导数复习资料理科

合集下载

高考导数16个核心专题

高考导数16个核心专题

高考导数16个核心专题
1、数列:解决数列问题的基本方法、等差数列、等比数列、定义数列的性质及其应用。

2、函数:函数的概念、函数的图形、一次函数、二次函数、奇偶性及其应用。

3、极限:极限的概念及计算方法、无穷小量、无穷大量及其应用。

4、微积分:定义积分、不定积分、定积分、积分的几何意义及应用。

5、向量:向量的概念、向量的运算、极坐标表示、曲线长、圆面积及应用。

6、三角函数:正弦、余弦及正切函数的概念、函数的图像、正弦定理及应用。

7、几何:多边形的面积、椭圆面积、空间三角形体积及应用。

8、统计:概率的概念、期望、方差、协方差及应用。

9、概率:事件的概率、独立事件、条件概率及其应用。

10、常用函数:对数函数、指数函数、幂函数及其应用。

11、方程:一元一次方程、一元二次方程、二元一次方程及其应用。

12、不等式:不等式的概念、不等式的解法、不等式的范围及应用。

13、解几何:直线、圆、椭圆、双曲线及其应用。

14、复数:复数的概念、实部、虚部、复数的运算及应用。

15、矩阵:矩阵的概念、计算、行列式及其应用。

16、空间几何:立体几何的概念、平面几何、平行四边形、直线与平面的位置关系及应用。

第3章 导数-高中数学备考知识点总结与规律方法总结(理科)

第3章 导数-高中数学备考知识点总结与规律方法总结(理科)

