保平安,车速必须控制在多少以下〔换算为千米每小时〕.〔注:假设能见度过低,应限时放行或关闭高速公路,以确保国家财产和公民生命平安〕解析:司机从发现意外情况到做出相应动作所需时间即为反响时间,该时间内汽车仍匀速前进,之后进入减速阶段.设车速为v0,那么前一阶段匀速运动通过的位移s1为s1=v0tv ①第二阶段是以v0为初速度的匀减速直线运动,因无需了解时间信息,可选用v t2-v02=2as,其中v t=0,a=-5m/s2第二阶段的位移s2为s2=〔v t2-v02〕/2a=〔02-v02〕/2〔-5〕=v02/10 ②两段位移之和即为s2=s1+s2=50m,将①②代入后得s2=s1+s2v0+v02/10=50解上述方程可得v0=20或v0=-25,取v0=20m/s换算后得v0=72km/h即汽车的行驶速度应控制在72km/h以下,方可保证平安.点评:此题属于STS问题,联系实际,利用科学对生活起指导作用.考察了运动学的根本规律,着重考察学生对物理情景的建立,要求学生画出能反映出各信息的情景图,帮助确定各信息之间的关系,培养分析问题和解决问题的能力.注意解题的标准化.突破思路匀变速直线运动的规律是高中阶段运动学的重点,它本身是一维的,但为今后处理二维、三维运动奠定了根底.这局部教材的安排是:〔1〕通过分析一辆小车的加速度在启动过程中的加速度恒定,给出匀加速、匀减速直线运动的概念,明确加速度与速度方向的关系是定义加速、减速的关键.〔2〕通过公式变形及速度图象到达对速度公式的理解,本节特别突出了运动图象在处理运动问题方面的应用,这也是本章的一个重要知识点.〔3〕位移公式是一个难点,课本中采用两种方法,利用平均速度求解时,学生容易理解,平均速度公式在此虽然成立却没有经过证明,所以课本中又在“拓展一步〞中,用速度图线所围成的面积给予证明,同时明确了极限法在物理中的应用,使学生具备了初步的微积分思想.〔4〕描述运动的五个物理量中三个是独立的,可以得到两个独立的方程,但公式的变式很多,在学生对运动学的根本过程和解题的根本思路明确前不易进展复杂的数学公式运算,以免冲淡主题.在学生熟练后,可逐步增加需要多个公式才能解决的问题.〔5〕本节习题较多,应结合公式,总结成各种类型题.〔6〕对初速度为零的匀加速直线运动来说,还有多个规律,可以让学生自己讨论、证明出来.本节教学中应注意的问题:〔1〕要准确理解匀变速的含义,学生很容易将匀变速直线运动理解为加速度要变化的运动,可通过识记形式的题目进展强化.〔2〕加速、减速是指加速度方向与速度方向一样还是相反,学生在学习了矢量的正负表示方向后,容易将加速度为负值判定为减速运动,应明确告知或通过习题让学生自己明确加速、减速中速度与加速度方向的关系.〔3〕运动学方程都是矢量方程,由于本章中只研究一维运动〔以后也通常将二维运动变为一维的处理〕,可直接用“+〞“-〞符号确定方向,所以应让学生明确公式中的“-〞是运算符号,并且表示与正方向相反,虽然在公式运算中两者都成为运算符号,但在物理意义上明显不同,最后得到的结果的正负只能是表示方向一样还是相反的.同时,运动学公式的教学及应用中最好不要出现类似这样的形式:v t=v0-at,有人将减速运动总结成这样的公式,对学生来说可能易于记忆,但不利于思维的锻炼,也易造成混乱.〔4〕对匀变速运动的平均速度公式,一定要通过习题使学生自己明确其适用条件,既要有数学证明,更要从实际生活的例子中加以固化.〔5〕学生一下子面对这么多公式在选择上会显得很茫然,必须通过一些根底性的习题使其熟悉信息、未知信息与相应公式间的联系,能有条理地分析题目、选择公式,防止陷入无休止的公式换算中去.〔6〕图象的教学必须给予充分重视,包括相遇问题、追及问题都可以用图象来解决.但不能简单地处理为数与形的关系,而要强调公式、图象的特点及其变化所表示的物理意义.