通信原理PCM编译码实验
通信原理PCM编译码实验

实验一PCM编译码实验一、实验目的1、掌握脉冲编码调制与解调的原理。
2、掌握脉冲编码调制与解调系统的动态范围和频率特性的定义及测量方法。
3、了解脉冲编码调制信号的频谱特性。
4、熟悉了解W681512。
二、实验器材1、主控&信号源模块、3号、21号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、实验原理框图图1-1 21号模块W681512芯片的PCM编译码实验图1-23号模块的PCM编译码实验图1-3A/μ律编码转换实验2、实验框图说明图1-1中描述的是信号源经过芯片W681512经行PCM编码和译码处理。
W681512的芯片工作主时钟为2048KHz,根据芯片功能可选择不同编码时钟进行编译码。
在本实验的项目一中以编码时钟取64K为基础进行芯片的幅频特性测试实验。
图1-2中描述的是采用软件方式实现PCM编译码,并展示中间变换的过程。
PCM编码过程是将音乐信号或正弦波信号,经过抗混叠滤波(其作用是滤波3.4kHz以外的频率,防止A/D 转换时出现混叠的现象)。
抗混滤波后的信号经A/D转换,然后做PCM编码,之后由于G.711协议规定A律的奇数位取反,μ律的所有位都取反。
因此,PCM编码后的数据需要经G.711协议的变换输出。
PCM译码过程是PCM编码逆向的过程,不再赘述。
A/μ律编码转换实验中,如实验框图1-3所示,当菜单选择为A律转μ律实验时,使用3号模块做A律编码,A律编码经A转μ律转换之后,再送至21号模块进行μ律译码。
同理,当菜单选择为μ律转A律实验时,则使用3号模块做μ律编码,经μ转A律变换后,再送入21号模块进行A律译码。
四、实验步骤实验项目一测试W681512的幅频特性概述:该项目是通过改变输入信号频率,观测信号经W681512编译码后的输出幅频特性,了解芯片W681512的相关性能。
1、关电,按表格所示进行连线。
源端口目的端口连线说明信号源:A-OUT模块21:TH5(音频接口)提供音频信号信号源:T1模块21:TH1(主时钟)提供芯片工作主时钟信号源:CLK模块21:TH11(编码时钟)提供编码时钟信号信号源:CLK模块21:TH18(译码时钟)提供译码时钟信号信号源:FS模块21:TH9(编码帧同步)提供编码帧同步信号信号源:FS模块21:TH10(译码帧同步)提供译码帧同步信号模块21:TH8(PCM编码输出)模块21:TH7(PCM译码输入)接入译码输入信号2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【PCM编码】→【A律编码观测实验】。
pcm编译码实验报告

pcm编译码实验报告PCM 编译码实验报告一、实验目的1、掌握脉冲编码调制(PCM)的基本原理。
2、熟悉 PCM 编译码系统的构成及工作过程。
3、观察和分析 PCM 编译码过程中的信号波形,理解量化和编码的概念。
二、实验原理PCM 是一种将模拟信号变换成数字信号的编码方式。
其基本原理是对模拟信号进行周期性采样,然后将每个采样值进行量化,并将量化后的数值用二进制编码表示。
采样过程遵循奈奎斯特采样定理,即采样频率应大于模拟信号最高频率的两倍,以保证能够从采样后的信号中无失真地恢复出原始模拟信号。
量化是将采样值在幅度上进行离散化,分为若干个量化级。
量化级的数量决定了量化误差的大小。
编码则是将量化后的数值用二进制代码表示。
常见的编码方式有自然二进制编码、折叠二进制编码等。
在 PCM 编译码系统中,发送端完成采样、量化和编码的过程,将模拟信号转换为数字信号进行传输;接收端则进行相反的过程,即解码、反量化和重建模拟信号。
三、实验仪器与设备1、通信原理实验箱2、示波器3、信号源四、实验内容与步骤1、连接实验设备将通信原理实验箱接通电源。
用信号线将信号源与实验箱的输入端口连接,将实验箱的输出端口与示波器连接。
2、产生模拟信号设置信号源,产生频率为 1kHz、幅度为 2V 的正弦波模拟信号。
3、观察采样过程调节实验箱上的采样频率旋钮,分别设置为不同的值,观察示波器上的采样点。
4、量化与编码观察实验箱上的量化和编码模块,了解量化级的设置和编码方式。
5、传输与接收发送端将编码后的数字信号传输给接收端。