第三章 导数专题1 导数以及运算 考点一、导数的基本运算【备考知识梳理】1.常见函数的求导公式.(1)0)(='C (C 为常数);(2);(3);(4);(5);(6)()'x x e e =;(7)且1)a ≠;(8)()1ln 'x x =. 2.两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即: (法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即: 若C 为常数,则.即常数与函数的积的导数等于常数乘以函数的导数: 法则3两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:⎪⎭⎫ ⎝⎛v u ‘=2''v uv v u -(v ≠0). 形如y=f [x (ϕ])的函数称为复合函数.复合函数求导步骤:分解—求导—回代. 法则:y '|X = y '|U ·u'|X【规律方法技巧】(1)求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;(2)有的函数虽然表面形式为函数的商的形式,但在求导前利用代数或三角恒等变形将函数先化简,然后进行求导,有时可以避免使用商的求导法则,减少运算量;(3)复合函数的求导,要正确分析函数的复合层次,通过设中间变量,确定复合过程,然后求导.考点二、导数的几何意义【备考知识梳理】函数()y f x =在点0x 处的导数的几何意义是曲线()y f x =在点处的切线的斜率.也就是说,曲线()y f x =在点处的切线的斜率是()0f x '.相应地,切线方程为. 【规律方法技巧】求曲线切线方程的步骤:(1)求出函数()y f x =在0x x =的导数,即曲线()y f x =在点处切线的斜率;(2)在已知切点和斜率的条件下,求得切线方程特别地,当曲线()y f x =在点处的切线平行于y 轴时(此时导数不存在),可由切线的定义知切线方程为0x x =;当切点未知时,可以先设出切点坐标,再求解.【应试技巧点拨】1. 利用导数求切线问题中的“在”与“过”在解决曲线的切线问题时,利用导数求切线的斜率是非常重要的一类方法.在求解过程中特别注意:曲线在某点处的切线若有则只有一条,曲线过某点的要切线往往不止一条;切线与曲线的公共点不一定只有一个.因此在审题时应首先判断是“在”还是“过”.若“在”,利用该点出的导数为直线的斜率,便可直接求解;若“过”,解决问题关键是设切点,利用“待定切点法”,即:设点A (x 0,y 0)是曲线y=f(x)上的一点,则以A 为切点的切线方程为y -y 0=f,再根据题意求出切点.2.函数切线的相关问题的解决,抓住两个关键点:其一,切点是交点;其二,在切点处的导数是切线的斜率.因此,解决此类问题,一般要设出切点,建立关系——方程(组).其三,求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异.过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上;在点P 处的切线,点P 是切点.【 一轮复习指引】导数重点考查一次函数,二次函数,反比例函数,指数函数,对数函数,与三角函数等的求导公式,导数运算重点是高次多项式函数,分式函数,指数型,对数型函数,以及初等基本函数的和、差、积、商的运算方法,试题的命制往往与导数的应用结合,解决单调性,极值,最值,切线,方程的根,参数的范围等问题,它只作为解题的一部分,难度不大,只需会运用公式求导即可.因此在2019年高考备考中应狠下功夫,掌握求导公式,会灵活应用求导法则,理解导数的几何意义即可.【 高考考点定位】高考对导数的运算,导数的几何意义的考查,一般不单独出题,特别是导数的运算,往往和导数的几何意义,导数的应用结合起来,作为第一步求导来进一步研究导数其它应用.专题2 导数的应用考点一、借助导数研究函数单调性【备考知识梳理】一般地,函数的单调性与其导函数的正负有如下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间内单调递增;如果()0f x '<,那么函数()y f x =在这个区间内单调递减;【规律方法技巧】求函数单调区间的一般步骤.(1)求函数()f x 的导数()f x '(2)令()0f x '≥解不等式,得x 的范围就是单调增区间;令()0f x '≤解不等式,得x 的范围就是单调减区间(3)对照定义域得出结论.考点二、借助导数研究函数的极值【备考知识梳理】若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的极大值点,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是极小值【规律方法技巧】求函数的极值的步骤:(1)确定函数的定义区间,求导数f ′(x ) .(2)求方程f ′(x )=0的根.(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f ′(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值.考点三、借助导数研究函数最值【备考知识梳理】求函数最值的步骤:(1)求出()f x 在(,)a b 上的极值.(2)求出端点函数值(),()f a f b .(3)比较极值和端点值,确定最大值或最小值.【规律方法技巧】1、利用导数研究函数的最值问题是要养成列表的习惯,这样能使解答过程直观条理;2、会利用导函数的图象提取相关信息;3、极值点不一定是最值点,最值点也不一定是极值点,但若函数在开区间内只有一个极值点,则这个极值点也一定是最值点.【应试技巧点拨】1. 函数的导数在其单调性研究的作用:(1)当函数在一个指定的区间内单调时,需要这个函数的导数在这个区间内不改变符号(即恒大于或者等于零、恒小于或者等于零),当函数在一个区间内不单调时,这个函数的导数在这个区间内一定变号,如果导数的图象是连续的曲线,这个导数在这个区间内一定存在变号的零点,可以把问题转化为对函数零点的研究.(2)根据函数的导数研究函数的单调性,在函数解析式中若含有字母参数时要进行分类讨论,这种分类讨论首先是在函数的定义域内进行,其次要根据函数的导数等于零的点在其定义域内的情况进行,如果这样的点不止一个,则要根据字母参数在不同范围内取值时,导数等于零的根的大小关系进行分类讨论,最后在分类解决问题后要整合一个一般的结论.[易错提示] 在利用“若函数()f x 单调递增,则()'0f x ≥”求参数的范围时,注意不要漏掉“等号”.2.利用导数研究函数的极值与最值:(1)确定定义域.(2)求导数()'f x .(3)①若求极值,则先求方程()'0f x =的根,再检验()'f x 在方程根左、右值的符号,求出极值.(当根中有参数时要注意分类讨论根是否在定义域内)②若已知极值大小或存在的情况,则转化为已知方程()'0f x =根的大小或存在情况,从而求解.3.求函数()y f x =在[],a b 上的最大值与最小值的步骤(1)求函数()y f x =在(),a b 内的极值;(2)将函数()y f x =的各极值与端点处的函数值()(),f a f b 比较,其中最大的一个是最大值,最小的一个是最小值.4.利用导数处理恒成立问题不等式在某区间的恒成立问题,可以转化为求函数在区间上的最值问题来解决,函数的最值问题的求解,利用求导分析函数单调性是常规途径,例如:①()0f x '>⇒()f x 为增函数(()0f x '<⇒()f x 为减函数).②()f x 在区间(),a b 上是增函数⇒()f x '≥0在(),a b 上恒成立;()f x 在区间(),a b 上为减函数⇒()f x '≤0在(),a b 上恒成立.5.利用导数,如何解决函数与不等式大题在高考题的大题中,每年都要设计一道函数大题. 在函数的解答题中有一类是研究不等式或是研究方程根的情况,基本的题目类型是研究在一个区间上恒成立的不等式(实际上就是证明这个不等式),研究不等式在一个区间上成立时不等式的某个参数的取值范围,研究含有指数式、对数式、三角函数式等超越式的方程在某个区间上的根的个数等,这些问题依据基础初等函数的知识已经无能为力,就需要根据导数的方法进行解决.