分式

合集下载

分式的运算知识点总结

分式的运算知识点总结

分式的运算知识点总结一、分式的含义和性质1. 分式的定义分式是指两个整数的比例,通常用a/b表示,其中a称为分子,b称为分母,b不等于0。

分式通常表示成有理数的形式,例如1/2、3/4等。

2. 分式的性质分式有以下性质:(1)分式的分母不可以为0,因为0不能作为除数。

(2)分式可以化简,即约分,将分子与分母的公因数约掉。

(3)分式可以相互转换,即通过乘以相同的数或者分式和分数的换算,可以将分式相互转换。

二、分式的加减法1. 分式的相加分式的相加即将两个分式的分子相加,分母不变,然后化简得到最简分式。

例如:1/2 + 1/3 = (1*3+1*2)/(2*3) = 5/6。

2. 分式的相减分式的相减即将两个分式的分子相减,分母不变,然后化简得到最简分式。

例如:2/3 - 1/4 = (2*4-1*3)/(3*4) = 5/12。

三、分式的乘除法1. 分式的相乘分式的相乘即将两个分式的分子相乘作为新的分子,分母相乘作为新的分母,然后化简得到最简分式。

例如:1/2 * 2/3 = (1*2)/(2*3) = 2/6 = 1/3。

2. 分式的相除分式的相除即将两个分式的分子相除作为新的分子,分母相除作为新的分母,然后化简得到最简分式。

例如:3/4 ÷ 1/2 = (3*2)/(4*1) = 6/4 = 3/2。

四、分式的乘方和括号的运算1. 分式的乘方分式的乘方即将分式的分子和分母分别进行乘方运算,得到新的分子和分母,然后化简得到最简分式。

例如:(1/2)^2 = 1^2/2^2 = 1/4。

2. 分式的括号运算分式的括号运算即根据括号内的运算顺序进行计算,先乘除后加减,然后化简得到最简分式。

例如:(1/2 + 1/4) ÷ (1/2 - 1/4) = (2/4 + 1/4) ÷ (2/4 - 1/4) = 3/4 ÷ 1/2 = 3/4 * 2/1 = 3/2。

分式的定义

分式的定义

分式的定义分式是由两个整式构成的比值,它通常写成$\frac{A(x)}{B(x)}$的形式,其中$A(x)$和$B(x)$是两个整式,$B(x)$不等于0。

分子$A(x)$是分式的分子,分母$B(x)$是分式的分母。

分数可以表示为带分数或小数,但分式只能表示为分式形式。

分子和分母都是整式的分式称为代数分式,而分子或分母中含有实数或变量的分式称为含有实数或变量的分式。

分数是初中数学中最简单和最重要的概念之一。

分式的含义是把一个整体分成若干份,并取其中的一份或几份,或者将分子分数与分母分数的比较简单的方法。

分式的定义把两个多项式的表达式用除法来表示,分母是被除数的表达式,分子是除数的表达式。

分式中的分式在代数上的意义是相同的。

例如,$\frac{2}{3}$和$\frac{4}{6}$表示相同的数值,它们都代表同一个比值。

分式中不能出现分母为0的情况,因为任何数除以0都无法得到一个有意义的结果。

如果分母为0,那么分式就没有定义。

一个分式是简单分式,当分母和分子都为一次多项式时。

一个分式是复杂分式,当分子或分母中至少有一个高于一次的多项式时。

如果一个分子中的每一个项都是分母的因数,则该分式被称为真分式。

如果一个分式的分子是一个多项式,这个多项式可以被分解成独立的因子,每个因子都不是分母的因子,那么这个分式被称为带余式。

分式的基本运算要比整式复杂得多,因为要注意分母不能为零。

对于分式的四则运算来说,最重要的原则是分母化通,即把每个分式的分母化为相同的多项式,这样就能进行加减乘除了。

例如,如果要计算$\frac{a}{b}+\frac{c}{d}$,那么需要把分母化为相同的多项式,最终结果才能以分式的形式表示。

因此,可以将分母通分为$bd$,然后得到等效的分式$\frac{ad+bc}{bd}$。

总之,分式是代数学中一个非常重要的概念,它被广泛应用于各种数学方面,包括高等数学,物理和工程学。

了解分式的基本概念和运算方法是理解更高级数学理论的关键。

分式的认识与计算

分式的认识与计算

分式的认识与计算分式是数学中常见的表达形式之一,它由分子和分母组成,分子位于分式的上方,分母位于分式的下方,中间以一条水平线分隔。

本文将从分式的基本概念开始,介绍分式的计算方法以及一些常见的应用场景。

一、基本概念分子和分母:分式的分子表示被除数,分母表示除数。

例如,分式3/4中,3为分子,表示被除数;4为分母,表示除数。

真分数和假分数:当分子小于分母时,分式被称为真分数;当分子大于或等于分母时,分式被称为假分数。

例如,1/2是真分数,3/2是假分数。

带分数:由整数和分数部分组成,整数部分表示整数部分,分数部分表示真分数。

例如,1 1/2是带分数,由整数1和真分数1/2组成。

二、分式的计算方法1. 分式的加减法分式的加减法遵循找到相同的分母,然后将分子进行加减运算的原则。

具体步骤如下:(1)找到相同的分母;(2)将分子进行加减运算;(3)结果的分子作为新分式的分子,分母保持不变。

2. 分式的乘除法分式的乘除法遵循分式乘法和分式除法规则。

具体步骤如下:(1)分式乘法:将分子相乘作为新分式的分子,分母相乘作为新分式的分母;(2)分式除法:将第一个分式的分子与第二个分式的倒数(即分子与分母交换)相乘,作为新分式的分子,将第一个分式的分母与第二个分式的分子相乘,作为新分式的分母。

