第六章沉淀滴定法
第六章 沉淀滴定法

兰州石化职业技术学院 石油化学工程系
第六章 沉淀滴定法 使用,若pH<7则主要以HFIn形式存在,无法指示终点, 因此溶液的pH应有利于吸附指示剂阴离子的存在. (3) 卤化银沉淀对光敏感,易分解而析出金属银使沉淀变为 灰黑色,故滴定过程要避免强光 避免强光,否则,影响滴定终点 避免强光 的观察. (4) 指示剂吸附性能要适中.胶体微粒对指示剂的吸附能力 要比对待测离子的吸附能力略小,否则指示剂将在化学 计量点前变色.但如果太小,又将使颜色变化不敏锐. 卤化银对卤化物和几种吸附指示剂的吸附能力的次序如下:
兰州石化职业技术学院 石油化学工程系
第六章 沉淀滴定法 沉淀滴定法 沉淀滴定法是以沉淀反应为基础的一类滴定分析方法. 目前应用最多的是生成难溶银盐的反应.例如:
银量法:利用生成难溶银盐反应的测定方法称为银量法. 银量法可以测定Cl-,Br-,I-,Ag+,CN-,SCN-等离子.按照指 示滴定终点的方法不同而分为三种:莫尔(Mohr)法,佛尔哈 德(Volhard)法和法扬斯(Fajans)法.
上 页 下 页
兰州石化职业技术学院 石油化学工程系
第六章 沉淀滴定法 佛尔哈德法——铁铵矾作指示剂 二, 佛尔哈德法 铁铵矾作指示剂 以铁铵矾[NH4Fe(SO4)212H2O]作指示剂,在酸性介 质中,用KSCN或NH4SCN为标准溶液滴定. 1, 直接滴定法 原理: 原理: 在含有Ag+的硝酸溶液中加入铁铵矾指示剂,用 NH4SCN标准溶液滴定,先析出白色的AgSCN沉淀,到达 化学计量点时,微过量的NH4SCN就与Fe3+生成红色 FeSCN2+,指示滴定终点到达.其反应为:
在化学计量点前,溶液中有剩余的Cl-存在,AgCl沉淀 吸附Cl-而带负电荷,因此荧光黄阴离子留在溶液中呈黄绿 色.滴定进行到化学计量点后,AgCl沉淀吸附Ag+而
分析化学第六章-沉淀滴定

§6-3 沉淀的形成和沾污
28
4. 选择适宜的沉淀条件
§6-3 沉淀的形成和沾污
☻ 溶液浓度、酸度、温度、试剂的加入次序
和速度、陈化与否,据沉淀具体情况而定。
29
5. 选择适当的洗涤剂洗涤沉淀
☻利用吸附作用可逆性,洗涤使被吸附杂质
进入洗涤剂,纯化沉淀。溶解度小且不易 形成胶体的沉淀,可用蒸馏水洗涤;溶解 度较大的晶型沉淀,可用稀的沉淀剂洗涤, 但沉淀剂必须在烘干或捉烧时挥发或易分 解除去;溶解度较小而又可能分散成胶体 的沉淀,宜用挥发的电解质稀溶液洗涤 (如NH4NO3)。
21
三、 影响沉淀纯度的主要因素
沉淀的沾污主要原因是:共沉淀和继沉 淀现象 1. 共沉淀(coprecipitation):
♫
♪
♪
沉淀从溶液析出时,溶液中本来不生成沉 淀的某些其他组分,被沉淀带下而一起沉 淀下来的现象 有三类:
☻ 表面吸附(adsorption): ☻ 混晶或固溶体(mixed crystal): ☻ 吸留或包夹(occlusion成,与化学式完全相符; ♪ 十分稳定,不易吸收空气中 H2O 、 CO2 , 不易被氧化; ♪ 称量形摩尔质量要大,待测组分在称量 形式中含量要小,减小称量误差,提高 分析灵敏度。
§6-2 重量分析法概述
17
§6-3 沉淀的形成和沾污
一、沉淀的类型:(按物理性质划分)
♪ 晶型沉淀(Crystalline Precipitate):
♪ 指示剂:吸附指示剂(有机酸、碱)
♪ 滴定剂:Ag+
♪ 测定离子:Cl-、Br-、I-、SCN-
♪ 滴定反应:
AgCl· Cl- + FI(黄绿色)(排斥) AgCl· Ag+ + FI- = AgCl· Ag+· FI(粉红色)(吸引)
分析化学 第六章 重量分析法和沉淀滴定法

通辽职业学院
3.电解法
利用电解原理,使待测金属离子在电极上还原析出, 然后称重,电极增加的重量即为金属重。 重量分析法优点:其准确度较高,相对误差一般为 0.1-0.2%。