使用导数的方法研究不等式和方程的基本思路是构造函数,通过导数的方法研究这个函数的单调性、极值和特殊点的函数值,根据函数的性质推断不等式成立的情况以及方程实根的个数.因为导数的引入,为函数问题的解决提供了操作工具.因此入手大家比较清楚,但是深入解决函数与不等式相结合的题目时,往往一筹莫展.原因是找不到两者的结合点,不清楚解决技巧.解题技巧总结如下(1)树立服务意识:所谓“服务意识”是指利用给定函数的某些性质(一般第一问先让解决出来),如函数的单调性、最值等,服务于第二问要证明的不等式. (2)强化变形技巧:所谓“强化变形技巧”是指对于给出的不等式直接证明无法下手,可考虑对不等式进行必要的等价变形后,再去证明.例如采用两边取对数(指数),移项通分等等.要注意变形的方向:因为要利用函数的性质,力求变形后不等式一边需要出现函数关系式.(3)巧妙构造函数:所谓“巧妙构造函数”是指根据不等式的结构特征,构造函数,利用函数的最值进行解决.在构造函数的时候灵活多样,注意积累经验,体现一个“巧妙”.【一轮复习指引】导数是研究函数的工具,导数进入教材之后,给函数问题注入了生机和活力,开辟了许多解题新途径,拓展了高考对函数问题的命题空间.所以把导数与函数综合在一起是顺理成章的事情,对函数的命题已不再拘泥于一次函数,二次函数,反比例函数,指数函数,对数函数等,对研究函数的目标也不仅限于求定义域,值域,单调性,奇偶性,对称性,周期性等,而是把高次多项式函数,分式函数,指数型,对数型函数,以及初等基本函数的和、差、积、商都成为命题的对象,试题的命制往往融函数,导数,不等式,方程等知识于一体,通过演绎证明,运算推理等理性思维,解决单调性,极值,最值,切线,方程的根,参数的范围等问题,这类题难度很大,综合性强,内容新,背景新,方法新,是高考命题的丰富宝藏.解题中需用到函数与方程思想、分类讨论思想、数形结合思想、转化与化归思想.因此在2019年高考备考中应狠下功夫,抓好基础,提高自己的解题能力,掌握好解题技巧,特别是构造函数的灵活运用.【高考考点定位】高考对导数的应用的考查主要有导数的几何意义,利用导数判断单调性,求最值,证明不等式,证明恒成立,以及存在性问题等,难度较大,往往作为把关题存在.专题3 积分与微积分基本定理考点一、求已知函数的定积分【备考知识梳理】1、定积分的概念如果函数()f x 在区间[],a b 上连续,用分点011i i n a x x x x x b -=<<<<<<=……将区间[],a b 等分成n 个小区间,在每个小区间[]1,i i x x - 上任取一点()1,2,i i ξ=…,n ,作和式()()11n n i i i i b a f x f nξξ==-∆=∑∑ ,当n →+∞ 时,上述和式无限接近某个水常数,这个常数叫做函数在区间上的定积分,记作()ba f x dx ⎰,即 ()()1lim n bi a n i b a f x dx f nξ→∞=-=∑⎰ 2、微积分基本定理如果()f x 是区间[],a b 上的连续函数,并且()()F x f x '= ,那么()()()ba f x dx Fb F a =-⎰ ,这个结论叫做微积分基本定理,又叫做牛顿——莱布尼兹公式.3、定积分的基本性质(1)()()=k bb aa kf x dx f x dx ⎰⎰,其中k 为常数 (2)()()()()[]b b baa a f x g x dx f x dx g x dx ±=±⎰⎰⎰ (3)()()()bc ba a c f x dx f x dx f x dx =+⎰⎰⎰,其中a cb << 【规律方法技巧】1.求函数()f x 的定积分,关键是求出函数()f x 的一个原函数()F x ,即满足()F x '=()f x .正确运用求导运算与求原函数运算互为逆运算的关系.2.计算简单定积分的步骤(1)把被积函数变为幂函数、正弦函数、余弦函数、指数函数与常数的和或差;(2)利用定积分的性质把所求的定积分化为若干个定积分的和或差;(3)分别用求导公式找到F (x ),使得F ′(x )=f (x );(4)利用牛顿——莱布尼兹公式求出各个定积分的值;(5)计算所求定积分的值.3.求导运算与求原函数运算互为逆运算,求定积分的关键是找到被积函数的原函数,为避免出错,在求出原函数后可利用求导与积分互为逆运算的关系进行验证.考点二、求分段函数的定积分【备考知识梳理】1、分段函数的定积分(1)分段函数在区间[],a b 上的定积分可分成几段定积分的和的形式.(2)分段的标准是使每一段上的函数表达式是确定的,一般按照原函数分段的情况分,无需分得过细.2、奇函数与偶函数在对称区间上的定积分若()f x 为偶函数,且在关于原点对称的区间[],a a -上连续,则()()02aaa f x dx f x dx -=⎰⎰ 若()f x 为奇函数,且在关于原点对称的区间[],a a -上连续,则()0a a f x dx -=⎰【规律方法技巧】 分段函数在区间[],a b 上的定积分可分成几段定积分的和的形式. 分段的标准只需依据已知函数的分段标准即可.考点三、定积分的几何意义【备考知识梳理】1、当函数()f x 在区间[],a b 上恒为正时,定积分()ba f x dx ⎰的几何意义是直线,,0x a xb y === 和曲线()y f x =围成的曲边梯形的面积;2、一般情况下,定积分()ba f x dx ⎰的几何意义是介于x 轴、曲线()y f x =和直线,x a xb ==之间的曲边梯形的面积的代数和,其中在x 轴上方的面积等于该区间上定积分值,x 轴下方的面积等于该区间上定积分的相反数.【规律方法技巧】1.利用定积分求平面图形面积的关键是画出几何图形,结合图形位置,确定积分区间以及被积函数,从而得到面积的积分表达式,再利用微积分基本定理求出积分值.2. 定积分的应用及技巧:(1)对被积函数,要先化简,再求定积分.(2)求被积函数是分段函数的定积分,依据定积分的性质,分段求定积分再求和.(3)对含有绝对值符号的被积函数,要去掉绝对值符号才能求定积分.(4)应用定积分求曲边梯形的面积,解题的关键是利用两条曲线的交点确定积分区间以及结合图形确定被积函数.求解两条曲线围成的封闭图形的面积一般是用积分区间内上方曲线减去下方曲线对应的方程、或者直接作差之后求积分的绝对值,否则就会求出负值.[易错提示] 在使用定积分求两曲线围成的图形的面积时,要注意根据曲线的交点判断这个面积是怎样的定积分,既不要弄错积分的上下限,也不要弄错被积函数.用微积分基本定理求定积分时,要掌握积分与导数的互逆关系及求导公式的逆向形式.3.定积分的应用主要有两个问题:一是能利用定积分求曲边梯形的面积;二是能利用定积分求变速直线运动的路程及变力做功问题,其中,应特别注意求定积分的运算与利用定积分计算曲边梯形面积的区别.【应试技巧点拨】1. 利用定积分求曲边图形面积时,一定要找准积分上限、下限及被积函数.当图形的边界不同时,要分不同情况讨论.2.求曲边图形面积的方法与步骤(1)画图,并将图形分割为若干个曲边梯形;(2)对每个曲边梯形确定其存在的范围,从而确定积分的上、下限;(3)确定被积函数;(4)求出各曲边梯形的面积和,即各积分的绝对值的和.3. 定积分()ba f x dx ⎰的几何意义是介于x 轴、曲线y =()f x 以及直线,x a xb ==之间的曲边梯形面积的代数和 ,其中在x 轴上方的面积等于该区间上的积分值,在x 轴下方的面积等于该区间上积分值的相反数,所以在用定积分求曲边形面积时,一定要分清面积与定积分是相等还是互为相反数.【 一轮复习指引】定积分可以看作是导数在某一区间上的逆运算.它是新课标新增加的内容之一,在以前的课本中没有出现定积分的概念,在高考中主要考查定积分的计算和定积分的几何意义,多为容易题,一般每年出一道题,有时和二项式结合出题,因此在2019年复习备考中,只须掌握积分的概念,积分的运算,会用积分求面积,体积即可.【高考考点定位】高考对定积分的考查主要有定积分的计算和定积分的几何意义,作为新增内容,它是大学微积分的基础,很受出题人的青睐,故在复习时应引起重视.。