三、分式的应用场景1. 比例问题分式在比例问题中有着广泛的应用。

例如,若某商品原价为100元,打8折后的售价可表示为100*(1-8/10)。

2. 方程问题分式也常出现在解方程的过程中。

例如,将一个未知数表示为分式形式,然后通过分式的计算方法解方程。

如:2/x = 3/(x+1),可以通过分式的乘法和化简等步骤来求解。

3. 财务问题分式在财务问题中的运用也十分广泛,如货币换算、利率计算、股票涨跌幅计算等。

例如,假设某股票的涨幅为5%,而你持有的股票数量为500股,可以通过分式计算出涨幅所带来的收益。

四、总结分式是数学中常见的表达形式,广泛应用于实际问题的解决中。

分式分式及其基本性质分式

分式分式及其基本性质分式

求解最值问题
通过建立分式方程,可以求解某 些数学问题的最值。
简化计算
分式方程可以用于简化某些计算 ,例如分数计算等。
05
分式的应用
分式在生活中的应用
物理学
分式在物理学中被广泛应用,例如用 于描述物体的运动状态、力的分解和 合成、能量转换等。
工程学
在工程学中,分式用于描述各种物理 量之间的关系,如电阻、电容、电感 等。
分式的乘除法
概念
分式的乘除法是指将两个或多个分式进行乘除运算的过程。
运算法则
分式的乘法是将分式的分子与分子相乘,分母与分母相乘;分式的除法是将除式 的分子与分母相乘,被除式的分子与分子相乘,分母与分母相乘。
分式的混合运算
概念
分式的混合运算是指将加减乘除等运算结合在一起进行计算的过程。
运算法则
混合运算先乘除后加减,有括号的先算括号。
分式在数学中有广泛的应用,如解方 程、求导数、计算面积和体积等等。
02
分式的基本性质
分式的约分
分子和分母同时除以最大公约数,化简为最简分式。
约分可以化简分数,使其更易于比较大小或计算。
分式的通分
01
找到几个分式的最简公分母。
02
将各个分式的分子与最简公分母相乘,得到通分后的分式。
通分可以将几个分式化为同分母分式,便于比较大小或进行运
分式的符号
一个分式可以表示成 a/b 的形式,其中 a 和 b 都是整式,b 不等于 0。
如果 b 是正数,那么分式的值是正数或负数 ;如果 b 是负数,那么分式的值是正数或负
数,具体取决于 a 和 b 的3
分式是一种数学运算的结果,表示两 个整式相除的结果。
分式的值可以是一个具体的数字,也 可以是一个未知数。

分式知识点归纳

分式知识点归纳

《分式》知识点归纳一、分式的定义:一般地,如果A,B表示两个整数,并且B中含有字母,那么式子A/B 叫做分式,A为分子,B为分母。

二、与分式有关的条件①分式有意义:分母不为0(B≠0)②分式无意义:分母为0(B=0)③分式值为0:分子为0且分母不为0④分式值为正或大于0:分子分母同号⑤分式值为负或小于0:分子分母异号⑥分式值为1:分子分母值相等(A=B)⑦分式值为-1:分子分母值互为相反数(A+B=0)三、分式的基本性质(1)分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。

(2)分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

(3)注意:在应用分式的基本性质时,要注意同乘或同除的整式不为O这个限制条件和隐含条件分母不为0。

四、分式的约分1.定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。

2.步骤:把分式分子分母因式分解,然后约去分子与分母的公因。

3.两种情形:①分式的分子与分母均为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。

②分子分母若为多项式,先对分子分母进行因式分解,再约分。

4.最简分式的定义:一个分式的分子与分母没有公因式时,叫做最简分式。

◆约分时。

分子分母公因式的确定方法:1)系数取分子、分母系数的最大公约数作为公因式的系数.2)取各个公因式的最低次幂作为公因式的因式.3)如果分子、分母是多项式,则应先把分子、分母分解因式,然后判断公因式.五、分式的通分1.定义:把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。

(依据:分式的基本性质!)2.最简公分母:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。

◆通分时,最简公分母的确定方法:1.系数取各个分母系数的最小公倍数作为最简公分母的系数. 2.取各个公因式的最高次幂作为最简公分母的因式.3.如果分母是多项式,则应先把每个分母分解因式,然后判断最简公分母.3、“两大类三类型”通分“两大类”指的是:一是分母是单项式;二是分母是多项式“两大类”下的“三类型”:“二、三”型,“二,四”型,“四、六”型1)“二、三”型:指几个分母之间没有关系,最简公分母就是他们的乘积;2)“二,四”型:指其一个分母完全包括另一个分母,最简公分母就是其一的那个分母;3)“四、六”型:指几个分母之间有相同的因式,同时也有独特的因式,最简公分母既要有独特的因式,也应包括相同的因式4.通分的方法:先观察分母是单项式还是多项式,如果是分母单项式,那就继续考虑是什么类型,找出最简公分母,进行通分;如果分母是多项式,那么先把分母能分解的要因式分解,考虑什么类型,继续通分。