缺点:
程序长、费时多,操作繁琐,也不适用于微量组 分和痕量组分的测定。
分析化学
通辽职业学院
二、沉淀重量法对沉淀形式和称量形式的要求
Ba2+ SO42SO42- Ba2+ SO42SO42-
沉淀
Ba2+
Cl
-
Ca2+
K+
Ba2+ SO42Cl SO42- Ba2+ SO4
2-
Ca2+
Na+ Cl
-
Ba2+ SO42吸附层 扩散层
分析化学
通辽职业学院
(2) 吸留和包藏 吸留(occlusion):在沉淀过程中,若生成沉淀 的速度过快,则表面吸附的杂质来不及离开沉淀表面 就被沉淀下来的离子所覆盖,而杂质就被包藏在沉淀 内部,从而引起共沉淀。 包藏(inclusion):在沉淀过程中,母液也可能 被包夹在沉淀当中,从而引起共沉淀。 (3)混晶 当杂质离子的半径与构晶离子的半径相近时,所形 成的晶体结构相同,则它们极易生成混晶。 如:BaSO4和PbSO4, AgCl和AgBr. BaSO4和KMnO4等。 分析化学
K sp
K ap
②对于MmAn型沉淀,溶度积的表达式为:
MmAn
mM + nA
[Mn ]m [Am- ]n Ksp
分析化学
通辽职业学院
(2)条件溶度积 MA M
OH
+
+
第六章-沉淀溶解平衡与沉淀滴定法

5 x Ksp,AgCl 1.8 1010 1.3 10( mol L1)
2 2 3 K sp, Ag 2CO 3 c Ag y 4 y c 2 (2 y ) CO
3
y3
2018/8/13
Ksp,Ag2CO3 4
12 8.1 10 4 1 3 1.3 10 (mol L ) 4
2018/8/13 2
内容提要
沉淀溶解平衡是无机化学中的四大平衡之 一,属于多相离子平衡。本章将讨论沉淀溶 解平衡的规律,以溶度积规则为依据,分析 沉淀的生成、溶解、转化及分步沉淀等问题, 并对沉淀滴定法作一般介绍,扼要介绍重量 分析法。
2018/8/13
3
学习要求
1、掌握溶度积原理、溶度积规则及有关沉淀 溶解平衡的计算; 2、了解莫尔法、佛尔哈德法以及吸附指示剂 法的基本原理和特点,熟悉沉淀滴定法的应 用和计算; 3、初步了解重量分析法的基本原理及重量分 析法的应用。
第六章 沉淀溶解平衡与沉淀滴定法
2018/8/13
1
§6-1 沉淀溶解平衡
一、溶度积 三、溶度积规则 二、溶度积与溶解度的相互换算 四、影响溶解度的因素
§6-2 溶度积规则的应用
一、沉淀的生成 三、沉淀的转化 二、沉淀的溶解
§6-3 沉淀滴定法
一、概述 三、银量法的应用 二、银量法终点的确定
§6-4 重量分析法简介
2018/8/13 20
2、发生氧化还原反应 3CuS(s) + 8HNO3 = 3Cu(NO3)2 + 3S↓+ 2NO↑+ 4H2O 3、生成配合物 AgCl(s) + 2NH3 ⇌ [Ag(NH3)2]+ + Cl-
第六章沉淀滴定法

化学工业出版社
第三节 铁铵矾指示剂法
三、应用与实例
准确称取KBr试样0.2g,置于锥形瓶中,加纯 化水50ml溶解,加稀HNO3 2 ml、AgNO3滴定液 (0.1mol/L)25.00ml,摇匀,再加铁铵矾指示剂 2ml,用KSCN滴定液(0.1mol/L)滴定至溶液呈浅 红色,振摇后30秒内不褪色即为终点。平行测定3 次,正确记录数据并进行结果分析。
化学工业出版社
第三节 铁铵矾指示剂法
按下式计算KSCN滴定液的浓度。
c(AgNO3 )V (AgNO3 ) c(KSCN ) V (KSCN )
式中 c(KSCN)—KSCN滴定液的物质的量浓度,mol/L; c(AgNO3)—AgNO3滴定液的物质的量浓度,mol/L;
V(AgNO3)—AgNO3滴定液的体积,ml;
化学工业出版社