(完整版)高三复习导数专题

(完整版)高三复习导数专题

导 数一、导数的基本知识 1、导数的定义:)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000. 2、导数的公式: 0'=C (C 为常数) 1')(-=n n nxx (R n ∈) xx e e =')(a a a x x ln )('= xx 1)(ln '= exx a a log 1)(log '=x x cos )(sin '= x x sin )(cos '-=3、导数的运算法则: [()()]f x g x '+ =()()f x g x ''+ [()()]()()f x g x f x g x '''-=-[()]()af x af x ''= [()()]()()()()f x g x f x g x f x g x '''=+ 2()()()()()[]()[()]f x f x g x f x g x g x g x ''-'= 4、掌握两个特殊函数 (1)对勾函数()bf x ax x=+ ( 0a > ,0b >) 其图像关于原点对称(2)三次函数32()f x ax bx cx d =+++(0)a ≠导数导数的概念 导数的运算导数的应用导数的定义、几何意义、物理意义 函数的单调性 函数的极值函数的最值 常见函数的导数导数的运算法则 比较两个的代数式大小导数与不等式讨论零点的个数求切线的方程导数的基本题型和方法1、、导数的意义:(1)导数的几何意义:()k f x'=(2)导数的物理意义:()v s t'=2、、导数的单调性:(1)求函数的单调区间;()0()b]f x f x'≥⇔在[a,上递增()0()b]f x f x'≤⇔在[a,上递减(2)判断或证明函数的单调性;()f x c≠(3)已知函数的单调性,求参数的取值范围。

