电子教案-信号与系统第四版(含习题解答)-8.4

合集下载

吴大正《信号与线性系统分析》(第4版)笔记和课后习题考研真题详解

吴大正《信号与线性系统分析》(第4版)笔记和课后习题考研真题详解

吴大正《信号与线性系统分析》(第4版)笔记和课后习题(含考研真题)详解
更多资料请在薇♥号精研学习网查找下载
本书是吴大正主编的《信号与线性系统分析》(第4版)的学习辅导书,主要包括以下内容:
(1)整理教材笔记,浓缩内容精华。

本书每章的复习笔记均对该章的知识点进行了整理,突出重点和考点。

(2)解析课后习题,提供详尽答案。

本书参考相关辅导资料,对教材的课后习题进行了详细的解答。

(3)精选考研真题,巩固重难点知识。

本书精选了多所名校近年的考研真题,并提供了详细的解答。

本书提供电子书及打印版,方便对照复习。

第1章信号与系统
1.1复习笔记
1.2课后习题详解
1.3名校考研真题详解
第2章连续系统的时域分析
2.1复习笔记
2.2课后习题详解
2.3名校考研真题详解
第3章离散系统的时域分析
3.1复习笔记
3.2课后习题详解
3.3名校考研真题详解
第4章傅里叶变换和系统的频域分析4.1复习笔记
4.2课后习题详解
4.3名校考研真题详解
第5章连续系统的s域分析
5.1复习笔记
5.2课后习题详解
5.3名校考研真题详解
第6章离散系统的z域分析
6.1复习笔记
6.2课后习题详解
6.3名校考研真题详解
第7章系统函数
7.1复习笔记
7.2课后习题详解
7.3名校考研真题详解
第8章系统的状态变量分析
8.1复习笔记
8.2课后习题详解8.3名校考研真题详解。

《信号与系统(第四版)》习题详解图文

《信号与系统(第四版)》习题详解图文

故f(t)与{c0, c1, …, cN}一一对应。
7
3.3 设
第3章 连续信号与系统的频域分析
试问函数组{ξ1(t),ξ2(t),ξ3(t),ξ4(t)}在(0,4)区间上是否 为正交函数组,是否为归一化正交函数组,是否为完备正交函 数组,并用它们的线性组合精确地表示题图 3.2 所示函数f(t)。
题图 3.10
51
第3章 连续信号与系统的频域分析 52
第3章 连续信号与系统的频域分析 53
第3章 连续信号与系统的频域分析 54
第3章 连续信号与系统的频域分析 55
第3章 连续信号与系统的频域分析 56
第3章 连续信号与系统的频域分析 57
第3章 连续信号与系统的频域分析
题解图 3.19-1
8
第3章 连续信号与系统的频域分析
题图 3.2
9
第3章 连续信号与系统的频域分析
解 据ξi(t)的定义式可知ξ1(t)、ξ2(t)、ξ3(t)、ξ4(t)的波形如题 解图3.3-1所示。
题解图 3.3-1
10
不难得到:
第3章 连续信号与系统的频域分析
可知在(0,4)区间ξi(t)为归一化正交函数集,从而有
激励信号为f(t)。试证明系统的响应y(t)=-f(t)。
69
证 因为
第3章 连续信号与系统的频域分析
所以

70
系统函数
第3章 连续信号与系统的频域分析

因此
71
第3章 连续信号与系统的频域分析
3.23 设f(t)的傅里叶变换为F(jω),且 试在K≥ωm条件下化简下式:
72
第3章 连续信号与系统的频域分析 73
107

信息号与系统课后答案第四版徐亚宁编

信息号与系统课后答案第四版徐亚宁编

第一章1.8 系统的数学模型如下,试判断其线性、时不变性和因果性。

其中X (0-)为系统的初始状态。

(2)()()2f t y t e= (5)()()cos 2y t f t t = (8)()()2y t f t =解:(2)()()2f t y t e =① 线性: 设 ()()()()1122,f t y t f t y t →→,则 ()()()()122212,f t f t y t ey t e==那么 ()()()()()()()112211222221122a f t a f t a f t a f t a f t a f t y t eee +⎡⎤⎣⎦+→==,显然,()()()1122y t a y t a y t ≠+,所以是非线性的。

② 时不变性设()()11,f t y t →则 ()()()()10122110,f t t f ty t e y t t e-=-=设()()102,f t t y t -→则()()()102210f t t y t e y t t -==-,所以是时不变的。

③ 因果性因为对任意时刻 t 1,()()121f ty t e =,即输出由当前时刻的输入决定,所以系统是因果的。

(5)()()cos 2y t f t t = ① 线性: 设 ()()()()1122,f t y t f t y t →→,则 ()()()()1122cos 2,cos 2y t f t t y t f t t ==那么()()()()()()()112211221122cos 2cos 2cos 2a f t a f t y t a f t a f t t a f t t a f t t +→=+=+⎡⎤⎣⎦,显然()()()1122y t a y t a y t =+,所以系统是线性的。