第二节 铬酸钾指示剂法 三、应用与实例 准确称取氯化钾样品1.6g(准确至±0.0001g), 用直接法配制250ml,摇匀。精密量取25.00ml上述溶 液 置 于 锥 形 瓶 中 , 加 纯 化 水 25ml , 5% ( g/ml ) K2CrO4指示剂1ml ,用0.1mol/L AgNO3滴定液滴定至 混悬液呈浅的砖红色,即为终点。平行测定 3 次,正 确记录数据并进行结果分析。
化学工业出版社
第二节 铬酸钾指示剂法 (二)0.1mol/L AgNO3滴定液的标定 称取在110℃干燥至恒重的基准NaCl 0.12g,置 于250ml锥形瓶中,加纯化水50ml使其溶解,加5% (g/ml)K2CrO4指示剂1ml,用0.1mol/L AgNO3 滴 定液滴定至混悬液呈浅的砖红色,即为终点。平行 实验3次。正确记录数据并进行结果分析。
第六章 沉淀滴定法

第
六 章
[Ag+]=5.0×10-5mol/L
沉
淀 滴
pAg=4.30
pCl=9.81-4.30=5.51
定
法
6
pX
xie 分 析 化 学
pBr pCl
第
六
章
沉 淀 滴
pAg V%
定
法
AgNO3溶液滴定Cl-、Br-的滴定曲线
7
滴定曲线特性:
pX与pAg两条线以化学计量点对称
xie
分 近化学计量点时,再滴入少量Ag+即引起X-浓度发生
学
终点前:
第
Ag++Cl-→AgCl↓
六
章 沉
终点时:
淀
滴 定
2Ag++CrO42-→ Ag2CrO4↓(砖红色)
法
9
(2)滴定条件
指示剂用量计算:
xie
当AgNO3溶液过量0.01ml(0.05%)时,Ag+的浓度为:
分
析 化
0.1 0.01 2.0 105 mol / L
学
50
第 六 章
将已生成的AgCl沉淀滤去,再用NH4SCN标准溶 液滴定滤液。
淀
滴 定
加入一定量有机溶剂如硝基苯、二甲酯类等。
法
利用高浓度的Fe3+作指示剂(0.2mol/L)
15
(2)滴定条件
xie 应在酸性(HNO3)溶液中进行滴定(pH=0~1)
分 用直接法测定Ag+时要充分振摇 析
化 间接法测定Cl-时,避免用力振摇。
定 法
Ag+(剩余量)+SCN-→AgSCN↓
第六章沉淀滴定法
用Cl-滴定Ag+情况会怎样?
2.
滴定条件:
1)酸度:大多数吸附指示剂为有机弱酸,对于酸性染料, pH >pKa,保证HFl充分解离。
例如: • 荧光黄pK 7,选pH为7~10。 a
• 二氯荧光黄pKa4,选pH为4~10; • 曙红 pKa2,选pH为2~10 2)指示剂的吸附特性: 胶体微粒对指示剂离子的吸附能力要略小于对被测离子的 吸附能力,反之终点提前,但也不能太小,否则终点延迟。
(cV )T (cV ) X Et 100% (cV ) X
21
2. 不同点:
1)强酸强碱的滴定产物是H2O,从滴定开始到结束, [H2O]=55.5 molL-1;
第六章
沉淀滴定法和滴定分析小结
1
Precipitation Titration and Summary of Titration Analysis
习题(pp. 280-281): 1, 3, 6
概述
沉淀滴定法是基于沉淀反应的滴定分析方法 可用于滴定
沉淀组成恒定
溶解度很小 不易形成过饱和溶液和产 生共沉淀 达到平衡时间短 有合适的指示剂
标准溶液:AgNO3、NH4SCN 被测物:X- (Cl-、Br-、I-、SCN-) SCN
-
Fe
3
Fe(SCN)3
X- + Ag+(过量) = AgX + Ag+ (剩余)
AgSCN
11
问题: 滴定Cl -时,到达终点,振荡,红色退去(沉淀转化)
AgCl Ag+ + Cl+ 3SCN- + Fe3+ AgSCN
9
6.1.2.2 佛尔哈德法(VolHard)
六章沉淀滴定法
测定I-时注意事项:
三、法扬斯法(Fajans)
分四部计算如下:
1.滴定前 cCl- = 0.1000 mol/L pCl = -lgcCl- =1.00
2.滴定开始至等量点前 当加入18.00 ml AgNO3溶液时,90.0%的Cl-与Ag+结合