高三数学理科导数巩固训练

高三数学理科导数巩固训练

高三数学理科导数复习资料一、已知函数单调性,求参数的取值范围 类型1.参数放在函数表达式上例1.设函数R a ax x a x x f ∈+++-=其中86)1(32)(23.的取值范围求上为增函数在若的值求常数处得极值在若a x f a x x f ,)0,()()2(.,3)()1(-∞=基础训练:.)().2(;)().1(1,1)1(32)(.123的极值讨论的单调区间求其中设函数x f x f a x a x x f ≥+--=类型2.参数放在区间边界上例2.已知函数)(,0)(23x f y x d cx bx ax x f ==+++=曲线处取得极值在过原点和点)2,1(-P ,若曲线)(x f y =在点P处的切线与直线 452的夹角为x y =且切线的倾斜角为钝角.(1) 求)(x f 的表达式(2) 若)(x f 在区间[]1,12+-m m 上递增,求m 的取值范围.基础训练:.,]1,[)(,73)(.223的取值范围求上单调递增在若已知函数a a a x f xxx f +-+=二、已知不等式在某区间上恒成立,求参数的取值范围类型1.参数放在不等式上例3.已知时都取得极值与在132)(23=-=+++=x x c bx ax x x f(1) 求b a 、的值及函数)(x f 的单调区间.(2) 若对2)(],2,1[c x f x <-∈不等式恒成立,求c 的取值范围. 基础训练:__________)(]2,1[,522)(.323的取值范围是则实数都有若对任意已知函数m m x f x x xx x f >-∈+--=类型2.参数放在区间上例4.已知三次函数d cx x ax x f ++-=235)(图象上点(1,8)处的切线经过点(3,0),并且)(x f 在3=x 处有极值.(1) 求)(x f 的解析式.(2) 当),0(m x ∈时, )(x f >0恒成立,求实数m 的取值范围.基础训练:.___________24.434的取值范围是则实数都成立对任意实数若不等式a ,x a x x -≥-三、知函数图象的交点情况,求参数的取值范围. 例5.已知函数1,13)(23=-=-+=x x x bx ax x f 在处取得极值(1) 求函数)(x f 的解析式.(2) 若过点)2)(,1(-≠m m A 可作曲线y=)(x f 的三条切线,求实数m 的取值范围. 基础训练:轴仅有一个交点与曲线在什么范围内取值时当的极值求函数为实数设x x f y a x f a x x x x f a )(,)2()()1()(,.523=+--=四、开放型的问题,求参数的取值范围。

理科导数知识点总结

理科导数知识点总结

理科导数知识点总结一、导数的基本概念1.1 导数的定义在微积分中,函数在某一点处的导数定义为函数在该点处的变化率。

具体而言,对于函数y=f(x),在点x处的导数定义为:f'(x) = lim(h->0) (f(x+h)-f(x))/h其中,lim表示极限,h表示自变量x的变化量。

这个定义是一个极限的定义,表示当自变量x的变化量趋于0时,函数值的变化率。

1.2 导数的几何意义导数在几何上表示函数曲线在某一点处的切线的斜率。

具体而言,对于函数y=f(x),在点(x,f(x))处的切线的斜率即为函数在该点处的导数。

这个几何意义对于理解导数在图形上的意义有着重要的帮助。

1.3 导数的物理意义在物理学中,导数有着重要的物理意义。

例如,对于位移函数s(t),时间t处的速度v(t)即为位移函数的导数s'(t)。

同样地,速度函数v(t)的导数a(t)即为物体在时间t处的加速度。

这个物理意义可以帮助学生理解导数在实际应用中的重要性。

二、求导法则2.1 基本导数法则对于一些基本函数,可以利用导数的定义来求导。

例如,对于常数函数y=c,其导数为0;对于幂函数y=x^n,其导数为nx^(n-1);对于指数函数y=e^x,其导数为e^x;对于对数函数y=log_a(x),其导数为1/xln(a)等。

这些基本导数法则可以帮助学生快速求出一些基本函数的导数。

2.2 导数的四则运算法则在微积分中,导数具有一些常规的运算法则。

例如,如果函数y=f(x)和g(x)都可以求导,则有(f(x)+g(x))' = f'(x) + g'(x)、(f(x)-g(x))' = f'(x) - g'(x)、(f(x)·g(x))' = f'(x)·g(x) + f(x)·g'(x)等。

这些导数的四则运算法则对于求导的运算非常有帮助。

(完整版)高考导数专题(含详细解答)

(完整版)高考导数专题(含详细解答)

导数及其应用导数的运算1. 几种常有的函数导数:①、 c( c 为常数); ②、( x n )( n R ); ③、 (sin x) = ;④、 (cos x) =;⑤、( a x ); ⑥、 ( ex); ⑦、 (log a x ) ; ⑧、 (ln x ).2. 求导数的四则运算法规:(u v)u v ; (uv) u vu'u v ' uv 'u ( v0 ) 注:① u, v 必定是可导函数 .uv ; (u)vuvvvv 223. 复合函数的求导法规:f x ( ( x))f (u) ? ( x) 或 y xy u ? u x一、求曲线的切线(导数几何意义)导数几何意义: f (x 0 ) 表示函数 y f (x) 在点 ( x 0 , f (x 0 ) )处切线 L 的斜率;函数 y f (x) 在点 ( x 0 , f (x 0 ) )处切线 L 方程为 y f (x 0 )f (x 0 )(x x 0 )1. 曲线在点 处的切线方程为( )。

A:B:C:D:答案详解 B 正确率 : 69%, 易错项 : C解析 :本题主要观察导数的几何意义、导数的计算以及直线方程的求解。

对 求导得,代入 得 即为切线的斜率, 切点为,因此切线方程为即。

故本题正确答案为B 。

2.3. 设函数f ( x) g( x) x2,曲线 y g(x) 在点 (1,g(1)) 处的切线方程为 y 2x 1,则曲线 y f ( x) 在点 (1, f (1))处切线的斜率为( )A .41C.21B . D .4 24. 已知函数 f ( x) 在R上满足 f ( x) 2 f (2 x) x28x 8,则曲线y f (x) 在点 (1, f (1)) 处的切线方程是()A . y2x 1 B. y x C. y3x 2 D. y2x 3变式二:5. 在平面直角坐标系xoy 中,点P在曲线C : y x310 x 3 上,且在第二象限内,已知曲线 C 在点 P 处的切线的斜率为 2,则点 P 的坐标为.6. 设曲线 yx n 1 (n N * ) 在点( 1,1)处的切线与 x 轴的交点的横坐标为 x n ,令 a n lg x n ,则 a 1 a 2 L a 99 的值为.7. 已知点 P 在曲线 y=4 上, 为曲线在点 P 处的切线的倾斜角,则的取值范围是e x1, 3]D 、 [ 3,A 、 [0, )B 、 [, ) C 、 ( )44 22 4 4变式三:8. 已知直线y =x+ 1 与曲线y ln( x a) 相切,则α的值为( )A . 1 B. 2 C. - 1 D. - 29. 若存在过点 (1,0)的直线与曲线 yx 3 和 y ax 2 15 x 9 都相切,则 a 等于4( )A . 1或 -25B . 1或21C . 7 或 - 25D .7或 76444 6441 110. 若曲线 yx 2 在点 a, a 2 处的切线与两个坐标围成的三角形的面积为18,则 aA 、64B 、 32C 、 16D 、811. (本小题满分 13 分) 设 f ( x)ae x 1b( a 0) . ( I )求 f ( x) 在 [0, ) 上的最小值;ae x3x ;求 a,b 的值 .( II )设曲线 yf ( x) 在点 (2, f (2)) 的切线方程为 y212. 若曲线 f x ax2Inx 存在垂直于y轴的切线,则实数 a 的取值范围是.二、求单调性或单调区间1、利用导数判断函数单调性的方法:设函数y f (x) 在某个区间 D 内可导,若是 f ( x) >0,则y f (x) 在区间D上为增函数;若是 f ( x) <0,则y f (x) 在区间 D 上为减函数;若是 f ( x) =0恒成立,则y f (x) 在区间 D 上为常数 .2、利用导数求函数单调区间的方法:不等式 f ( x) >0的解集与函数y f (x) 定义域的交集,就是y f ( x) 的增区间;不等式 f ( x) <0的解集与函数y f (x) 定义域的交集,就是y f (x) 的减区间 .1、函数f (x) ( x 3)e x的单调递加区间是( )A . ( ,2) B. (0,3) C. (1,4) D . (2, )2. 函数f (x)x315x233x 6 的单调减区间为.3. 已知函数,,谈论的单调性。