观察接收端解码、反量化后的模拟信号。
6、改变输入信号参数改变模拟信号的频率和幅度,重复上述实验步骤,观察 PCM 编译码的效果。
五、实验结果与分析1、采样频率对信号的影响当采样频率低于奈奎斯特频率时,示波器上的信号出现失真,无法准确还原原始模拟信号。
当采样频率高于奈奎斯特频率时,信号能够较好地还原,随着采样频率的增加,还原效果更加理想。
南昌大学通信原理实验五 PCM编码、译码原理实验

实验五 PCM编码、译码原理实验一、实验目的1、加深对PCM 编码过程的理解;2、熟悉PCM 编、译码专用集成芯片的功能和使用方法;3、了解PCM 系统的工作过程;4、了解帧同步信号的时序状态关系;5、掌握时分多路复用的工作过程;6、用同步正弦波信号观察PCM 八比特编码的实验。
二、实验原理脉冲调制就是把一个时间连续、取值连续的模拟信号变换成时间离散、取值离散的数字信号后在信道中传输。
脉冲编码调制就是对模拟信号先抽样,量化、编码的过程。
所谓抽样,就是在抽样脉冲来到的时刻提取对模拟信号在该时刻的瞬时值,抽样把时间上连续的信号变成时间上离散的信号。
抽样速率的下限是由抽样定理确定的。
在该实验中,抽样速率采用8Kbit/s。
所谓量化,就是把经过抽样得到的瞬时值将其幅度离散,即用一组规定的电平,把瞬时抽样值用最接近的电平值来表示。
所谓编码,就是用一组二进制码组来表示每一个有固定电平的量化值。
然而,实际上量化是在编码过程中同时完成的,故编码过程也称为模/数变换,可记作A/D。
PCM原理框图三、实验内容1、用同步正弦波信号观察PCM 八比特编码的实验;2、脉冲编码调制(PCM)及系统实验;3、PCM 八比特编码时分复用输出波形观察测量实验。
四、实验步骤及结果1、打开实验箱右侧电源开关,电源指示灯亮;2、编码部分:SP401 接入模拟信号,输入正弦波信号;SP405 接入2048KHz 主时钟信号;SP406 接入8KHz 脉冲信号;SP407 接入可选发码时钟,有64K、512K、2048K 三种频率。
3、译码部分:SP408 接入8KHz 脉冲信号;SP409 接入可选发码时钟,有64K、512K、2048K 三种频率。
4、连接SP402、SP403 两点,测试译码输出电路各点波形,在TP404能观察到稳定的正弦输出信号。
用音乐信号源取代函数信号发生器测试各点。
TP401:模拟信号输入TP402:数字编码输出; TP403:数字译码输入TP404:模拟信号输出TP405:主时钟TP407/409 :512KHz5、实验现象TP401TP402TP403TP404TP405TP403 405TP406TP407 409TP408五、测量点说明TP401:该点为输入的音频信号,用连接线连接模拟信号源与TP401,若幅度过大,则被限幅电路限幅成方波,因此信号波形幅度尽量小一些。
实验三PCM编译码器通信实验

PCM编译码器一.实验原理抽样定理在通信系统、信息传输理论方面占有十分重要的地位。
抽样过程是模拟信号数字化的第一步,抽样性能的优劣关系到通信设备整个系统的性能指标。
利用抽样脉冲把一个连续信号变为离散时间样值的过程称为抽样,抽样后的信号称为脉冲调幅(PAM)信号。
抽样定理指出,一个频带受限信号m(t),如果它的最高频率为fh,则可以唯一地由频率等于或大于2fh的样值序列所决定。
在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。
并且,从抽样信号中可以无失真地恢复出原始信号。
通常将语音信号通过一个3400 Hz低通滤波器(或通过一个300~3400Hz 的带通滤波器),限制语音信号的最高频率为3400Hz,这样可以用频率大于或等于6800 Hz的样值序列来表示。
实际上,设计实现的滤波器特性不可能是理想的,对限制最高频率为3400Hz 的语音信号,通常采用8KHz抽样频率。
这样可以留出一定的防卫带(1200Hz)。
当抽样频率fs 低于2倍语音信号的最高频率fh,就会出现频谱混迭现象,产生混迭噪声,影响恢复出的话音质量。
在抽样定理实验中,采用标准的8KHz抽样频率,并用函数信号发生器产生一个频率为fh 的信号来代替实际语音信号。
通过改变函数信号发生器的频率fh,观察抽样序列和低通滤波器的输出信号,检验抽样定理的正确性。