生成沉淀。
[Cl- ]
(20.00- 18.00)10-3 0.1000 (20.00 18.00)10-3
[ Ag+ ] [Cl- ] K spAgCl 1.81010 1.3105 m ol / L
cCrO42
K SPAg 2CrO 4 c 2 Ag
1.1 1012 (1.3105 )2
6.5103 mol / L
指示剂的用量问题: 实际用量K2CrO4浓度为0.005 mol/L,比理
加入: (2)、溶液的pH值不能过大,除避免生成Ag2O沉淀外,pH值高
使指示剂电离过强,引起终点提前到达; 溶液酸度也不能太大,否则指示剂游离过少,不易被正电溶胶吸
附。滴定时的pH值应根据指示剂的离解常数(Ka)来确定。 (3)、卤化银易感光分解,析出金属银而变灰色,影响终点观察。
故应避免在强光下滴定。
它可有滴定过程中加入标准溶液的量及沉淀的Ksp进行计 算。
以0.1000mol/L(AgNO3)标准溶液滴定20.00 ml 0.1000 mol/L(NaCl)溶液,计算滴定过程中pAg和pCl的变化为 例。
分析化学 沉淀滴定法
第六章 沉淀滴定法6.1 概述6.2 沉淀滴定曲线6.3 沉淀滴定终点指示剂和 沉淀滴定分析方法(莫尔法、佛尔哈德法、法扬司法)(Precipitation titration ) 6.1 概述沉淀滴定法:以沉淀反应为基础的滴定分析方法。
只有少数沉淀反应可以用于沉淀滴定,因为:(1)沉淀的溶解度必须很小(沉淀完全)(2)反应迅速(3)沉淀组成固定,按反应式定量进行(4)有合适方法指示滴定终点(4)沉淀吸附不能影响终点的确定测定Ag +和卤素离子(Cl -、Br -、I -等)的沉淀滴定法。
银量法:用于沉淀滴定的反应必须满足以下条件:沉淀滴定分析曲线: 1. 沉淀滴定曲线2. 影响沉淀滴定突跃的因素3. 分步滴定沉淀滴定终点指示方法: 1. 莫尔法(铬酸钾指示剂法) 2. 佛尔哈德法(铁铵矾指示剂法) 3. 法扬司法(吸附指示剂法)6.2 沉淀滴定曲线Ø沉淀滴定曲线Ø影响沉淀滴定突跃的因素Ø分步滴定1.沉淀滴定曲线沉淀滴定反应:颜色突变指示终点到达与指示剂作用发生过量+Ag 以0.100mol·L -1AgNO 3标准溶液滴定50.0mL 0.050 mol ·L -1 Cl -为例910-sp 106.5108.11K 1K K ⨯=⨯==为沉淀反应的平衡常数滴定曲线计算基础:生成沉淀物质的溶度积常数 K sp 溶度积常数:当溶解与结晶速度相等时,平衡常数K AgCl 为: K AgCl = [Ag +][Cl -]该常数称为溶度积常数,用K sp 表示。
溶度积通式:m-n n m B A sp,][B ]A [K m n +=例:溶度积与溶解度之间的关系:解:(1) 设AgCl 的溶解度为s 1(mol·L -1),则:的溶解度。
和试计算例:已知42-12CrO Ag sp,-10AgCl sp,CrO Ag AgCl ,10.02K ,101.8K 42⨯=⨯=平衡时 s 1 s 11-51-1021AgCl sp,L mol 103.1s 101.8s K -⋅⨯=∴⨯==则(2)设Ag 2CrO 4的溶解度为s 2(mol·L -1),则:平衡时 2s 2 s 21-52-1232222CrO Ag sp,Lmol 109.7s 102.0s 4s )s 2(K 42-⋅⨯=∴⨯==⨯=则 同一类型的沉淀,可以用K sp 直接比较溶解度的大小,不同类型的难溶电解质,不能用K sp 比较。
第六章_沉淀滴定分析法
第三节 银量法滴定终点的确定
弱碱性溶液中以Cl-﹑Br-为主要测定对象的银量法。 应用以K2CrO4为指示剂的莫尔法要注意以下几点:
3.混合离子的沉淀滴定