(完整版)导数知识点汇总

(完整版)导数知识点汇总

导数1.导数的几何意义:函数()y f x =在0x x =处的导数0'()f x ,就是曲线()y f x =过点0x 的切线斜率.∴过点00(,)x y 的切线方程为000'()()y y f x x x -=-0'()0f x =时,切线与x 轴 .0'()0f x >时,切线的倾斜角为 .0'()0f x <时,切线的倾斜角为 .0'()f x 不存在时,切线 .2.基本初等函数的导数公式:3.导数运算法则:[()()]''()'()f x g x f x g x ±=±[()()]''()()()'()f x g x f x g x f x g x ⋅=+2()'()()()g'()'()()f x f x g x f x x g x g x ⎡⎤-=⎢⎥⎣⎦4.复合函数求导:{[()]}''[()]'()f g x f g x g x =⋅:(sin 2)'2cos 2eg x x = 252424[(1)]'5(1)210(1)x x x x x +=+⋅=+5.导数与函数单调性、极值的关系. ① '()0()'()0()f x f x f x f x ⎧>⇒↑⎪⎨<⇒↓⎪⎩()'()0()'()0f x f x f x f x ⎧↑⇒≥⎪⎨↓⇒≤⎪⎩② 若0'()0,f x =且在0x 左边'()0f x >,右边'()0f x <,则0x 是()f x 的极大值点在0x 左边'()0f x <,右边'()0f x >,则0x 是()f x 的极小值点★ 0x 为极值点 0'()0f x =题型一:导数的几何意义【基础题】1.曲线y =在点(4,2)P 处的切线方程是2.已知3y x =在点P 处的切线斜率为3,则P 的坐标为3.已知直线10x y --=与抛物线2y ax =相切,则a =4.已知曲线ln y x x =+在点(1,1)处的切线与曲线2(2)1y ax a x =+++相切,则a =5.若曲线x y e -=上点P 处的切线平行于直线210x y ++=,则点P 的坐标为6.若函数()f x 的导数为'()sin f x x =-,则函数图象在点(4,(4))f 处的切线倾斜角为( ).A 90︒ .0B ︒ .C 锐角 .D 钝角【提高题】1.设点P 是曲线211ln 42y x x =+上的任意一点,P 点处切线倾斜角为α,则角α的取值范围是2.曲线21x y e -=+在点(0,2)处的切线与直线0y =和y x =围成的三角形的面积为( )1.3A 1.2B2.3C .1D3.点P 是曲线2ln y x x =-上任意一点,则P 到直线2y x =-的距离的最小值是变式:函数2()x f x e =的图象上的点到直线240x y --=的距离的最小值是题型二:导数与函数单调性、极值、最值【基础题】1.函数()ln (0)f x x x x =>的单调递增区间是2.函数32()39f x x ax x =++-,已知()f x 在3x =-时取得极值,则a =3.设2()ln f x a x bx x =++,在121,2x x ==处有极值,则a = ,b = .4.已知函数32()(6)1f x x ax a x =++++有极大值和极小值,则实数a 的取值范围是5.若函数x y e ax =+有大于0的极值点,则a 的取值范围是6.已知函数3()128f x x x =-+在区间[3,3]-上的最大值与最小值分别为,,M m 则【提高题】1.直线y a =与函数33y x x =-的图象有三个相异的交点,则a 的取值范围是2.若函数3()26f x x x k =-+在R 上只有一个零点,求常数k 的取值范围.3.已知函数()(1)ln 1,f x x x x =+-+若'2()1xf x x ax ≤++恒成立,求a 的取值范围.4.已知函数21()2,f x ax x =-若()f x 在(0,1]上是增函数,求a 的取值范围.变式:函数3y ax x =-在R 上是减函数,则a 的取值范围是5.已知函数2()ln (0),f x x ax x a =-->若函数()f x 是单调函数,求a 的取值范围.题型三:与函数性质有关1.若函数42()f x ax bx c =++满足'(1)2,f =则'(1)f -=2.已知函数3()f x x x =+对任意的[2,2],(2)()0m f mx f x ∈--+<恒成立,则x 的取值范围是3.已知对任意实数x ,有()(),()(),f x f x g x g x -=--=且0x >时,''()0,()0,f x g x >>则0x <时( )''.()0,()0A f x g x >> ''.()0,()0B f x g x ><''.()0,()0C f x g x <> ''.()0,()0D f x g x <<4.若函数()f x 对定义域R 内的任意x 都有()(2)f x f x =-,且当1x ≠时其导函数'()f x 满足(1)'()0,x f x ->若12,a <<则( )2.(log )(2)(2)a A f a f f << 2.(2)(log )(2)a B f f a f <<2.(2)(2)(log )a C f f f a << 2.(log )(2)(2)a D f a f f <<5.设(),()f x g x 分别是定义在R 上的奇函数和偶函数,当0x <时,'()()()'()0,f x g x f x g x +>且(3)0,g -=则不等式()()0f x g x <的解集为( ).(3,0)(3,)A -+∞ .(3,0)(0,3)B -.(,3)(3,)C -∞-+∞ .(,3)(0,3)D -∞-6.已知函数()y f x =是定义在R 上的奇函数,且当(,0)x ∈-∞时,不等式()'()0f x xf x +>恒成立,0.10.122112(2),(log 2)(log 2),(log )(log )44a fb fc f ππ===,则,,a b c 的大小关系是( ).Aa b c >> .B c b a >> .C b a c >> .D a c b >>题型四:图象题 1.函数()f x 的定义域为开区间(,)a b ,导函数'()f x 在(,)a b 内的图象如图所示,则函数()f x 在开区间(,)a b 内有 个极小值点.2.设'()f x 是函数()f x 的导函数,将()y f x =和'()y f x =的图象画在同一个个直角坐标系中,不可能正确的是( )3.设曲线21y x =+在其上任一点(,)x y 处的切线的斜率为()g x ,则()cos y g x x =的部分图象可以为( )4.已知函数'()y xf x =的图象如右图所示,则()y f x =的图象大致是( )5.已知()y f x =在(0,1)内的一段图象是图象所示的一段圆弧,若1201,x x <<<则( )1212()().f x f x A x x < 1212()().f x f x B x x > 1212()().f x f x C x x = .D 不能确定 6.若函数2()f x x bx c =++的图象顶点在第四象限,则函数'()f x 的图象是( )链接高考:1.(2015,12)设函数'()f x 是奇函数()f x 的导函数,(1)0,f -=当0x >时,'()()0,xf x f x -<则使得()0f x >成立的x 的取值范围是( ).(,1)(0,1)A -∞- .(1,0)(1,)B -+∞.(,1)(1,0)C -∞-- .(0,1)(1,)D +∞2.(2015,21)设函数2().mx f x e x mx =+-(1)证明:()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增;(2)若对于任意12,[1,1],x x ∈-都有12|()()|1,f x f x e -≤-求m 的取值范围.3.(2015,21)已知函数31(),()ln .4f x x axg x x =++=- (1)当a 为何值时,x 轴为曲线()y f x =的切线;(2)用min{,}m n 表示,m n 中的最小值,设函数()min{(),()}(0),h x f x g x x =>讨论()h x 零点的个数.4.(2014,7)设曲线ln(1)y ax x =-+在点(0,0)处的切线方程为2,y x =则a =() .0A .1B .2C .3D5.(2014,12)设函数(),xf x m π=若存在()f x 的极值点0x 满足22200[()],x f x m +<则m 的取值范围是 ( ).(,6)(6,)A -∞-+∞ .(,4)(4,)B -∞-+∞.(,2)(2,)C -∞-+∞ .(,1)(1,)D -∞-+∞6.(2014,21)已知函数()2.x x f x e ex -=-- (1)讨论()f x 的单调性.(2)设()(2)4()g x f x bf x =-,当0x >时,()0,g x >求b 的最大值,(3)已知1.4142 1.4143,<<估计ln 2的近似值(精确到0.001)7.(2014,11)已知函数32()31f x ax x =-+,若()f x 存在唯一零点0,x 且00x >,则a 的取值范围是8.(2014,21)设函数1()ln ,x xbe f x ae x x -=+曲线()y f x =在点(1,(1))f 处的切线方程为(1) 2.y e x =-+(1)求,.a b(2)证明:() 1.f x >9.(2013,21)设函数2(),()().xf x x ax bg x e cx d =++=+若曲线()y f x =和曲线()y g x =都过点(0,2)P ,且在点P 处有相同的切线4 2.y x =+(1)求,,,a b c d 的值.(2)若2x ≥-时,()(),f x kg x ≤求k 的取值范围.。