分式

分式

分式1. 分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子BA 叫做分式。

分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

3.分式的通分和约分:关键先是分解因式4.分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

分式乘方法则:分式乘方要把分子、分母分别乘方。

分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。

异分母的分式相加减,先通分,变为同分母分式,然后再加减混合运算:运算顺序和以前一样。

能用运算率简算的可用运算率简算。

5.任何一个不等于零的数的零次幂等于16.正整数指数幂运算性质正整数指数幂运算性质正整数指数幂运算性质正整数指数幂运算性质也可以推广到整数指数幂.(m,n是整数)(1)同底数的幂的乘法:;(2)幂的乘方:; (3)积的乘方;(4)同底数的幂的除法:;(5)商的乘方;7. 分式方程:含分式,并且分母中含未知数的方程——分式方程。

解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。

解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

解分式方程的步骤:(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根.增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。

分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

列方程应用题的步骤是什么? (1)审;(2)设;(3)列;(4)解;(5)答.应用题有几种类型;基本公式是什么?基本上有五种: (1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题. (2)数字问题在数字问题中要掌握十进制数的表示法. (3)工程问题基本公式:工作量=工时×工效. (4)顺水逆水问题 v顺水=v静水+v水. v逆水=v静水-v水. 8.科学记数法:把一个数表示成na10×的形式(其中101<≤a,n是整数)的记数方法叫做科学记数法.用科学记数法表示绝对值大于10的n位整数时,其中10的指数是1−n 用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0) 第十七章反比例函数 1.定义:形如y=xk(k为常数,k≠0)的函数称为反比例函数。