PCM编译码模块将来自用户接口模块的模拟信号进行PCM编译码,该模块采用MC145540集成电路完成PCM编译码功能。
该器件具有多种工作模式和功能,工作前通过显示控制模块将其配置成直接PCM模式(直接将PCM码进行打包传输),使其具有以下功能:1、对来自接口模块发支路的模拟信号进行PCM编码输出。
2、将输入的PCM码字进行译码(即通话对方的PCM码字),并将译码之后的模拟信号送入用户接口模块。
PCM编译码器模块电路与ADPCM编译码器模块电路完全一样,由语音编译码集成电路U502(MC145540)、运放U501(TL082)、晶振U503(20.48MHz)及相应的跳线开关、电位器组成。
PCM编译码实验

实验一 PCM 编译码实验一、实验目的1.掌握 PCM编译码原理。
2.掌握 PCM基带信号的形成过程及分接过程。
3.掌握语音信号 PCM编译码系统的动态范围和频率特性的定义及测量方法。
二、实验仪器1.双踪示波器一台2.通信原理Ⅵ型实验箱一台3.M3:PCM 与 ADPCM编译码模块和 M6数字信号源模块4.麦克风和扬声器一套三、基本原理1.点到点 PCM多路电话通信原理脉冲编码调制(PCM)技术与增量调制(M)技术已经在数字通信系统中得到广泛应用。
当信道噪声比较小时一般用PCM,否则一般用M。
目前速率在155MB以下的准同步数字系列(PDH)中,国际上存在 A 律和μ律两种PCM编译码标准系列,在155MB以上的同步数字系列(SDH)中,将这两个系列统一起来,在同一个等级上两个系列的码速率相同。
而M 在国际上无统一标准,但它在通信环境比较恶劣时显示了巨大的优越性。
点到点PCM多路电话通信原理可用图11-1表示。
对于基带通信系统,广义信道包括传输媒质、收滤波器、发滤波器等。
对于频带系统,广义信道包括传输媒质、调制器、解调器、发滤波器、收滤波器等。
低通滤PCM 编复接器广波器码器义混合信电路低通滤PCM 编道分接器波器码器图 11-1 点到点 PCM多路电话通信原理框图本实验模块可以传输两路话音信号。
采用MC145503编译器,它包括了图 11-1 中的收、发低通滤波器及PCM编译码器。
编码器输入信号可以是本实验系统内部产生的正弦信号,也可以是外部信号源的正弦信号或电话信号。
本实验模块中不含电话机和混合电路,广义信道是理想的,即将复接器输出的PCM信号直接送给分接器。
2. PCM编译码模块原理本模块的原理方框图及电路图如图11-2 及图 11-3 所示。
图11-2 PCM 编译码原理方框图该模块上有以下测试点和输入点:BS PCM基群时钟信号 ( 位同步信号 ) 测试点SL0PCM基群第 0 个时隙同步信号SLA信号 A 的抽样信号及时隙同步信号测试点SLB信号 B 的抽样信号及时隙同步信号测试点SRB信号 B 译码输出信号测试点STA输入到编码器 A的信号测试点SRA信号 A 译码输出信号测试点STB输入到编码器 B的信号测试点PCM_OUT PCM基群信号输出点PCM_IN PCM 基群信号输入点PCM A OUT信号 A 编码结果输出点(不经过复接器)PCM B OUT信号 B 编码结果输出点(不经过复接器)PCM A IN信号 A 编码结果输入点(不经过复接器)PCM B IN信号 B 编码结果输入点(不经过复接器)本模块上有S2 这个拨码开关,用来选择 SLB 信号为时隙同步信号SL1、SL3、SL5、SL6中的任一个。
PCM编译码实验

实验一 PCM编译码实验一、实验目的1. 掌握PCM编译码原理。
2. 掌握PCM基带信号的形成过程及分接过程。
3. 掌握语音信号PCM编译码系统的动态范围和频率特性的定义及测量方法。
二、实验仪器1. 双踪示波器一台2. 通信原理Ⅵ型实验箱一台3. M3:PCM与ADPCM编译码模块和M6数字信号源模块4. 麦克风和扬声器一套三、基本原理1. 点到点PCM多路电话通信原理脉冲编码调制(PCM)技术与增量调制(ΔM)技术已经在数字通信系统中得到广泛应用。
当信道噪声比较小时一般用PCM,否则一般用ΔM。
目前速率在155MB以下的准同步数字系列(PDH)中,国际上存在A律和μ律两种PCM编译码标准系列,在155MB以上的同步数字系列(SDH)中,将这两个系列统一起来,在同一个等级上两个系列的码速率相同。