最全版导数专题精华知识点总结——理科

最全版导数专题精华知识点总结——理科

专题:导数知识点总结一、导数的定义1.函数y =f (x )在x =x 0处的导数称函数y =f (x )在x =x 0处的瞬时变化率lim Δx →0 ΔyΔx =lim Δx →0 fx 0+Δx -fx 0Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0Δy Δx =lim Δx →0 fx 0+Δx -fx 0Δx. 2.函数f (x )的导函数 称函数f ′(x )=lim Δx →0fx +Δx -fxΔx为f (x )的导函数. 二.基本初等函数的导数公式三、.导数的运算法则 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)[]2)()()()()()()(x g x g x f x g x f x g x f '-'='⎥⎦⎤⎢⎣⎡ (4)[])()(x f c x Cf '='(6)、复合函数的导数 复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 四.导数的几何意义(1)函数f (x )在x 0处的导数f'(x 0)是曲线f (x )在点P (x 0,f (x 0))处的切线的斜率k ,即k=f'(x 0).用好这个条件是解决切线问题的关键,不知道切点时要先设切点.注:(1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,斜率为k =f ′(x 0)的切线,是唯一的一条切线.(2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过点P ,点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.五、.函数的导数与单调性的关系1、函数y=f (x )在某个区间内可导,(1)若f'(x )>0在该区间内恒成立,则f (x )在这个区间内单调递增;(2)若f'(x )<0在该区间内恒成立,则f (x )在这个区间内单调递减; (3)若f'(x )=0在该区间内恒成立,则f (x )在这个区间内是常数函数.求单调区间要坚持“定义域优先”的原则..如果一个函数在给定定义域上的单调区间不止一个,这些区间之间一般不能用并集符号“∪”连接,只能用“,”或“和”字隔开.2、.确定函数单调区间的步骤(1)确定函数f (x )的定义域;(2)求f ′(x );(3)解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间; (4)解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.[方法技巧] 用导数求函数单调区间的三种类型及方法3研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.常见的分类讨论标准有以下几种可能:①方程f ′(x )=0是否有根;②若f ′(x )=0有根,求出根后判断其是否在定义域内;③若根在定义域内且有两个,比较根的大小是常见的分类方法.当我们无法判段导函数的符号时,有时需要二次求导研究导函数的最值来判断导函数的正负.4.用充分必要条件来诠释导数与函数单调性的关系 (1)f ′(x )>0(或f ′(x )<0)是f (x )在(a ,b )内单调递增(或递减)的充分不必要条件;(2)f ′(x )≥0(或f ′(x )≤0)是f (x )在(a ,b )内单调递增(或递减)的必要不充分条件(f ′(x )=0不恒成立).5、根据函数y =f (x )在(a ,b )上的单调性,求参数范围的方法:(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集. (2)转化为恒成立或存在性问题处理①若函数y =f (x )在(a ,b )上单调递增,转化为f ′(x )≥0在(a ,b )上恒成立求解.②若函数y =f (x )在(a ,b )上单调递减,转化为f ′(x )≤0在(a ,b )上恒成立求解.③若函数y =f (x )在(a ,b )上单调,转化为f ′(x )在(a ,b )上不变号即f ′(x )在(a ,b )上恒正或恒负.④若函数y =f (x )在(a ,b )上不单调,转化为f ′(x )在(a ,b )上变号.存在极值点⑤函数在某个区间存在单调区间可转化为不等式有解问题.由函数f (x )在区间[a ,b ]内单调递增(或递减),可得f ′(x )≥0(或f ′(x )≤0)在该区间恒成立,而不是f ′(x )>0(或<0)恒成立,“=”不能少.必要时还需对“=”进行检验. 六.函数的极值与导数的关系 1.判断函数极值的方法一般地,当函数f (x )在点x 0处连续时,(1)如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值;(2)如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值.“极值点”不是点,若函数f (x )在x 1处取得极大值,则x 1即为极大值点,极大值为f (x 1);在x 2处取得极小值,则x 2为极小值点,极小值为f (x 2). 2.求可导函数f (x )的极值的步骤 (1)求导函数f ′(x ); (2)求方程f ′(x )=0的根;(3)检验f ′(x )在方程f ′(x )=0的根的左右两侧的函数值的符号,如果左正右负,那么函数y =f (x )在这个根处取得极大值;如果左负右正,那么函数y =f (x )在这个根处取得极小值,可列表完成.f ′(x 0)=0是x 0为f (x )的极值点的必要而非充分条件.例如,f (x )=x 3,f ′(0)=0,但x =0不是极值点. 七、.函数的最值与导数的关系 (1)函数f (x )在[a ,b ]上有最值的条件如果在区间[a ,b ]上函数y =f (x )的图象是一条连续不断的曲线,那么它必有最大值和最小值.若有唯一的极值点,则这个极值点就是最值点①设函数y=f (x )在[a ,b ]上连续,在(a ,b )内可导,则f (x )在[a ,b ]上必有最大值和最小值且最值在极值点或端点处取得. ②若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.(2)求y =f (x )在[a ,b ]上的最大(小)值的步骤 ①求函数y =f (x )在(a ,b )内的极值;②将函数y =f (x )的各极值与端点处的函数值f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值.极值只能在定义域内部取得,而最值却可以在区间的端点取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值. (3)求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情原函数 导函数 f (x )=C (C 为常数) f ′(x )=0 f (x )=x α(α∈Q *) f ′(x )=αxα-1f (x )=sin x f ′(x )=cos x f (x )=cos x f ′(x )=-sin x f (x )=a x f ′(x )=a x ln a (a >0)f (x )=e xf ′(x )=e x f (x )=log a xf ′(x )=1x ln a (a >0,且a ≠1)f (x )=ln xf ′(x )=1xf ′(x )>0(<0)可解先确定函数的定义域,解不等式f ′(x )>0或f ′(x )<0求出单调区间f ′(x )=0可解先确定函数的定义域,解方程f ′(x )=0,求出实数根,把函数f (x )的间断点(即f (x )的无定义点)的横坐标和实根按从大到小的顺序排列起来,把定义域分成若干个小区间,确定f ′(x )在各个区间内的符号,从而确定单调区间f ′(x )>0(<0)及f ′(x )=0不可解先确定函数的定义域,当不等式f ′(x )>0或f ′(x )<0及方程f ′(x )=0均不可解时,求导并化简,根据f ′(x )的结构特征,选择相应基本初等函数,利用其图象与性质确定f ′(x )的符号,得单调区间况,画出函数的大致图象,然后借助图象观察得到函数的最值.用导数法求给定区间上的函数的最值问题的一般步骤: 第一步:(求导数)求函数f (x )的导数f ′(x );第二步:(求极值)求f (x )在给定区间上的单调性和极值; 第三步:(求端点值)求f (x )在给定区间上的端点值; 第四步:(求最值)将f (x )的各极值与f (x )的端点值进行比较,确定f (x )的最大值与最小值;第五步:(反思)反思回顾,查看关键点,易错点和解题规范.八.构造辅助函数的四种方法(1)移项法:证明不等式f (x )>g (x )(或f (x )<g (x ))的问题转化为证明f (x )-g (x )>0(或f (x )-g (x )<0),进而构造辅助函数h (x )=f (x )-g (x );(2)构造“形似”函数:对原不等式同解变形,如移项、通分、取对数,把不等式转化为左右两边是相同结构的式子,根据“相同结构”构造辅助函数;(3)主元法:对于(或可化为)f (x 1,x 2)≥A 的不等式,可选x 1(或x 2)为主元,构造函数f (x ,x 2)(或f (x 1,x ));(4)放缩法:若所构造函数最值不易求解,则可将所证明不等式进行放缩,再重新构造函数.九、导数的综合应用题型一:利用导数研究与不等式有关的综合问题(一)对于含有参数的恒成立问题或存在性问题 常用的处理方法有分类讨论或参数分离,并借助于函数图象来解决问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数复习资料理科1、(2005广东卷)函数32()31f x x x =-+是减函数的区间为(D) (A)(2,)+∞(B)(,2)-∞(C)(,0)-∞(D)(0,2)2.(2005全国卷Ⅰ)函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =(B )(A )2(B )3(C )4(D )53. (2005湖北卷)在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是( D )A .3B .2C .1D .04.(2005江西)已知函数()y xf x '=的图象如右图所示(其中'()f x 是函数(f 的导函数),下面四个图象中()y f x =的图象大致是(C )5.(2005浙江)函数y =ax 2+1的图象与直线y =x 相切,则a =( B ) (A)18 (B)41 (C) 21(D)1 6. (2005重庆卷)曲线y =x 3在点(1,1)处的切线与x 轴、直线x =2所围成的三角形的面积为______8/3 7.(2005江苏卷)(14)曲线31y x x =++在点(1,3)处的切线方程是41y x =- 8. ( 2005全国卷III )曲线32y x x =-在点(1,1)处的切线方程为x+y-2=09. (2005北京卷)过原点作曲线y =e x 的切线,则切点的坐标为 (1, e ); ,切线的斜率为e . 10、(2006安徽卷)若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为(A ) A .430x y --= B .450x y +-=C .430x y -+=D .430x y ++=11、(2006江西卷)对于R 上可导的任意函数f (x ),若满足(x -1)f x '()≥0,则必有( C ) A . f (0)+f (2)<2f (1) B. f (0)+f (2)≤2f (1) C. f (0)+f (2)≥2f (1) D. f (0)+f (2)>2f (1) 12.(2006全国II )过点(-1,0)作抛物线21y x x =++的切线,则其中一条切线为D (A )220x y ++= (B )330x y -+= (C )10x y ++= (D )10x y -+= 13.(2006四川卷)曲线34y x x =-在点()1,3--处的切线方程是D.(A )74y x =+ (B )72y x =+ (C )4y x =- (D )2y x =-14(2006天津卷)函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( )A .1个B .2个C .3个D . 4个15.(2006浙江卷)32()32f x x x =-+在区间[]1,1-上的最大值是C(A)-2 (B)0 (C)2 (D)416.(2006福建卷)已知直线10x y --=与抛物线2y ax =相切,则______.a =4117.(2006湖北卷)半径为r 的圆的面积S(r)=πr 2,周长C(r)=2πr ,若将r 看作(0,+∞)上的变量,则(πr 2)`=2πr ○1, ○1式可以用语言叙述为:圆的面积函数的导数等于圆的周长函数。