〔7〕本局部的公式较多,所以解决问题的方法也多,通过一题多解可到达训练思维的目的.〔8〕初速度为零的问题应在学生充分理解和掌握根本公式等的根底上应用,对用比例法解决此类问题时,学生有两种心理倾向:一是公式过多,不知何时该用哪个;二是比例虽简单,学生心理上总认为它不可靠,怕比例找错了而放弃,遇此情况应尽量通过典型题,加强训练、加深理解.〔9〕STS 问题是本节的一个重要命题来源,结合生活中的实际问题进展素质培养.合作讨论〔一〕“神舟〞五号载人飞船是用我国拥有完全自主知识产权的长征二号F 火箭发射成功的.火箭的起飞质量高达479.8吨,其最大推力可达6×106N ,可在不到10min 内将飞船送到200km 高的预定轨道.火箭起飞的前12s 内〔约12s 后开场转弯〕可以看作匀加速直线运动,现观测到2s 时火箭上升的高度为5m ,请预测转弯时火箭所在的高度.图3—2我的思路:火箭起飞的前2s 内的速度信息、时间信息、位移信息均,可用位移公式2021at t s +=υ变形为a =2s /t 2求出其加速度.加速度为:a =2s /t 2=〔2×5/22〕m /s 2=/s 2.可预测12s 时火箭所在的高度为:m 180m =125.2212122⨯⨯==at s . 〔二〕A 、B 两同学在直跑道上练习4×100m 接力,他们在奔跑时有一样的最大速度.B 从静止开场全力奔跑需25m 才能到达最大速度,这一过程可看作匀变速运动.现在A 持棒以最大速度向B 奔来,B 在接力区伺机全力奔出.假设要求B 接棒时奔跑到达最大速度的80%,那么〔1〕B 在接力区须奔出多少距离?〔2〕B应在距离A多远时起跑?我的思路:情景图在运动学中的必要性是毋庸置疑的,尝试在每次练习时画出简洁清晰的情景图是解决运动学问题的第一步.图3—3即为此题的情景图,在使用本图时,还应将其中的人、位移、速度、加速度等信息反映出来,在脑中要形成完整的运动过程.图3—3设A到达O点时,B从p点开场起跑,接棒地点在q点,他们的最大速度为v.结合速度—时间图象分析.图3—4〔1〕对B,他由p到qv,根据位移—速度公式v t2-v02=2asv和所需位移的方程,即v2-02=2a×v〕2—02=2a′s1,联立后可解得B 在接力区须奔出:s1=16m.或解:利用初速度为零的匀变速直线运动的位移与速度平方成正比.〔2〕设A到达O点时,B开场起跑,结合速度—时间图象,可得接棒时,两人的位移分别为vtvtvt/2=s1=16m,可得vt=40m,vt即为s1+s2,B应在距离A:s2=vt—s1=〔40—16〕m=24m时起跑.思维过程运动问题中物理量多、公式也多,对于选择哪个公式有时不易确定.不能一味的将学过的公式挨个试来试去,而要首先对整个运动情况做到心中有数,对信息、待求信息了如指掌,通过分析信息和未知信息之间的关系,选择适宜的〔可能有多个〕公式来解决问题.对复杂的问题,应学会分步解决,画出简单的一目了然的情景图.要学会用不同的方法来解题,并通过比照,选择出简便的方法. 对匀变速直线运动,有四个根本关系:〔1〕平均速度公式:20)(21tt v v v v =+=〔2〕速度公式:v t =v 0+at〔3〕位移公式:2021at t v s +=〔4〕位移一速度公式:v t 2-v 02=2as通过分析、理解、掌握每个公式的特点,在最短的时间内选取适宜的公式.应在解题时先设定正方向,尤其对速度方向与加速度方向相反的运动,必须设定正方向,通常以初速度方向为正.对于往返运动,可分段考虑,或来回的加速度不变,即仍为匀变速直线运动,可全程考虑,此时各量的正负显得尤为重要.【例题】在一段平滑的斜冰坡的中部将冰块以8m /s 的初速度沿斜坡向上打出,设冰块与冰面间的摩擦不计,冰块在斜坡上的运动加速度恒为2m /s 2.求:〔设斜坡足够长〕〔1〕冰块在5s 时的速度.〔2〕冰块在10s 时的位移.