② 时不变性设()()11,f t y t →则 ()()()()()1110100cos 2,cos 2y t f t t y t t f t t t t =-=--设()()102,f t t y t -→则()()()21010cos 2y t f t t t y t t =-≠-,所以是时变的。

信号与系统(第四版)第四章课后答案

信号与系统(第四版)第四章课后答案

第5-3页

©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
4.1 拉普拉斯变换
一、从傅里叶变换到拉普拉斯变换
有些函数不满足绝对可积条件,求解傅里叶变换困难。 为此,可用一衰减因子e-t(为实常数)乘信号f(t) ,适当 选取的值,使乘积信号f(t) e-t当t∞时信号幅度趋近于 0 ,从而使f(t) e-t的傅里叶变换存在。
0
β
σ
第5-7页

©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
4.1 拉普拉斯变换
例3 双边信号求其拉普拉斯变换。
e t , t 0 f 3 (t ) f1 (t ) f 2 (t ) t e , t 0
求其拉普拉斯变换。
解 其双边拉普拉斯变换 F (s)=F (s)+F (s) b b1 b2
第5-10页

©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
4.1 拉普拉斯变换
四、常见函数的单边拉普拉斯变换
1. (t ) 1, 2.( t) 或1 3. ( t ) s, 4. 指数信号e
1
s
, 0

1 s s0
s0t

令s0 0
第5-12页
(t )

1
s
, 0
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
4.1 拉普拉斯变换
五、单边拉氏变换与傅里叶变换的关系
F ( s) f (t ) e st d t
0
Re[s]>0
F (j ) f (t ) e

信号答案第四版

信号答案第四版

专业课习题解析课程 西安电子科技大学 844信号与系统 专业课习题解析课程第2讲第一章 信号与系统(二) 1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。

(2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f =(7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为(2)∞<<-∞=-t e t f t ,)((3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))(sin )(t r t f =(7))(2)(k t f k ε=(10))(])1(1[)(k k f k ε-+=1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k ---=εε解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k ---=εε1-3 写出图1-3所示各波形的表达式。

1-4 写出图1-4所示各序列的闭合形式表达式。

信号与系统(第四版)吴大正 教案 第3章

信号与系统(第四版)吴大正  教案 第3章
第3-4页

信号与系统 电子教案
3.1
LTI离散系统的响应 LTI离散系统的响应
二、差分方程的经典解
y(k) + an-1y(k-1) +…+ a0y(k-n) = bmf(k)+…+ b0f(k-m) 与微分方程经典解类似, 与微分方程经典解类似,y(k) = yh(k) + yp(k) 1. 齐次解 h(k) 齐次解y 齐次方程 y(k) + an-1y(k-1) + … + a0y(k-n) = 0 特征方程为 其特征方程为 1 + an-1λ– 1 + … + a0λ– n = 0 ,即 λ n + an-1λn– 1 + … + a0 = 0 其根λ 称为差分方程的特征根 其根 i( i = 1,2,…,n)称为差分方程的特征根。 , , , 称为差分方程的特征根。 齐次解的形式取决于特征根。 齐次解的形式取决于特征根。 形式为: 当特征根λ为单根时 齐次解y 形式为 当特征根 为单根时,齐次解 n(k)形式为: Cλk 当特征根λ为 重根 重根时 齐次解y 形式为: 当特征根 为r重根时,齐次解 n(k)形式为: 形式为 (Cr-1kr-1+ Cr-2kr-2+…+ C1k+C0)λk
信号与系统 电子教案 3.1
第三章 离散系统的时域分析
LTI离散系统的响应 LTI离散系统的响应
3.4 系统模拟
一、差分与差分方程 二、差分方程的经典解 三、零输入响应和零状态响应
3.2
单位序列响应和阶跃响应
一、单位序列响应 二、阶跃响应
3.3
卷积和
一、序列分解与卷积和 二、卷积的图解 三、不进位乘法 四、卷积和的性质 点击目录

电子教案《信号与系统》(第四版_燕庆明)(含习题解答)信号与系统第四版习题解答

电子教案《信号与系统》(第四版_燕庆明)(含习题解答)信号与系统第四版习题解答
(t+ 3 ) *(t5 )=
也可以利用迟延性质计算该卷积。因为
(t) *(t)=t(t)
f1(tt1) *f2(tt2)=f(tt1t2)
故对本题,有
(t+ 3 ) *(t5 )=(t+ 35)(t+ 35)=(t2)(t2)
两种方法结果一致。
(c)tet(t)*(t)= [tet(t)]= (ettet)(t)
题2-1图
解由图示,有


从而得
2-2设有二阶系统方程
在某起始状态下的0+起始值为
试求零输入响应。
解由特征方程
2+ 4+ 4 =0
得1=2=2
则零输入响应形式为
由于
yzi( 0+) =A1= 1
2A1+A2= 2
所以
A2= 4
故有
2-3设有如下函数f(t),试分别画出它们的波形。
(a)f(t) = 2(t1 )2(t2 )
第5章
5-1求下列函数的单边拉氏变换。
(1)
(2)
(3)
解(1)
(2)
(3)
5-2求下列题5-2图示各信号的拉氏变换。
题5-2图
解(a)因为