例: 称取含NaCl和NaBr试样(其中还有不与Ag+发生反应的其他组分)0.3750 g, 溶解后,用0.1043 mol· -1 AgNO3标准溶液滴定,用去21.11 mL。另取同样重量 L 的试样,溶解后,加过量的AgNO3溶液沉淀,经过滤、沉淀、烘干后,得沉淀重 0.4020 g。计算试样中NaCl和NaBr的质量分数。 解:设试样中NaCl毫摩尔数为x, NaBr的毫摩尔数为y, 则: x = 0.258 m mol; y = 1.944 m mol
5. 生成的AgCl(或AgBr)沉淀也可吸附Cl-(或Br-),因此滴定时必须 剧烈摇动溶液,使被吸附的Cl-(或Br-)释出。
第二节 佛尔哈特法-利用生成有色配合物指示终
佛尔哈德法(Volhard)是用铁铵矾[NH4Fe (SO4)2· 2O]溶液作指示 12H 剂的银量法,它包括直接滴定法和返滴定法。 1.直接滴定法原理——测定Ag+ Ag+ + SCN - AgSCN(白色)= Fe3+ + SCN- Fe (SCN)2+(红色) 2.返滴定法原理
一. 莫尔(Mohr)法——利用生成有色沉淀指示终 点 莫尔法是以AgNO3为标准溶液,以K2CrO4为指示剂,在中性及
1. 滴定应在中性或弱碱性介质中进行。 2. 不能在含有NH3或其它能与Ag+生成配合物的物质的溶液中滴定。 如果有NH3存在,应预先用HNO3中和;如果有NH4+存在,滴定时应控 制溶液的pH值范围为6.5~7.2。 3. 凡能与CrO42-生成沉淀的阳离子(如Ba2+﹑Pb2+﹑Hg2+等); 凡能与 Ag+生成沉淀的阴离子(如CO32-﹑PO43-﹑AsO43-等);还有在中性﹑弱 碱性溶液中易发生水解反应的离子: (如Fe3+﹑Bi3+﹑AL3+﹑Sn4+等)均干扰测定,应预先分离。 4. 莫尔法可测定Cl-、Br-,但不能测定I-和SCN-,因为AgI和AgSCN强烈 吸附I-和SCN-,使终点变化不明显。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.提高沉淀纯度措施
Techniques for improving the purity of precipitate
6-2
1.共沉淀现象
1、 共沉淀(coprecipitation) 在沉淀操作中,沉淀物从溶液中析出时, 一些可溶性物质作为杂质混入沉淀物中,被沉淀 载带下来的现象。 原因:表面吸附、混晶、吸留、包夹
6-7
(2) 混晶和异形混晶
溶液中杂质离子与构晶离子半径相近,电子 结构相似,并形成相同的晶体结构,则会生成混 晶。 如:Pb2+离子取代BaSO4晶体中的Ba2+。
常见混晶:
BaSO4和PbSO4、AgCl和AgBr、 MgNH4PO4· 6H2O和MgNH4AsO4· 6H2O
6-8
杂质盐类和晶体有相同的化学式(如 ABO4 ),离 子体积大致相同(电荷可能不同),则会形成异 形混晶。(杂质离子或原子并不位于正常晶格的
6-12
例:草酸盐的沉淀分离
长时间 Ca ,Mg CaC2O4 CaC2O4 MgC2O4 2+ 2+ 2 长时间放置,CaC2O4表面吸附C2O2 [C O 4 2 4 ] 当[Mg 2+ ][C2O2 4 ] Ksp(MgC2O4 ) MgC2 O4 逐渐沉积
Chapter 6
Gravimetry and precipitation titration
Lecture 2
6-1
五、影响沉淀纯净的因素
Influencing factors on the purity of precipitate 1.共沉淀现象
Coprecipitation
2.后沉淀
Postprecipitation
须看沾污杂质的性质和它在称量形式中所占量的相 对大小,可能引起正误差、负误差,还可能没有误差。 例 如 , BaSO4 沉 淀 中 包 藏 BaCl2 , 对 于 测 定 对 象