对于半径为R 的球,若将R 看作(0,+∞)上的变量,请你写出类似于○1的式子: ○2 ○2式可以用语言叙述为: 。

解:V球=343R π,又32443R R ππ'()= 故○2式可填32443R R ππ'()=,用语言叙述为“球的体积函数的导数等于球的表面积函数。

” 18.(2006湖南卷)曲线1y x=和2y x =在它们交点处的两条切线与x 轴所围成的三角形面积 是 .43解析:曲线xy 1=和2x y =在它们的交点坐标是(1,1),两条切线方程分别是y=-x+2和y=2x -1 解答题:1.(2005全国卷Ⅱ)设a 为实数,函数.)(23a x x x x f +--= (Ⅰ)求)(x f 的极值.(Ⅱ)当a 在什么范围内取值时,曲线x x f y 与)(=轴仅有一个交点. 2、 (2005全国卷Ⅱ)已知a≥ 0 ,函数f(x) = ( 2x -2ax )x e (1)当X 为何值时,f(x)取得最小值?证明你的结论; (2)设 f(x)在[ -1,1]上是单调函数,求a 的取值范围. 3、( 全国卷III)已知函数()2472x f x x-=-,[]01x ∈,(Ⅰ)求()f x 的单调区间和值域;(Ⅱ)设1a ≥,函数()[]223201g x x a x a x =--∈,,,若对于任意[]101x ∈,,总存在[]001x ∈,,使得()()01g x f x =成立,求a 的取值范围 4、(2005福建卷) 已知函数bx ax x f +-=26)(的图象在点M (-1,f (x ))处的切线方程为x +2y+5=0.(Ⅰ)求函数y=f (x )的解析式; (Ⅱ)求函数y=f (x )的单调区间. 5、(2005湖北卷)已知向量x f t x x x ⋅=-=+=)(),,1(),1,(2若函数在区间(-1,1)上是增函数,求t 的取值范围.解法1:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.23)(2t x x x f ++-='则.0)()1,1(,)1,1()(≥'--x f x f 上可设则在上是增函数在若,23)(,)1,1(,230)(22x x x g x x t x f -=--≥⇔≥'∴考虑函数上恒成立在区间,31)(=x x g 的图象是对称轴为由于开口向上的抛物线,故要使x x t 232-≥在区间(-1,1)上恒成立⇔.5),1(≥-≥t g t 即.)1,1()(,0)()1,1()(,5上是增函数在即上满足在时而当->'-'≥x f x f x f t5≥t t 的取值范围是故.解法2:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.0)()1,1(,)1,1()(.23)(2≥'--++-='x f x f t x x x f 上可设则在上是增函数在若)(x f ' 的图象是开口向下的抛物线,时且当且仅当05)1(,01)1(≥-=-'≥-='∴t f t f.5.)1,1()(,0)()1,1()(≥->'-'t t x f x f x f 的取值范围是故上是增函数在即上满足在6、(2005湖南卷)设0≠t ,点P (t ,0)是函数c bx x g ax x x f +=+=23)()(与的图象的一个公共点,两函数的图象在点P 处有相同的切线. (Ⅰ)用t 表示a ,b ,c ;(Ⅱ)若函数)()(x g x f y -=在(-1,3)上单调递减,求t 的取值范围.已知函数f (x )=ln x ,g(x )=21ax 2+b x ,a ≠0. (Ⅰ)若b =2,且h (x )=f (x )-g(x )存在单调递减区间,求a 的取值范围;(Ⅱ)设函数f (x )的图象C 1与函数g(x )图象C 2交于点P 、Q ,过线段PQ 的中点作x 轴的垂线分别交C 1,C 2于点M 、N ,证明C 1在点M 处的切线与C 2在点N 处的切线不平行. 8、(2005辽宁卷)函数)(x f y =在区间(0,+∞)内可导,导函数)(x f '是减函数,且.0)(>'x f 设m kx y x +=+∞∈),,0(0是曲线)(x f y =在点()(,00x f x )得的切线方程,并设函数.)(m kx x g += (Ⅰ)用0x 、)(0x f 、)(0x f '表示m ; (Ⅱ)证明:当)()(,),0(0x f x g x ≥+∞∈时;(Ⅲ)若关于x 的不等式),0[231322+∞≥+≥+在x b ax x 上恒成立,其中a 、b 为实数,求b 的取值范围及a 与b 所满足的关系. 8. (2005山东卷)已知1x =是函数32()3(1)1f x mx m x nx =-+++的一个极值点,其中,,0m n R m ∈<, (I )求m 与n 的关系式; (II )求()f x 的单调区间;(III )当[]1,1x ∈-时,函数()y f x =的图象上任意一点的切线斜率恒大于3m ,求m 的取值范围. 9、 (2005重庆卷)已知a ∈R ,讨论函数f (x )=e x (x 2+ax +a +1)的极值点的个数。

10、(2006江苏卷)已知,a R ∈函数2().f x x x a =-(Ⅰ)当a =2时,求使f (x )=x 成立的x 的集合; (Ⅱ)求函数y =f (x )在区间[1,2]上的最小值.已知函数f (x )=-x 2+8x,g (x )=6ln x+m (Ⅰ)求f (x )在区间[t ,t +1]上的最大值h (t );(Ⅱ)是否存在实数m ,使得y =f (x )的图象与y =g (x )的图象有且只有三个不同的交点?若存在,求出m 的取值范围;,若不存在,说明理由。

13、(2006广东卷)设函数3()32f x x x =-++分别在12x x 、处取得极小值、极大值.xoy 平面上点A B 、的坐标分别为11()x f x (,)、22()x f x (,),该平面上动点P 满足•4PA PB =,点Q 是点P 关于直线2(4)y x =-的对称点.求(I)求点A B 、的坐标; (II)求动点Q 的轨迹方程. 14、(2006湖北卷)设3x =是函数23()()()x f x x ax b e x R -=++∈的一个极值点。

(Ⅰ)、求a 与b 的关系式(用a 表示b ),并求()f x 的单调区间;(Ⅱ)、设0a >,225()()4xg x a e =+。

若存在12,[0,4]ξξ∈使得12()()1f g ξξ-<成立,求a 的取值范围。

15、(2006湖南卷)已知函数()sin f x x x =-,数列{n a }满足:1101,(),1,2,3,.n n a a f a n +<<== 证明:(ⅰ)101n n a a +<<<; (ⅱ)3116n n a a +<. 16、(2006辽宁卷)已知函数f(x)=d cx bx ax +++2331,其中a , b , c 是以d 为公差的等差数列,,且a >0,d >0.设的极小值点,在为)(0x f x [1-0,2ab]上,处取得最大植在1')(x x f ,在处取得最小值2x ,将点依次记为())(,(,()),(,()),(,22'21'100x f x f x x f x x f x A , B , C (I)求的值o x(II)若⊿ABC 有一边平行于x 轴,且面积为32+,求a ,d 的值 17、(2006全国卷I )已知函数()11axx f x e x-+=-。

相关文档
最新文档