分式知识归纳

分式知识归纳

第十六章分式【知识点1】分式1.分式的概念:形如(A、B是整式,且B中含有字母,B≠0)的式子叫做分式.其中,A叫分式的分子,B叫分式的分母.2.分式有意义的条件:因为两式相除的除式不能为零,即分式的分母不能为零,所以,分式有意义的条件是:分式的分母必须不等于零,即B≠0,分式有意义.3.分式的值为零的条件:分子等于0,分母不等于0,二者缺一不可.【知识点2】有理式有理式的分类:有理式【知识点3】分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示为:(其中M≠0)【知识点4】约分和通分1.分式的约分:把一个分式的分子与分母中的公因式约去叫约分.2.分式的通分:把几个异分母的分式化成与原来的分式相等的同分母的分式叫通分.【知识点5】最简分式与最简公分母:约分后,分式的分子与分母不再有公因式,我们称这样的分式为最简分式.取各分母所有因式的最高次幂的积作为公分母,这样的公分母称为最简公分母.●知识链接:1分数的意义2.分数的基本性质3.分数基本性质的作用●中考考点本节的常考知识点有:1. 分式的有关概念,分式的意义,分式的值等于零.2. 分式的约分,分式的分子、分母的系数化整化正.3. 求分式的值以及分式与其它题的综合分式方程●学习目标1. 理解分式方程的定义,会解可化为一元一次方程的分式方程,了解产生增根的原因,并会验根.2. 列出分式方程,解简单的应用题.●重点难点重点:把分式方程转化为整式方程求解的化归思想及具体的解题方法.难点:(1)了解产生增根的原因,并有针对性地验根;(2)应用题分析题意列方程.●知识概要1. 分式方程的概念2. 解可化为一元一次方程的分式方程的一般方法和步骤:①去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程;②解这个整式方程;③验根:把整式方程的根代入最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3. 列分式方程解应用题的一般步骤:(1)审:审清题意;(2)设:设未知数;(3)找:找出等量关系;(4)列:列出分式方程;(5)解:解这个分式方程;(6)验:既要验证根是否为原分式方程的根,又要检验根是否符合题意;(7)答:写出答案.●知识链接解分式方程主要是将其转化成整式方程来解.解完方程要注意验根即是否使最简公分母为零.●中考视点: 本节内容在中考中经常出现,通常是以计算题或应用题的形式出现,并且多与其它章节如函数、方程等知识结合,因此,一定要注意含有字母系数的方程的解法以及可化为一元一次方程的分式方程的解法和应用,切记一定要验根.第二节、教材解读一、约分的根据、实质与关键约分的根据是分式的基本性质;约分的实质是将一个分式化成最简分式——分子与分母没有公因式的分式;约分的关键是确定一个分式的分子与分母的公因式.二、确定分子、分母公因式的方法分子与分母的公因式是:分子、分母的系数的最大公约数与相同因式的最低次幂的积.三、约分时应防止的三类错误1.有关分式的概念辨析,字母或分式的取值等问题,一般不用约分,否则会造成错误.2.约分时,分子的整体与分母的整体都要除以同一个(公)因式,当分子或分母是多项式时,要用分子、分母的公因式去除整个多项式,不能只除某一项,更不能减去某一项.等都是错误的.其中(1)中的分式已是最简分式,不需再约分;(2)的正确答案是.为此,必须牢记,只有当分子、分母都是乘积形式时才能约分.3.分式的分子与分母是同底数的幂做因式时,应约去最低次幂,切不可对指数进行约分.就犯了用指数6与2约分的错误,正确的结果是四、掌握解分式方程的步骤解分式方程的一般步骤是:一是方程两边同乘最简公分母,化分式方程为整式方程;二是解这个整式方程;三是检验.如:解方程: .第一步:方程两边都乘以x(x+6),得90x+540=60x;第二步:解这个整式方程,得x=-18;第三步:检验:把x=-18代入原方程的左、右两边有左边=右边,即-18是原分式方程的解.五、列分式方程解简单的实际应用问题列分式方程解简单的实际应用题的步骤简单地可分为:审、设、找、列、解、检、答七个步骤.其中关键是“列”,难点是“找”.如:如图,小明家到王老师家的路程为3km,王老师家到学校的路程为0.5km,为了使他能按时到校,王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20min,问王老师的步行速度及骑自行车的速度各是多少?解:第一步:审清题意;第二步:设王老师的步行速度为xkm/h,则骑自行车的速度为3xkm/h;第三步:王老师现在骑车所用的时间-原来步行所用时间=20min;第四步:根据题意,得;第五步:解这个方程:去分母,得3+3+0.5-1.5=x,即x=5;第六步:经检验x=5是原方程的解,所以3x=15;第七步:答:王老师的步行速度及骑自行车的速度分别为5km/h和15km/h.列分式方程解应用题一定要验根,还要保证其结果符合实际意义.第三节、错题剖析分式概念是本章学习的基础,由于学生的认知水平和经验的不足,特别容易出现一些常见的通病.下面将通过举例讲解,让同学们少走弯路,更快地学好分式的基础知识.同学们在学习过程中可能会犯以下错误.一、分式概念理解偏差【例1】下列各式是分式的是()错解1:显然B 式分母中含有字母,又是的形式,所以选B.错解2:显然A 、D 都是整式,经过同底数的幂相除化为3a也是整式,故选B.错解分析:前者误认为π是字母.其实π是常数;后者先约分再判断是不行的.正解:选C.反思:(1)把握判断分式的唯一标准是看分母中是否含有字母.分母中不含字母的是整式,分母中含有字母的是分式.(2)分式的判断是看形式,数的判断是看结果.如数的结果是3,所以是有理数不是无理数.二、分式的值为零的条件混乱【例2】当x 取何值时,的值为0?错解1:因为x无论等于2还是-2,分式的值为0,均无意义,故x没有值可取;错解2:x=±2错解分析:前者误认为分式的值为0属于无意义,后者却忽视分式的值为0的前提条件是分式有意义.正解:x=2.反思:弄清分式的值为零的条件有两个:(1)分子的值为零;(2)分母的值不为零.这两个条件必须同时具备才可.三、分式无意义的条件不清【例3】当x _____ 时,分式无意义.错解:因为当x=1时,分母的值为0,故x=1.错解分析:这个答案只考虑了分母为零时x=1,忽视了-1=0时x=±1都使分母为零.