思路:冰块先向上做匀减速直线运动,到速度减为零后又立即向下做匀加速运动,可以分段思考,由于上下的加速度大小、方向均不变,因此也可以全程考虑,这样处理更简便,也更能反映物体的运动本质,位移、速度、加速度的矢量性表达的更充分.解析:〔1〕画出简单的情景图,设出发点为O ,上升到的最高点为A ,设沿斜坡向上为运动量的正方向,由题意可知v 0=8m /s ,a =-2m /s 2,t 1=5s ,t 2=10s根据公式v t =v 0+at可得第5s 时冰块的速度为v 1=[8+〔-2〕×5]m /s =-2m /s负号表示冰块已从其最高点返回,5s 时速度大小为2m /s .图3—5〔2〕再根据公式2021at t v s +=可得第10s 时的位移s =[8×10+21×〔-2〕×102]m =-20m 负号表示冰块已越过其出发点,继续向下方运动,10s 时已在出发点下方20m 处.变式练习一、选择题1.以下关于匀变速直线运动的分析正确的选项是〔 〕A .匀变速直线运动就是速度大小不变的运动B .匀变速直线运动就是加速度大小不变的运动C .匀变速直线运动就是加速度方向不变的运动D .匀变速直线运动就是加速度大小、方向均不变的运动 解析:匀变速直线运动是指加速度恒定的直线运动,加速度是矢量,所以大小、方向均不变,才能称为匀变速直线运动.答案:D2.关于匀变速直线运动的以下信息是否正确〔 〕A .匀加速直线运动的速度一定与时间成正比B .匀减速直线运动就是加速度为负值的运动C .匀变速直线运动的速度随时间均匀变化D .速度先减小再增大的运动一定不是匀变速直线运动 解析:匀加速直线运动的速度是时间的一次函数,但不一定成正比,假设初速为零那么可以成正比,所以A 错;加速度的正负表示加速度与设定的正方向一样还是相反,是否是减速运动还要看速度的方向,速度与加速度反向即为减速运动,所以B 错;匀变速直线运动的速度变化量与所需时间成正比即速度随时间均匀变化,也可用速度图象说明,所以C 对;匀变速只说明加速度是恒定的,如竖直上抛,速度就是先减小再增大的,但运动过程中加速度恒定,所以D 错,也要说明的是,不存在速度先增大再减小的匀变速直线运动. 答案:C3.关于匀变速直线运动的位移的以下说法中正确的选项是〔 〕A .加速度大的物体通过的位移一定大B .初速度大的物体通过的位移一定大C .加速度大、运动时间长的物体通过的位移一定大D .平均速度大、运动时间长的物体通过的位移一定大 解析:由位移公式2021at t v s +=可知,三个自变量决定一个因变量,必须都大才能确保因变量大,所以A 、B 、C 均错;根据t v s =知,D 正确.答案:D4.以下图中,哪些图象表示物体做匀变速直线运动〔 〕 解析:匀变速直线运动的位移图线应为抛物线,速度图线应为倾斜直线,而加速度恒定,不随时间变化,所以加速度图线应为平行于t 轴的直线.答案:ABC5.赛车在直道上加速启动,将进入弯道前的加速过程近似看作匀变速,加速度为10m /s 2,历时3s ,速度可达〔 〕A .36km /hB .30km /hC .108km /hD .其他值解析:根据v t =v 0+at 可知车速到达30m /s ,换算后为C 答案:C6.公交车进站时的刹车过程可近似看作匀减速直线运动,进站时的速度为5m /s ,加速度大小为1m /s 2.那么以下判断正确的选项是〔 〕A .进站所需时间为5sB .6s 时的位移为12mC .进站过程的平均速度为/sD .前2s 的位移是m 9m 2245=+== t v s 解析:代数运算时应注意加速度应取为-1m /s 2,利用速度公式及平均速度公式可判定A、C正确.因5s时车已停下,不再做匀变速直线运动,因此5s后的运动情况不能确定,不能将时间直接代人位移公式中求解,B错;前2s的位移可用平均速度求,但所用的平均速度实为第1s内的平均速度,对时刻的理解错误,故D错.