而ΔM在国际上无统一标准,但它在通信环境比较恶劣时显示了巨大的优越性。
点到点PCM多路电话通信原理可用图11-1表示。
对于基带通信系统,广义信道包括传输媒质、收滤波器、发滤波器等。
对于频带系统,广义信道包括传输媒质、调制器、解调器、发滤波器、收滤波器等。
图11-1 点到点PCM多路电话通信原理框图本实验模块可以传输两路话音信号。
采用MC145503编译器,它包括了图11-1中的收、发低通滤波器及PCM编译码器。
编码器输入信号可以是本实验系统内部产生的正弦信号,也可以是外部信号源的正弦信号或电话信号。
本实验模块中不含电话机和混合电路,广义信道是理想的,即将复接器输出的PCM信号直接送给分接器。
2. PCM编译码模块原理本模块的原理方框图及电路图如图11-2及图11-3所示。
图11-2 PCM编译码原理方框图该模块上有以下测试点和输入点:∙ BS PCM基群时钟信号(位同步信号)测试点∙ SL0 PCM基群第0个时隙同步信号∙ SLA 信号A的抽样信号及时隙同步信号测试点∙ SLB 信号B的抽样信号及时隙同步信号测试点∙ SRB 信号B译码输出信号测试点∙ STA 输入到编码器A的信号测试点∙ SRA 信号A译码输出信号测试点∙ STB 输入到编码器B的信号测试点∙ PCM_OUT PCM基群信号输出点∙ PCM_IN PCM基群信号输入点∙ PCM A OUT 信号A编码结果输出点(不经过复接器)∙ PCM B OUT 信号B编码结果输出点(不经过复接器)∙ PCM A IN 信号A编码结果输入点(不经过复接器)∙ PCM B IN 信号B编码结果输入点(不经过复接器)本模块上有S2这个拨码开关,用来选择SLB信号为时隙同步信号SL1、SL3、SL5、SL6中的任一个。
通信原理实验报告PCMADPCM编译码实验

PCM/ADPCM编译码实验一、实验原理和电路说明PCM/ADPCM编译码模块将来自用户接口模块的模拟信号进行PCM/ADPCM编译码,该模块采用MC145540集成电路完成PCM/ADPCM编译码功能。
该器件工作前通过显示控制模块将其配置成直接PCM或ADPCM模式,使其具有以下功能:1、对来自接口模块发支路的模拟信号进行PCM编码输出。
2、将输入的PCM码字进行译码(即通话对方的PCM码字),并将译码之后的模拟信号送入用户接口模块。
电路工作原理如下:PCM/ADPCM编译码模块中,由收、发两个支路组成,在发送支路上发送信号经U501A 运放后放大后,送入U502的2脚进行PCM/ADPCM编码。
编码输出时钟为BCLK(256KHz),编码数据从语音编译码集成电路U502(MC145540)的20脚输出(DT_ADPCM1),FSX为编码抽样时钟(8KHz),晶振U503(20.48MHz)。
编码之后的数据结果送入后续数据复接模块进行处理,或直接送到对方PCM/ADPCM译码单元。
在接收支路中,收数据是来自解数据复接模块的信号(DT_ADPCM_MUX),或是直接来自对方PCM/ADPCM编码单元信号(DT_ADPCM2),在接收帧同步时钟FSX(8KHz)与接收输入时钟BCLK(256KHz)的共同作用下,将接收数据送入U502中进行PCM/ADPCM译码。
译码之后的模拟信号经运放U501B放大缓冲输出,送到用户接口模块中。
二、实验内容及现象记录与分析1.准备工作:加电后,将KB03置于左端PCM编码位置,此时MC145540工作在PCM编码状态。
将K501设置在右边。
2.PCM/ADPCM编码信号输出时钟和抽样时钟信号观测①输出时钟和抽样时钟即帧同步时隙信号观测:测量、分析和掌握PCM编码抽样时钟信号与输出时钟的频率、占空比以及它们之间的对应关系等。
记录与分析:输出时钟。
由图中右侧测量数据可见,抽样信号频率为8kHz,输出时钟信号频率为256kHz(见下图CH2频率,上图测得为260.4kHz存在误差,因为时间轴选取得太密)。
4.pcm编译码 - 通信原理实验报告

4.pcm编译码 - 通信原理实验报告
PCM是指Pulse Code Modulation(脉冲编码调制)的缩写,是一种数字通信技术,
它常用于将模拟信号转换为数字信号,并将其传输到接收站。
它通过将实时信号转换为一
系列数字并进行抽样数据,以到达目标呈现出模拟信号序列从而实现数据通信的传输。