属于思维习惯上的问题.正解:x=±1.四、分式基本性质理解错误【例4】不改变分式的值,把分式的分子、分母中的各项系数都化为整数错解:错解分析:错解的分子、分母所乘的不是同一个数,而是两个不同的数,虽然把各项系数化成了整数,但分式的值改变了,违背了分式的基本性质.五、去分母时常数漏乘公分母【例5】解方程错解:方程两边都乘以(x-3),得2-x=-1-2,解这个方程,得x=5.错解分析:解分式方程需要去分母,根据等式的性质,在方程两边同乘以(x-3)时,应注意乘以方程的每一项.错解在去分母时,-2这一项没有乘以(x-3),另外,求到x=5没有代入原方程中检验.正解:方程两边都乘以(x-3),得2-x=-1-2(x-3),解得x=3检验:将x=3代入原方程,可知原方程的分母等于0,所以x=3是原方程的增根,所以原方程无解.六、去分母时,分子是多项式不加括号【例6】解方程错解:方程化为,方程两边同乘以(x+1)(x-1),得3-x-1=0,解得x=2.所以方程的解为x=2.错解分析:当分式的分子是一个多项式,去掉分母时,应将多项式用括号括起来.错解在没有用括号将(x -1)括起来,出现符号上的错误,而且最后没有检验.正解:方程两边都乘以(x+1)(x-1),得3-(x-1)=0,解这个方程,得x=4.检验:当x=4时,原方程的分母不等于0,所以x=4是原方程的根.七、方程两边同除可能为零的整式【例7】解方程 .错解:方程两边都除以3x-2,得,所以x+3=x-4,所以3=-4,即方程无解.错解分析:错解的原因是在没有强调(3x-2)是否等于0的条件下,方程两边同除以(3x-2),结果导致方程无解.正解:方程两边都乘以(x-4)(x+3),得(3x-2)(x+3)=(3x-2)(x-4),所以(3x-2)(x+3)-(3x-2)(x-4)=0.即(3x-2)(x+3-x+4)=0.所以7(3x-2)=0.解得x=.检验:当x=时,原方程的左边=右边=0,所以x=是原方程的解.第四节、思维点拨【例1】已知且a、b都不等于0,求的值【思考与分析】从题目的条件可以得出a、b的值代入要求的分式使得分式有意义即可求出分式值.得(a-b)·(a-2b)=0.所以a-b=0或a-2b=0;当a-b=0时,得a=b≠0,当a-2b=0时,得a=2b≠0,所以综上可得,【反思】本题是求含字母的分式,利用因式分解,两个因式的积为零,则可转化为两个因式中至少有一个为零,代入分式来求解,注意前提仍然是分式必须有意义.【思考与分析】可以灵活运用这个条件.①要求的分式也可以化成含的形式,整体代入即可;【反思】本题在求值过程中利用了分式的基本性质,并且采用多种方法来利用已知条件使问题简化.【例3】供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果同时到达.已知抢修车的速度是摩托车的速度的1.5倍,求这两种车的速度.解题思路一:寻求时间上的相等关系建立方程【解法1】:设摩托车的速度为x千米/时,则抢修车的速度为1.5x千米/时.根据题意得:解得x=40,经检验,x=40是原方程的根.所以1.5x=1.5×40=60答:摩托车的速度为40千米/时,抢修车的速度为60千米/时.解题思路二:寻求速度之间的相等关系建立方程【解法2】设摩托车行30千米所用的时间为x小时,则抢修车所用的时间为(x -)小时,根据“抢修车的速度是摩托车速度的1.5倍”得:解题思路三:寻求路程之间的相等关系建立方程【解法3】设摩托车行30千米所用的时间为x 小时,则抢修车行驶30千米所用的时间为(x-)小时,摩托车的速度为千米/时,抢修车的速度为×1.5千米/时,根据“抢修车的速度×抢修车所用的时间=总路程30千米”得:(×1.5)(x-)=30解题思路四:列方程组解答【解法4】设摩托车与抢修车每小时分别行驶x千米、y千米,根据题意得方程组:(2、3、4解答过程略)【小结】题中含有多种关系时,列方程组可降低思维难度.前面的各种解法中,若把所推出的代数式用新的未知数替换,则都能写成方程的形式.【例5】读下列一段文字,然后解答问题.已知:方程的解是;方程的解是;方程的解是;方程的解是.【探究一】观察上述方程及其解,再猜想方程的解,并写出检验过程.解:猜想方程的解是.检验:当x=11时,左边=,右边=,所以左边=右边;当x =时,左边=右边=.∴x1=11,x2=是方程的解.【探究二】你能猜想方程(n为正整数)的解吗?若能请你验证你的猜想是否合理?解:猜想方程(n 为正整数)的解是x1=n+1,x2=-.检验:当x=n+1时,左边=n+1-=,右边=,所以左边=右边;当x=-时,左边=右边=.∴x1=n+1,x2=-是方程x -=(n为正整数)的解.【例6】解方程【思考与分析】因为方程中有分母,所以首先应该去掉分母,只是注意,原来整式方程中分母全是数,而分式方程中则是代数式,因而去分母时应该两边同乘一个代数式,这里应该同乘x(x-1).解:去分母,两边同乘以x(x-1)得:x(x-1)-x(x-1)·=·x(x-1)化简得:x2-x-(x2-1)=2x去掉括号,得:3x=1,∴ x=检验:把x=代入原方程的各个分母,都不为0.∴x=是原方程的解.【反思】(1)在解分式方程时,因乘的是同一个代数式,最后求得的根可能使同乘的这个代数式的值为0,这样的根叫做增根,但不是每个方程都有增根.因此,在解完方程之后,一定要检验方程的根,如果是增根,就标出来并且舍去.(2)在去分母时,同乘的是一个代数式,在题目中,可能有的项没有分母,这种项也同样要乘以这个代数式.第五节、竞赛数学当题目中的未知数具有对称关系时,应用基本对称式:x+y=a,xy=b,进行替换,可使解题过程简化.现以部分竞赛题为例,介绍这种解题技巧在求分式值中的妙用.【思考与分析】首先看题目给的条件似乎没有必然的联系,但是经过化简含有可以利用建立联系解答.【例2】如果a2-3a+1=0,那么,的值是 ______ .【思考与分析】这题看起来没有对称关系,但是不要急,我们先从题目中所给的已知条件入手,可解出一个关于a 的新的关系式再将分别换元为x、y,所求的分式经过化简也可以用含有x、y的分式来求.【思考与分析】题目看起来很麻烦,无从下手,大家仔细观察已知分式与要求分式的对应项系数的关系,就可以知道将已知的等式取倒数就可以找到相应的关系了.【例4】若a、b 都是正实数,且求的值【思考与分析】由已知条件入手,可以得出这样就与要求的分式建立联系了,设可求出x与y的关系,代入要求的分式来解即可.