答案:AC7.图3—7为某物体做直线运动的速度—时间图象,请根据该图象判断以下说法正确的选项是〔〕图3—7A.物体第3s初的速度为零B.物体的加速度为-4m/s2C.物体做的是单向直线运动D.物体运动的前5s内的位移为26m解析:第3s初应为2s时,其速度应为4m/s,故A错;由图线的斜率可知物体的加速度为-4m/s2,故B正确;图线在t轴下方表示物体的速度方向与设定的正方向相反,即物体从3s开场返回,故C错;图线与t轴围成的面积表示的位移应为t轴上下面积之差,而路程那么用上下面积之和表示,所以实际位移为10m,而路程为26m,故D错.答案:B二、非选择题8.高尔夫球与其球洞的位置关系如图3—8,球在草地上的加速度为/s2,为使球以不大的速度落人球洞,击球的速度应为_______;球的运动时间为_______.图3—8解析:球在落入时的速度不大,可以当作零来处理.在平地上,球应做匀减速直线运动,加速度应为-/s 2.根据v t 2-v 02=2as ,可知球的初速度为2m /s ;再根据v t =v 0+at 可知运动时间为4s . 答案:2m /s 4s9.某物体做匀变速直线运动,v 0=4m /s ,a =2m /s 2.求: 〔1〕9秒末的速度.〔2〕前9秒的平均速度.〔3〕前9秒的位移.解析:〔1〕根据v t =v 0+at 可得9秒末的速度;〔2〕根据)(210v v v t +=可得前9秒的平均速度;或根据2/021at v v v +==计算出;〔3〕根据〔2〕中算出的平均速度利用t v s =可得.答案:〔1〕22m /s ;〔2〕13m /s ;〔3〕117m .10.列车司机因发现前方有危急情况而采取紧急刹车,经25s 停下来,在这段时间内前进了500m ,求列车开场制动时的速度和列车加速度.解析:由公式t v s =和)(210v v v t +=解得开场制动时的速度t v t s v -=20,由于v t =0,所以m/s 40m/s 25500220=== t s v .列车的加速度220m/s 6.1m/s 25400=--=-=t v v a t . 答案:40m /s ;-/s 2.11.公共汽车由停车站从静止出发以/s 2的加速度做匀加速直线运动,同时一辆汽车以36km /h 的不变速度从后面越过公共汽车.求: 〔1〕经过多长时间公共汽车能追上汽车?〔2〕后车追上前车之前,经多长时间两车相距最远?最远是多少? 〔请用两种以上方法求解上述两问〕解析:追及问题的关键在位置一样,两物体所用时间有关系,物体的位移也存在关系.假设同时同地同向出发,那么追上时所用时间相等,通过的位移相等.的信息有:v 0=0,v 2=36km /h =10m /s ,a =/s 2,〔1〕追上时两物体通过的位移分别为2021at t v s +=,即2121at s =;s =vt即s 2=v 2t且s 1=s 2,那么有t v at 2221=,得t =40s .〔2〕因两车速度一样时相距最远,设t ′相距最远,那么有at ′=v 2,t ′=v 2/a =20s此刻相距的距离为两物体的位移之差m 1002122=-=t a t v s 此题也可以用图象来解决,可要求学生运用.答案:〔1〕40s ;〔2〕20s ,100m .12.火车的每节车厢长度一样,中间的连接局部长度不计.某同学站在将要起动的火车的第一节车厢前端观测火车的运动情况.设火车在起动阶段做匀加速运动.该同学记录的结果为第一节车厢全部通过他所需时间为4s ,请问:火车的第9节车厢通过他所需的时间将是多少?解析:初速度为零的匀变速直线运动通过连续相邻的相等的位移〔由起点开场计算〕所需时间之比为)1-:::n.n-:)2(-3()1(1-2答案:)8(4-9。