SO4-来说,由于BaCl2为外来杂质,会造成正误差; 但如果测定对象为Ba2+,BaCl2相对分子质量小于BaSO4 相对分于质量而造成负误差。 若BaSO4沉淀包藏了H2SO4,灼烧沉淀则变成SO3挥发损 失掉,对测定S则引入负误差。而对测Ba2+来讲则无影 响。学会分析沾污原因,对结果的影响十分重要。
例如,测定SO42-时,以BaCl2为沉淀剂,如果试液中 有Fe3+存在,当析出BaSO4沉淀时,本来是可溶性的 Fe2(SO4)3 也被夹在沉淀中。 BaSO4 应该是白色的, 如果有铁盐共沉淀,则灼烧后的BaSO4中混有黄棕色 Fe2O3。这会给分析结果带来正误差。
6-3
(1)表面吸附 Adsorption on the surface
14
3.提高沉淀纯度的措施
Techniques for improving the purity of precipitate 1)选择适当分析步骤
测少量组分含量时,首先沉淀含量少的组分
2)改变吸附杂质的存在形式
分离除去,或掩蔽
3)选择合适的沉淀剂
选用有机沉淀剂可有效减少共沉淀
4)改善沉淀条件
温度,浓度,试剂加入次序或速度,是否陈化
将杂质事先分离除去; 加入络合剂或改变沉淀剂,以消除干扰离子
6-10
(3) 吸留和包夹 吸留:沉淀剂浓度较大,晶体生长太快, 沉淀表面吸附的杂质离子来不及离开 沉淀表面,被包藏在沉淀的内部。
包夹:母液被包夹在沉淀中。
无法用洗涤的方法除去
一般只在可溶性盐的结晶过程中比较严重 减少或消除方法 改变沉淀条件,重结晶或陈化
6-11
2.后沉淀(继沉淀):Postprecipitation
沉淀析出后,在放置过程中,另一种本来 难以析出沉淀的组分,在该沉淀表面上继续析 出沉淀的现象,且放置时间越长,杂质析出的 量越多。 大多发生于该组分的过饱和溶液中。 注:继沉淀经加热、放置后会更加严重
消除方法——缩短沉淀与母液的共置时间
5)再沉淀
有效减小吸留或包埋的共沉淀及后沉淀现象
6-15
沉淀条件对沉淀纯度的影响
沉淀条件 稀释溶液 慢沉淀 搅拌 陈化 加热 洗涤沉淀 再沉淀 混晶 表面吸附 吸留或包夹 继沉淀
O 不定 O
+
+
O — O — O O +
6-16
+
+
+
+
不定
不定 O +
+
+ + +
+
+度;O:影响不大
C2 O 2 4
例:金属硫化物的沉淀分离
H 2S 长时间 Cu 2+ ,Zn 2+ CuS CuS ZnS
长时间放置,CuS表面吸附S2 [S2 ] 当[Zn 2+ ][S2 ] Ksp(ZnS) ZnS 逐渐沉积
6-13
共沉淀或继沉淀对分析结果的影响:
六、沉淀条件的选择
吸附共沉淀:晶体表面离子电荷不完全等衡。
形成第一吸附层和第二吸附层(双电层), 与沉淀一起沉降。 表面吸附是有选择性的,与被吸附物质的溶 解度、被吸附离子的变形性及吸附后形成物的离 解能力有关。
6-4
吸附规则 Adsorption rules
第一吸附层:先吸附过量的构晶离子 再吸附与构晶离子大小接近、电荷相同的离子 浓度较高的离子被优先吸附 第二吸附层:优先吸附与构晶离子形成的盐溶解度小的离子 离子价数高、浓度大的离子,优先被吸附 减小方法 制备大颗粒沉淀或晶形沉淀 适当提高溶液温度,洗涤沉淀
6-5
图示
BaSO4晶体表面吸附示意图(过量SO42-沉淀Ba2+) 沉淀表面形成双电层: 吸附层——吸附剩余构晶离子SO42 扩散层——吸附阳离子或抗衡离子Fe3+
6-6
影响吸附杂质的量的因素: 1) 沉淀的总表面积 总表面积越大,吸附杂质越多
2) 溶液的温度 温度升高,吸附量减少(吸附作用是放热过程)
离子或原子位置上,而是位于晶格的空隙中)
化学形式相同:KMnO4和BaSO4
离子大小相近:LaF3和CaF2
6-9
如何避免生成混晶? 生成混晶的选择性是比较高的,要避免也较困 难。因为不论杂质的浓度多么小,只要构晶离子 形成了沉淀,杂质就一定会在沉淀过程中取代某 一构晶离子而进入到沉淀中。
减小或消除方法