【例5】证明恒等式【思考与分析】本题两边如果通分,可见其分母相同,若等式成立,则分子也必定相等,但这样运算量太大;如果把左边的分子灵活变形如b-c=(a-c)-(a-b)则可简化运算.证明: 原式左边=故原等式成立.【例6】使实数a、b、c 满足,求证:.【思考与分析】这里999是奇数,从题目的格式看,应该是对一般的奇数都成立,因而可以考虑由一般到特殊的证明方法.证明: ∵,故(bc+ca+ab)·(a+b+c)=abc.整理可得: (a+b)(b+c)(c+a)=0,故a=-b或b=-c或c=-a.不妨设a=-b,则a2n-1=-b2n-1,令n=500代入上式可得.小结:分式证明题形式多种多样,一般的证明途径有:(1)由繁到简,即从等式较复杂的一边入手,经过配方因式分解换元降次等多种变形,逐步推到另一边;(2)将等式两边同时变形为同一个代数式,从而推出相等的结果.第六节、本章训练基础训练题分式一、细心填一填(共7题,每题4分,共28分)1.x=3 分式的根(填“是”或“不是”).2.当x= 时,分式与的值相等.3.试写出一个解为x=2的分式方程 .4.分式方程的根是 .5.已知分式的值是零,那么x的值是 .6.若有增根,则增根为 .7. 在实数范围内定义一种运算“*”,其规则为,根据这个规则,方程5*(x-1)=3的解为 .二、精心选一选(共9题,每小题5分,共45分)8.下列方程中是分式方程的是()A. B. C.y+2=3 D.9.把分式方程的两边同时乘以(x-2),约去分母,得()A.1+(1-x)=x-2B.1+(1-x)=1C.1-(1-x)=x-2D.1-(1-x)=110.要把分式方程化为整式方程,方程两边需要同时乘以()A.2x-4B.xC.2(x-2)D.2x(x-2)11.方程的解是()A.1B.-1C.±1D.212.已知,用含x的代数式表示y,得()A.y=2x+8B.y=2x+10C.y=2x-10D.y=2x-813.关于x 的方程的解为x=1,则a等于()A.1B. -3C.-1D. 314.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件,则x应满足的方程为()A. B.C. D.15.用换元法解分式方程,如果设,则原方程可变形为()A. B. C.D.16.下列关于x的方程,其中不是分式方程的是()A. B. C.D.三、耐心做一做(第17题12分,第18题15分)17.解方程:18.八年级(2)班的学生周末乘汽车到游览区游览,游览区距学校120km,一部分学生乘慢车先行,出发1h后,另一部分学生乘快车前往,结果他们同时到达游览区,已知快车的速度是慢车速度的1.5倍,求慢车的速度.分式方程一、精心填一填(共8题,每小题4分,共32分)二、细心选一选(共8题,每小题5分,共40分)14.若代数式在实数范围内有意义,则x的取值范围为().A.x>0B.x≥0C.x≠0D.x≥0且x≠116.已知两个分式其中x≠±2,则A与B的关系是().A. 相等B. 互为倒数C. 互为相反数D. A大于B三.解答题(第17题12分,第18题16分)17.化简求值:其中x=-3.18.请将下面的代数式尽可能化简,再选择一个你喜欢的数(要合适哦!)代入求值:提高训练题4.解方程5.解方程:6.甲、乙两班参加绿化校园活动.已知乙班每小时比甲班多种2棵树,甲班种60棵树所用的时间与乙班种66棵树所用的时间相等.求甲、乙两班每小时各种多少棵树?7.已知x2-5x-2000=0,则代数式的值是().A.2001B.2002C.2003D.20048.化简(=.9.已知,则的值为.10.解关于x的方程:ax-b=2x-3.强化训练题一、精心选一选1.下列代数式中:是分式的有()A. 1个B. 2个C. 3个D. 4个2.下列判断中,正确的是()A.分式的分子中一定含有字母B.当B=0时,分式的值为0C.当A=0,B≠0时,分式的值为0(A、B为整式)D.分数一定是分式3.分式中,当x=-a时,下列结论正确的是()A.分式的值为零B.分式无意义C.若a≠-时,分式的值为零D.若a≠时,分式的值为零4.分式中的字母x、y都扩大为原来的4倍,则分式的值()A.不变B.扩大为原来的4倍C.扩大为原来的8倍D.缩小为原来的5.不改变分式的值,使分式的各项系数化为整数,分子、分母应乘以()A.10B.9C.45D.906.下列各分式中,最简分式是()二、细心填一填8.当x 时,分式有意义.9.当x 时,分式的值为零.10.当a=时,分式无意义.11.约分:=.三、耐心做一做12.当x 为何值时,分式的值为负?13.把化为整数系数.14.不改变分式的值,把下式分子、分母中最高次项的系数变为“+”号:.四、应用题15.2008年夏季奥运会将在北京举行.为了支持北京申奥成功,红、绿两支宣传北京申奥万里行的车队在距北京3000千米处会合,并同时向北京进发.绿队走完2000千米时,红队走完1800千米,随后,红队的速度提高20%,两车队继续同时向北京进发.(1)求红队提速前红、绿两支车队的速度比.(2)红、绿两支车队能否同时到达北京?说明理由.(3)若红、绿两支车队不能同时到达北京,那么哪支车队先到达北京?并求出第一支车队到达北京时,两车队间的距离.综合训练题一、选择题(每题5分,共30分)1.下列分式中,一定有意义的是()2.如果分式中,x,y的值都变为原来的一半,则分式的值()A.不变B.扩大2倍C.缩小2倍D.以上都不对3.下列变形正确的是()4.下列运算正确的是()5.将分式的分子、分母各项系数都化为整数,正确的结果是()6.如果从一捆粗细均匀的电线上截取1米长的电线,称得它的质量为a,再称得剩余电线的质量为b,那么原来这捆电线的总长度是()二、填空题(每题5分,共30分)7.当x= 时,分式的值为零.8.分式约分的结果是 .9.计算:= .10.一项工程,甲单独做x小时完成,乙单独做y小时完成,则两人一起完成这项工程需要小时.11.代数式中x的取值范围是 .12.方程=1的解是 .三、解答题(共40分)13.(11分)计算:-x14.(13分)计算,并把负指数化为正:(2mn-2)-3(-m-2n-1)-215.(16分)甲、乙两辆汽车同时分别从A、B两城沿同一条高速公路驶向C城,已知A、C两城的距离为450km,B、C两城的距离为400km,甲车比乙车的速度快10km/h,结果两辆车同时到达C城,求两车的速度.。