《匀变速直线运动的规律》教学设计

《匀变速直线运动的规律》教学设计

《匀变速直线运动的规律》教学设计教学设计:匀变速直线运动的规律一、教学目标:1.理解匀变速直线运动的概念和特点;2.掌握匀变速直线运动的速度与时间、位移与时间、速度与位移之间的关系;3.能够应用公式计算匀变速直线运动的相关问题;4.能够通过实验观察、数据分析和图表绘制来验证匀变速直线运动的规律。

二、教学内容:1.匀变速直线运动的概念和特点;2.速度与时间、位移与时间、速度与位移之间的关系;3.匀变速直线运动的公式及其应用;4.匀变速直线运动的实验观察和数据分析。

三、教学步骤及方法:第一步:导入(10分钟)教师通过引入一段视频或图片展示匀变速直线运动的实例,激发学生的兴趣和好奇心,并导入本节课的学习内容。

第二步:概念解释与分析(15分钟)1.教师向学生解释匀变速直线运动的概念和特点,引导学生思考匀变速直线运动与匀速直线运动的区别;2.引导学生思考匀变速直线运动的速度是如何改变的,速度与时间、位移与时间、速度与位移之间是否存在一定的关系。

第三步:实验观察与数据收集(20分钟)1.教师组织学生进行匀变速直线运动实验;2.学生利用计时器、尺子、直尺等工具记录实验中运动物体的时间、位移和速度数据;3.学生用表格或图表的形式整理实验数据。

第四步:数据分析与问题解答(20分钟)1.教师引导学生分析实验数据,观察时间、位移和速度之间的关系;2.学生根据实验数据回答一些问题,如速度与时间之间的关系、位移与时间之间的关系等;3.学生将实验数据与实际生活中的运动现象进行对比,思考速度、时间和位移的实际意义。

第五步:公式推导与应用(20分钟)1.教师向学生介绍匀变速直线运动的公式,包括速度与时间的关系、位移与时间的关系等;2.教师以具体实例为基础,引导学生进行公式的推导和应用;3.学生通过公式计算实际问题,如求解物体在其中一时刻的速度、位移或运动时间等。

第六步:总结与拓展(15分钟)1.教师与学生一起总结匀变速直线运动的规律和公式;2.学生展示自己的实验数据和分析结果,并与其他同学进行交流和讨论;3.拓展学生的思维,引导他们思考匀变速直线运动的应用领域和实际问题。