(b)因为
又因为
故有
5-3利用微积分性质,求题5-3所示信号的拉氏变换。
题5-3图
解先对f(t)求导,则
故对应的变换
所以
5-4用部分分式法求下列象函数的拉氏反变换。
它们的频谱变化分别如图p4-8所示,设C>2。
图p4-8
4-9如题4-9图所示系统,设输入信号f(t)的频谱F()和系统特性H1()、H2()均给定,试画出y(t)的频谱。

电子教案-信号与系统第四版(含习题解答)-信号与系统电子教案

电子教案-信号与系统第四版(含习题解答)-信号与系统电子教案
第6章 系统函数与系统特性 6.1 系统函数与系统模拟 6.2 系统函数的零、极点 6.3 线性系统的稳定性 6.4 S域分析用于控制系统
第7章 离散系统的时域分析 7.1 离散信号与离散系统 7.2 卷积和 Z变换的主要性质 8.3 系统的Z域分析 8.4 系统函数H(Z)与稳定性 8.5 数字滤波器的概念
← 返回总目录 ← 返回上一页 ← 返回本讲第一页 ← 结束本讲放映
目录
第1章 基础概念 1.1 历史的回顾 1.2 应用领域 1.3 信号的概念 1.4 基本信号和信号处理 1.5 系统的概念 1.6 线性时不变系统
第2章 连续系统的时域分析
2.1 系统的微分方程及其响应 2.2 阶跃信号与阶跃响应 2.3 冲激信号与冲激响应 2.4 卷积及其应用 2.5 二阶系统的分析
普通高等教育“十一五”国家级规划教材
(高职高专辅助教学媒体)
燕庆明 主编
高等教育出版社 高等教育电子音像出版社
2007年
前言
“信号与系统”课程是高职高专院校电子信息类各专业的必修课,是“电 路分析”课程后的又一门重要的主干课程。为了帮助教师组织教学,提高教 学效率,我们以教材《信号与系统》(第4版)(燕庆明主编,高等教育出版 社,2007.12)为蓝本,编制了信号与系统电子教案、全书习题解答、 MATLAB仿真和实验指导。参与本教案制作的有燕庆明、鲁纯熙和顾斌杰。
本教案采用PowerPoint制作,应用方便、灵活。其中共设置8章(可讲授 60学时左右)。各校教师可根据实际需要增减有关内容。使用中有何建议可 与我们联系。不当之处,请批评指正。
Tel: (0510)88392227 作者 2007.9
使用说明
运行环境:Office 2000以上。 请安装Office工具中的公式编辑器。 按钮使用: 下列按钮在单击时可超链接到相应幻灯片。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例 y(n) 0.6y(n 1) 0.16y(n 2) f (n) 2 f (n 1)
( 1 ) 求系统函数H( z ); ( 2 ) 求单位响应h( n )。
解 取方程的Z变换
(1 0.6z1 0.16z2)Y (z) (1 2z1)F(z)

H (z)
Y (z) F(z)
z2
z2 2z 0.6z 0.16
(z
z(z 2) 0.2)(z
0.8)Байду номын сангаас

h(n) Z 1[H (z)] 2.2(0.2)n 1.2(0.8)n , n 0
信号与系统 8.4-3


z 0.6 H (z) z2 1.2z 0.4
,求h( n )。
解 用MATLAB方法解得h( n )如下图。
图1
二、H(z)的极点分布与时域特性
信号与系统 8.4-4
图2
信号与系统 8.4-5
结论:
单位圆上的实极点,h(n)对应为阶跃序列; 单位圆内的实极点,h(n)对应为指数衰减序列; 单位圆内的共轭极点,h(n)对应为衰减振荡序列; 单位圆上的共轭极点,h(n)对应为正弦振荡序列; 单位圆外的极点,h(n)对应为增长序列。
三、系统的稳定性
8.4 系统函数H(z)与稳定性
一、系统函数H(z)
信号与系统 8.4-1
f(n)
h(n)
y(n)=h(n)*f(n)
F(z)
H(z)
Y(z)=H(z)F(z)
H (z)
Y (z) F(z)
零态响应的Z变换 激励信号的Z变换
H( z )是Z域分析的纽带,反映系统本身的属性, 与系统的起始状态无关。
信号与系统 8.4-2
信号与系统 8.4-6
稳定:
充要条件为 h(n) ,即H(z)的所有极点位于单位圆内。 n0
临界稳定:
H(z)的一阶极点位于单位圆上,单位圆外无极点。
不稳定:
H(z)有极点位于单位圆外,或在单位圆上有重极点。
➢ 阅读与思考:阅读书例8-14和例8-15。
end
相关文档
最新文档