分式的知识点

分式的知识点

公因式 如32262464=÷÷=(公因式是2) b a b b b ab b ab 33322=÷÷=(公因式是b )y x y x y x y x y x y x y x y x +-=++-+=+-))(())(()(222最小公倍数=两数的乘积/最大公约(因)数, 解题时要避免和最大公约(因)数问题混淆例子6,9的最小公倍数是6×9÷3=18;4,6的最小公倍数是4×6÷2=12;3,4的最小公倍数是3×4=12 如23,32 通分得693233=⨯⨯,642322=⨯⨯(最小公分母是2×3=6)最小公分母,即分母的最小公倍数 a 3,b 2通分得ab b b a b 33=⨯⨯,aba ab a 22=⨯⨯(最小公分母是a ×b=ab ) d b a 23,mbc 2通分得dm b am md b m a 2233=⨯⨯,dm b cbd bd mb bd c 222=⨯⨯(d mb mb d b 32=⨯,不是最小公分母,d mb 2才是) 22y x x -,2)(y x y -, 注意))((22y x y x y x +-=- ,))(()(2y x y x y x --=-由此可得两式的最小分母是 ))()((y x y x y x +--,即通分得))()(())()(()(2y x y x y x xy x y x y x y x y x x +---=+--- ))()(())()(()(2y x y x y x y xy y x y x y x y x y +--+=+--+ 四、分式的运算1)分式的乘除用到的知识是约分,分式的加减用到的知识是通分 2)分式的加减要通分令分母相同,分子再进行相加减,得出结果后,看能否约分,假如能约分,则需约分,假如不能约分,则不需约分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3.1分式及其基本性质1.分式的概念拟稿人 逄淑友一、学习目标1.了解分式的概念,明确分式与整式的区别;.2.能用分式表达现实情境中的数量关系,体会分式是表示现实世界中一类量的数学模型,进一步发展符号感.3.分式有意义的条件、分式的值为零的条件 是本节的重点和难点二.自学感知问题提出现在土地沙化日益严重,固沙造林迫在眉睫.3月12日是植树节,现在某县面对日益严重的土地沙化问题,决定分期分批固沙造林,一期工程计划在一定期限内造林2400公顷,实际每月固沙造林的面积比原计划多30公顷,结果提前4个月完成原计划任务.如果设原计划每月固沙造林x 公顷,则原计划完成一期工程需要多少个月?答: ;实际完成一期工程用了多少个月? 答: 。

自学课本第2页开始——第3页例2结束,解答下面的问题:1. 形如 的式子,叫做分式,其中,A 叫做分式的 ,B 叫做分式的 。

2.试一试:(1)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的售价是______元;(2)书店库存一批图书,其中一种图书原价每册a 元,现降价x 元销售.当这些图书库存全部售出时,其销售额为b 元.则降价销售开始时,这种图书的库存量为多少? 答: ;(3)有两块棉田,有一块x 公顷,收棉花m 千克,第二块y 公顷,收棉花n 千克,这两块棉田平均每公顷的棉产量是多少?答 。

3.下列各有理式中,哪些是整式?哪些是分式? (1)x 1;(2)2x ;(3)yx xy+2;(4)33y x -.解:属于整式的有: ;属于分式的有: .4.分式有意义的条件是:分母 。

分式的值为零的条件是:分母 ,且分子 。

5.当x 取什么值时,分式322+-x x 有意义? 答: 。

三.小组合作考考你对本节知识的掌握程度.1.几日前在学校组织的“同在一片蓝天下”大型募捐活动中,九班和另一个人数为a 的班级共捐了578.7元.那么他们两班人均捐了 元。

2.下列各式中,哪些是整式?哪些是分式?x 1,π2x ,y+-23,81-,112-+x x ,3b a -,x x 33.在上面所有分式中任意选择一个,然后给其中的字母赋予你喜欢的数值,求出分式的值.四.展示风采A 组1.(1)下列各式中,哪些是整式?哪些是分式?5x -7,3x 2-1,123+-a b ,7)(p n m +,-5,1222-+-x y xy x ,72,c b +54.答:分式有 ;整式有 。

2.当x 取何值时,下列分式有意义? (1)a a 21+ (2)25x x - (3)112+xB 组3.当x 为任意实数时,下列分式一定有意义的是( ). A 、22x B 、212+x C 、112-x D 、11+x4.当x 取何值时,分式的值为零?(1)322+-x x (2) 242--x x (3)5102--x xC 组 5.分式33--x x 中,当x 为何值时,分式有意义?分式的值为零?五.课堂测试A 组1.在x 1,21,212+x ,πxy 3,a+m 1中,分式的个数有( )A. 2个B. 3个C. 4个D. 5个 2.下列说法中,正确的是( )A . 有分母的代数式叫做分式B .当分子等于0时,分式的值为0C .分式112+x 一定有意义 D .当x =2时,分式422--x x 的值为0 B 组3.已知分式11x x -+的值是零,那么x 的值是 A .-1 B. 0 C.1D.1±4.当x = -3时,下列分式中没有意义的是( ) A 、33-+x x B 、233x x -+ C 、)2)(3()2)(3(--++x x x x D 、)2)(3()2)(3(-++-x x x x 5.若分式11x x -+的值为零,则x 的值为 。

C 组6.已知分式)3)(2(2+--x x x ,试求当x 为何值时,分式的值为零?六.课后作业A 组1.小明t 小时走了s 千米的路,则他走这段路的平均速度是____千米/时;2.下列有理式中,哪些是分式? x 1, 21(x +y ), 3x , x m -2, 3-x x , 1394y x +答: 。

3.使分式2x x +有意义的x 的取值范围是( ) A .x ≠2 B .x ≠-2 C .x >-2 D .x <2B 组 4.下列说法中,正确的是( ) A .3yx +是分式B .在分式中,只要分子的值为零,分式的值就一定为零C .分式33+-x yx 也可以写成33+÷-x yD .分式是两个整式的商,它的分子可含也可不含字母,但分母必须含有子目 5.分式xx -+212中,当x 时,分式有意义;当____=x 时,分式的值为零。