一般来说,编码技术会将模拟信号处理成“文本”,PCM 将处理成已经精确编号的digit,最后的处理都是电信号。
PCM编码的完整过程可以分为三步:第一步是模拟信号的采样,把时域中的信号采集成数次采样,第二步是编码,将采样的信号的值编码成digits,第三步是字节组装,把编码的digits 放进字节中,再发出。
下面就重点介绍PCM编码的
模拟信号采样过程和字符组装过程。
首先介绍模拟信号采样。
PCM编码首先会把信号采样,即把时间域中的模拟信号,采
集成离散点并组织成序列,如此会确定数字采样值。
采样频率越高、采样数据越多,就可
以更好地反映出模拟信号的变化,即保留越多的信号特性,由此可以看出,采样是PCM编
码的重要环节。
接下来介绍字节组装。
PCM编码会将采样的数据进行编码,将数据放入字节中,最后
进行发送。
数据编码是将A/D转换的精确采样数据转换为一个数字码,以便可以传输或存
储数据。
通常压缩率会越高,所需的传输带宽也会越小,这就可以大幅度节省传输成本。
以上就是PCM编码的基本流程。
PCM编码是一种把模拟信号转换为数字信号的重要技术,被广泛应用于通信系统、数字音频传输系统中。
优点是能够实现远程传输、信号增强,同时有较高的稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一PCM编译码实验
一、实验目的
1、掌握脉冲编码调制与解调的原理。
2、掌握脉冲编码调制与解调系统的动态围和频率特性的定义及测量方法。
3、了解脉冲编码调制信号的频谱特性。
4、熟悉了解W681512。
二、实验器材
1、主控&信号源模块、3号、21号模块各一块
2、双踪示波器一台
3、连接线若干
三、实验原理
1、实验原理框图
图1-1 21号模块W681512芯片的PCM编译码实验
图1-2 3号模块的PCM编译码实验
图1-3 A/μ律编码转换实验
2、实验框图说明
图1-1中描述的是信号源经过芯片W681512经行PCM编码和译码处理。
W681512的芯片工作主时钟为2048KHz,根据芯片功能可选择不同编码时钟进行编译码。
在本实验的项目一中以编码时钟取64K为基础进行芯片的幅频特性测试实验。
图1-2中描述的是采用软件方式实现PCM编译码,并展示中间变换的过程。
PCM编码过程是将音乐信号或正弦波信号,经过抗混叠滤波(其作用是滤波3.4kHz以外的频率,防
止A/D转换时出现混叠的现象)。
抗混滤波后的信号经A/D转换,然后做PCM编码,之后由于G.711协议规定A律的奇数位取反,μ律的所有位都取反。
因此,PCM编码后的数据需要经G.711协议的变换输出。
PCM译码过程是PCM编码逆向的过程,不再赘述。
A/μ律编码转换实验中,如实验框图1-3所示,当菜单选择为A律转μ律实验时,使用3号模块做A律编码,A律编码经A转μ律转换之后,再送至21号模块进行μ律译码。
同理,当菜单选择为μ律转A律实验时,则使用3号模块做μ律编码,经μ转A律变换后,再送入21号模块进行A律译码。
四、实验步骤
实验项目一测试W681512的幅频特性
概述:该项目是通过改变输入信号频率,观测信号经W681512编译码后的输出幅频特性,了解芯片W681512的相关性能。
1、关电,按表格所示进行连线。
2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【PCM编码】→【A律编码观测实验】。
调节W1主控&信号源使信号A-OUT输出峰峰值为3V左右。
将模块21的开关
S1拨至“A-Law”,即完成A律PCM编译码。
3、此时实验系统初始状态为:设置音频输入信号为峰峰值3V,频率1KHz正弦波;PCM编码及译码时钟CLK为64KHz方波;编码及译码帧同步信号FS为8KHz。
4、实验操作及波形观测。
(1)调节模拟信号源输出波形为正弦波,输出频率为50Hz,用示波器观测A-out,设置A-out峰峰值为3V。
(2)将信号源频率从50Hz增加到4000Hz,用示波器接模块21的音频输出,观测信号的幅频特性。
思考:W681512PCM编解码器输出的PCM数据的速率是多少?在本次实验系统中,为什么要给W681512提供64KHz的时钟,改为其他时钟频率的时候,观察的时序有什么变化?