高三物理上册《匀变速直线运动》教案、教学设计

高三物理上册《匀变速直线运动》教案、教学设计
4.实例分析:通过具体实例,讲解运动学公式的应用,让学生了解公式在实际问题中的运用。
(三)学生小组讨论
在学生小组讨论环节,我将组织以下活动:
1.分组讨论:将学生分成若干小组,针对某一实际问题进行讨每个小组派代表汇报讨论成果,展示本组对匀变速直线运动规律的理解和应用。
此外,学生在学习过程中可能存在以下问题:对运动学公式的记忆不牢固,导致在解决问题时出现错误;对匀变速直线运动中加速度的变化理解不深,影响对实际问题的分析;在团队合作中,部分学生可能过于依赖他人,缺乏独立思考的能力。
因此,在教学过程中,教师应关注学生的基础知识掌握情况,通过生动形象的教学手段,帮助他们构建完整的知识体系。同时,注重培养学生的独立思考能力和合作精神,引导他们在学习中发现问题、解决问题,为高考乃至未来的学术和职业生涯打下坚实基础。
3.复习旧知识:带领学生回顾之前学习的直线运动知识,为新课的学习做好铺垫。
(二)讲授新知
在讲授新知环节,我将按照以下步骤进行:
1.概念讲解:详细讲解匀变速直线运动的概念,包括速度、加速度、位移等物理量的定义。
2.规律阐述:阐述匀变速直线运动的规律,如速度与时间、加速度与时间、位移与时间的关系。
3.公式推导:引导学生通过数学方法推导匀变速直线运动的运动学公式,如v = v0 + at、s = v0t + 1/2at^2等。
6.总结与反馈:梳理本节课所学内容,检查学生学习效果,为下一节课做好准备。
二、学情分析
针对高三物理上册《匀变速直线运动》这一章节,学情分析如下:学生在之前的学习中,已经掌握了直线运动的基本概念,如速度、位移等,并具备了一定的数学运算能力。然而,对于匀变速直线运动这一更为复杂的概念,他们可能还缺乏深入的理解和实际应用的经验。在认知发展方面,高三学生正处于形式运算阶段,具备较强的逻辑思维能力和抽象思维能力,但还需通过具体实例和实验来巩固和提升所学知识。

教学设计5:2.2 匀变速直线运动的速度与时间的关系

教学设计5:2.2 匀变速直线运动的速度与时间的关系

第2 节匀变速直线运动的速度与时间的关系一、教学目标1、知识与技能1.掌握匀变速直线运动的概念,知道匀变速直线运动的速度—时间图象特点,2.理解匀变速直线运动速度—时间图象的物理意义,会根据图象分析解决问题3.掌握匀变速直线运动的速度与时间关系的公式,能进行有关计算2、过程与方法1.培养学生识别、分析图象和用物理语言表达相关过程的能力2.引导学生研究图象、寻找规律得出匀变速直线运动的概念3.引导学生用数学公式表达物理规律并给出各符号的具体含义3、情感、态度与价值观1.培养学生用物理语言表达物理规律的意识,激发探索与创新欲望2.培养学生透过现象看本质、用不同方法表达同一规律的科学意识二、教学重点1.理解匀变速直线运动速度—时间图象的物理意义2.掌握匀变速直线运动中速度与时间的关系公式及应用三、教学难点1.匀变速直线运动速度—时间图象的理解及应用2.匀变速直线运动的速度—时间公式的理解及计算四、课时安排2课时五、教学过程υ图象是一条平行于时间轴新课导入:通过对第一掌的学习,我们知道匀速直线运动的t-υ图象是一条倾的直线。

在上一节的探究实验中,我们描绘出小车在重物牵引下运动的t-斜的直线,它表示小车在做什么样的运动呢?小车随时间怎样变化?下面我们将讨论这些问题。

一.匀变速直线运动问题:t -υ图象的物理意义是什么?回答问题:t -υ图象是以坐标的形式将各个不同时刻的速度用点在坐标系中表现出来。

它以图象的形式描述了质点在各个不同时刻的速度。

例题:请同学们思考讨论图中的t -υ图象(课本第37页图2.2-1)。

在t -υ图象中能看出哪些信息呢?思考讨论图象的特点,尝试描述这种直线运动。

解析:我们可以从下面t -υ图象中得出质点在各个不同时刻的速度,包括大小和方向。

而且我们还可以看出,这个直线运动的速度不随时间变化,在不同时刻,速度的值都相等。

不随时间变化的速度是恒定的,说明质点在做匀速直线运动,加速度为零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