6.当x=1时,分式212x x x -+-的值是( )A .分式没有意义B .分式的值是0.5C .分式的值为0D .分式的值为1 C 组7.①当a =1时,求分式aa 21+的值.②当a 为何值时,分式aa 21+无意义?③当a 为何值时,分式aa 21+的值为零?七.学(教)后反思与错题集锦:§3.1分式及其基本性质2.分式的基本性质(一)拟稿人 逄淑友一、学习目标1.掌握分式的基本性质.2.会利用分式的基本性质对分式进行“等值”变形——约分. 3.了解类比的思想在数学中的应用,在已有数学经验的基础上,提高学数学的乐趣.4.本节重点是分式的基本性质,难点是通过约分将分式化为最简分式二.自学感知问题提出某机械厂欲成批生产某种零件,第一道工序需要将一批长a 厘米、底面半径为2r 厘米的圆钢锻造成底面半径为r 厘米的圆钢.请问锻造后的圆钢长多少厘米?自学课本第3页开始——第4页例4结束,解答下面的问题: 1.分式的基本性质是 。

2.下列约分正确的是( )A 、326x x x =; B 、0=++y x y x ; C 、x xy x y x 12=++; D 、214222=y x xy三.小组合作考考你对本节知识的掌握程度.1. 类比分数的基本性质,在运用分式的基本性质时,应特别注意什么?2.你知道什么叫最简分式吗?怎样把一个分式化简为最简分式呢?四.展示风采A 组1.填空: (1)y x x -2=))(()(y x y x +-; (2))(1422=-+y y 2.根据分式的基本性质,分式aa b--可变形为( ) A .a ab -- B .a a b + C .a a b -- D .aa b-+ B 组3.下面三个式子:c b a c b a --=+-,cba cb a --=--,cba cb a +-=+-,其中正确的是( ) A .0 个 B .1 个 C .2 个 D .3 个4.填空22222(_________)b ab a a b a b -+=-+;44422+--x x x = 。

5.不改变分式的值,化简下列分式,使分子、分母的系数为整数,110.35110.53x y x y-++- C 组6.若1<x <2,分式2121x x x x xx---+--的值是( )A .-1B .1C .2D .3 7.已知0346x y z ==?,求x y z z y z+--+的值五.课堂测试A 组1.下列各式正确的是( ) A .a b b a += B .22y y x x = C .1x y x y-+=--D .11x y x y=--+- 2.())0(10 53≠=a axy xy a ; ()1422=-+a a 。

B 组3.下列式子①yx y x y x -=--122;②c a b a a c a b --=--;③1-=--ba ab ;④yx yx y x y x +-=--+-中正确的是( ) A 、1个 B 、2 个 C 、 3 个 D 、 4 个4.化简 (1)yx xy2205; (2)12122+--x x x ..C 组5.下列运算中,错误的是( ) A .a ac b bc=(c ≠0) B .1a ba b--=-+ C .0.55100.20.323a b a b a b a b ++=-- D .x y y xx y y x--=++ 6.某机械厂欲成批生产某种零件,第一道工序需要将一批长l 厘米、底面半径为2r 厘米的圆钢锻造成底面半径为r 厘米的圆钢.请问锻造后的圆钢长多少厘米?六.课后作业A 组 1.化简分式2bab b +的结果为( )A .1a b+ B .11a b + C .21a b +D .1ab b+2.化简分式:abbca 2= ; 约分4322016xy y x -= ; B 组3.下面约分正确的是( ) A.824a a a= B .(1)(5)1(1)(5)x x x x --=--C .22422x y x y x y+=++ D .222222c b c a b a +=+ 4.如果2a b =,则2222a ab b a b -++= ( )A .45B . 1C .35D . 2 C 组5.不改变分式的值,化下列个分式中的分子、分母的系数为整数,其结果不正确的为( )A b a b a b a b a 232331213121-+=-+ B y x y x y x y x 7208137.028.03.1--=--C y x y x y x y x 726487414321+-=+-D x y x x y x 5355.0321-=- 6.不改变分式的值,使下面各组里第二个分式的分母和第一个分式的分母相同①21,(2)(3)(2)(3)x x x x --+-+ ②10,(5)(21)21x xx x x -++七.学(教)后反思与错题集锦:§3.1分式及其基本性质 2.分式的基本性质(二)拟稿人 逄淑友一、学习目标1.掌握分式的基本性质.2.会利用分式的基本性质对异分母分式进行“等值”变形——通分.3.本节重点是确定最简公分母,难点是分母是多项式的分式的通分。

二.自学感知问题提出从甲地到乙地有3 km 的路程,其中有1 km 的上坡路、2 km 的下坡路。

小丽在上坡路上的骑车速度为v km/h ,在下坡路上的骑车速度为3v km/h ,那么她走上坡路的时间是 h ,走下坡路的时间是 h ,她从甲地到乙地需 h 。

自学课本第4页例4开始——第5页练习,解答下面的问题:1.指出下列各组分式的最简公分母。

(1);(2);(3)221y x -,xyx +21. 2.判断下列通分是否正确:通分:。

解:∵最简公分母是,∴;。

三.小组合作考考你对本节知识的掌握程度.1.分式通分的意义是什么?分式通分的根据是什么?通分与约分有何区别?2,你能概括最简公分母的定义吗?如何确定最简公分母?小组讨论并回答。

相关文档
最新文档