实验项目二PCM编码规则验证
概述:该项目是通过改变输入信号幅度或编码时钟,对比观测A律PCM编译码和μ律PCM编译码输入输出波形,从而了解PCM编码规则。
1、关电,按表格所示进行连线。
2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【PCM编码】→【A律编码观测实验】。
调节W1主控&信号源使信号A-OUT输出峰峰值为3V左右。
3、此时实验系统初始状态为:设置音频输入信号为峰峰值3V,频率1KHz正弦波;PCM编码及译码时钟CLK为64KHz;编码及译码帧同步信号FS为8KHz。
4、实验操作及波形观测。
(1)以FS为触发,观测编码输入波形。
示波器的DIV(扫描时间)档调节为100us。
将正弦波幅度最大处调节到示波器的正中间,记录波形。
注意,记录波形后不要调节示波器,因为正弦波的位置需要和编码输出的位置对应。
(2)在保持示波器设置不变的情况下,以FS为触发观察PCM量化输出,记录波形。
(3)再以FS为触发,观察并记录PCM编码的A律编码输出波形,填入下表中。
整
个过程中,保持示波器设置不变。
(4)再通过主控中的模块设置,把3号模块设置为【PCM编译码】→【μ律编码观测实验】,重复步骤(1)(2)(3)。
将记录μ律编码相关波形,填入下表中。
A律波形μ律波形
帧同步信号
编码输入信号
PCM量化输出
信号
PCM编码输出
信号
(5)对比观测编码输入信号和译码输出信号。
思考1:改变基带信号幅度时,波形是否变化?改变时钟信号频率时,波形是否发生变化?
思考2:当编码输入信号的频率大于3400Hz或小于300Hz时,分析脉冲编码调制和解调波形。
实验项目三PCM编码时序观测
概述:该项目是从时序角度观测PCM编码输出波形。
1、连线和主菜单设置同实验项目二。
2、用示波器观测FS信号与编码输出信号,并记录二者对应的波形。
思考:为什么实验时观察到的PCM编码信型总是变化的?
实验项目四PCM编码A/μ律转换实验
概述:该项目是对比观测A律PCM编码和μ律PCM编码的波形,从而了解二者区别与联系。
1、关电,按表格所示进行连线。
源端口目的端口连线说明
信号源:A-out 模块3:TH5(LPF-IN) 信号送入前置滤波器
2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【PCM编码】→【A转μ律转换实验】。
调节W1主控&信号源使信号A-OUT输出峰峰值为3V左右。
将21号模块的开关S1拨至μ-LAW,即此时完成μ律译码。
3、此时实验系统初始状态为:设置音频输入信号为峰峰值3V,频率1KHz正弦波;PCM编码及译码时钟CLK为64KHz;编码及译码帧同步信号FS为8KHz。
4、用示波器对比观测编码输出信号与A/μ律转换之后的信号,观察两者的区别,加以总结。
再对比观测原始信号和恢复信号。
(1)输出和A/μ
(2)原始和恢复
5、设置主控菜单,选择【μ转A律转换实验】,并将21号模块对应设置成A律译码。
然后按上述步骤观测实验波形情况。
(1)输出和转换
(2)原始和恢复
五、实验报告
1、分析实验电路的工作原理,叙述其工作过程。
2、根据实验测试记录,画出各测量点的波形图,并分析实验现象。
(注意对应相位关系)
3、对实验思考题加以分析,做出回答。