的位移之比为:
s1∶s2∶s3∶…∶s n=1∶3∶5∶…∶(2n-1)
通过连续相等的位移所用的时间之比为:
t1∶t2∶t3∶…∶t n=1∶(2-1)∶(3-2)∶…∶(n-n-1).
4.竖直上抛运动
(1)对称性:上升阶段和下落阶段具有时间和速度等方面的对称性.
(2)可逆性:上升过程做匀减速运动,可逆向看做初速度为零的匀加速运动来研究.
(3)整体性:整个运动过程实质上是匀变速直线运动.
5.解决匀变速直线运动问题的常用方法
(1)公式法
灵活运用匀变速直线运动的基本公式及一些有用的推导公式直接解决.
(2)比例法
在初速度为零的匀加速直线运动中,其速度、位移和时间都存在一定的比例关系,灵活利用这些关系可使解题过程简化.
(3)逆向过程处理法
逆向过程处理法是把运动过程的“末态”作为“初态”,将物体的运动过程倒过来进行研究的方法.
解法练习:
1.如图1-5甲所示,A、B两辆汽车在笔直的公路上同向行驶.当B车在A车前s=84 m处时,B车的速度v B=4 m/s,且正以a=2 m/s2的加速度做匀加速运动;经过一段时间后,B车的加速度突然变为零.A 车一直以v A=20 m/s的速度做匀速运动,从最初相距84 m时开始计时,经过t0=12 s后两车相遇.问B车加速行驶的时间是多少?
图1-5甲
2. 两辆完全相同的汽车,沿水平直路一前一后匀速行驶,速
度均为V0.若前车突然以恒定的加速度刹车,在它刚停住时,后车以前车刹车时的加速度开始刹车.已知前车在刹车过程中所行的距离为s,若要保证两辆车在上述情况中不相撞,则两车在匀速行驶时保持的距离至少为多少?
3. 一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3m/s的
加速度开始行驶,恰在这时一辆自行车以6m/s的速度匀速驶
来,从后面超过汽车,试问:
(1)汽车从路口开动后,在追上自行车之前经过多长时间两车相
距最远?此时距离是多少?
(2)什么时候汽车追上自行车,此时汽车的速度是多少?
当堂检测高台滑雪以其惊险刺激而闻名,运动员在空中的飞跃姿势具有很强的观赏性.某滑雪轨道的完整结构可以简化成如图1-7所示的示意
图.其中AB段是助滑雪道,倾角α=30°,BC段是水平起跳台,CD段
是着陆雪道,AB段与BC段圆滑相连,DE段是一小段圆弧(其长度可忽
略),在D、E两点分别与CD、EF相切,EF是减速雪道,倾角θ=37°.轨
道各部分与滑雪板间的动摩擦因数均为μ=0.25,图中轨道最高点A处
的起滑台距起跳台BC的竖直高度h=10 m.A点与C点的水平距离L1
=20 m,C点与D点的距离为32.625 m.运动员连同滑雪板的总质量m
=60 kg.滑雪运动员从A点由静止开始起滑,通过起跳台从C点水平
飞出,在落到着陆雪道上时,运动员靠改变姿势进行缓冲使自己只保留
沿着陆雪道的分速度而不弹起.除缓冲外运动员均可视为质点,设运动
员在全过程中不使用雪杖助滑,忽略空气阻力的影响,取重力加速度g
=10 m/s2,sin 37°=0.6,cos 37°=0.8.求:
图1-7
(1)运动员在C点水平飞出时的速度大小.
(2)运动员在着陆雪道CD上的着陆位置与C点的距离.
(3)运动员滑过D点时的速度大小.
备注。

相关文档
最新文档