全等三角形经典模型总结
中考数学总复习全等三角形的五种模型

全等三角形的五种模型一、手拉手模型已知:△ABE和△ACD为两个的等腰三角形,∠BAE=∠CAD=∠α,连接EC,BD交于点O结论:①△ABD ≌△AEC;②∠α+∠BOC=180°;③OA平分∠BOC已知:△ABD和△ACE均为等腰直角三角形,连接CD,BE交于点O结论:①△ACD ≌△ABE;②∠BOC=90°;③OA平分∠BOC已知:直线AB的同一侧作△ABD和△BCE都为等边三角形,连接AE,CD,二者交点为H结论:①△ABE≌△DBC;②AE=DC;③∠DHA=60°;④△AGB≌△DFB;⑤△EGB≌△CFB;⑥连接GF,GF∥AC;⑦连接HB,HB平分∠AHC模型应用1. (2010·深圳改编)如图,△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D 在AB上.(1)求证:△AOC≌△BOD;(2)判断△CAD是什么形状的三角形,说明理由.2.如图,△ABC与△ADE都是等腰直角三角形,连接CD,BE,CD,BE相交于点O,判断CD 与BE的位置关系,并说明理由半角模型已知:正方形ABCD中,E,F分别是BC,CD边上的点,且∠EAF=45°结论:将△ADF绕点A旋转90°到△ABG,则:①EF=DF+BE;②△CEF的周长为正方形ABCD周长的一半已知:正方形ABCD中,E,F分别是BC,CD边上的点,且∠EAF=45°结论:将△AEB绕点A为旋转90°到△ADE′,则:EF=DF-BE已知:在正方形ABCD中,AB=1,E,F分别是边BC,CD上的点,连接EF,AE,AF,过A 作AH⊥EF于点H,BE=EH结论:①△ABE≌△AHE;②△AHF≌△ADF;③∠EAF=45°;④EF=BE+DF模型应用3. (2015·深圳改编)如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE 折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③∠GDE=45°;④DG=DE.在以上4个结论中,正确的共有()A. 1个B. 2 个C. 3 个D. 4个4. 如图,在正方形ABCD中,AB=1,E,F分别是边BC,CD上的点,连接EF,AE,AF,过A作AH⊥EF于点H.若EF=BE+DF,那么下列结论:①AE平分∠BEF;②FH=FD;③∠EAF =45°;④S△EAF=S△ABE+S△ADF;⑤△CEF的周长为2.其中正确结论的个数是() A. 2 B. 3C. 4D. 5第三题第四题倍长中线模型已知:在△ABC 中,AD 是BC 边中线结论:延长AD 到E ,使DE =AD ,连接BE ,则:①△ADC ≌△EDB ;②AD< 21(AB +AC)已知:在△ABC 中,AD 是BC 边中线结论:作CF ⊥AD 于F ,作BE ⊥AD 的延长线于E ,连接BE ,则:①△BDE ≌△CDF ;②BE ∥FC模型应用6. 已知:在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE =AC ,延长BE 交AC 于F ,求证:AF =EF.一直线三垂直模型已知:AE=DE,AE⊥DE,∠B=∠C=90结论:①△ABE≌△ECD;②BC=AB+CD已知:在正方形ABCD中,∠ABF=∠C=90°,AF⊥BE,交于点H结论:①△ABF≌△BCE;②EC=AB-FC模型应用7. (2016·深圳改编)如图,CB=CA,∠ACB=90°,点D在边BC上(与B,C不重合),四边形ADEF 为正方形,过点F作FG∠CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S∠FAB∠S四边形CBFG=1∠2;③∠ABC=∠ABF.其中正确的结论的个数是()A.1B. 2C. 3D. 08. 如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,则下列结论:①∠AME=90°;②∠BAF=∠EDB;③MD=2AM=4EM.其中正确的结论有()A. 0个B. 1个C. 2个D. 3个9. 如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE∠AG于点E,BF∠DE,交AG 于点F.给出以下结论:①∠AED∠∠BFA;②DE-BF=EF;③∠BGF∠∠DAE;④DE-BG=FG.其中正确的有()A. 1个B. 2个C. 3个D. 4个10. (2018·深圳)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是________.对角互补模型已知:已知∠AOB=∠DCE=90°,OC平分∠AOB结论模型应用11.(2012·深圳)如图,Rt∠ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形6,则另一直角边BC的长为________.对角线交于点O,连接OC,已知AC=5,OC=212. (2017·深圳)如图,在Rt∠ABC中,∠ABC=90°,AB=3,BC=4,Rt∠MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=________.。
全等三角形八大基本模型

全等三角形八大基本模型全等三角形是初中数学中非常重要的内容,掌握全等三角形的基本模型有助于解决各类题目。
下面我们将详细介绍八大基本模型,以便于大家更好地理解和应用。
一、引言全等三角形是指具有相同形状和大小的两个三角形。
在解决全等三角形问题时,我们需要掌握基本模型,以便于快速判断三角形是否全等。
全等三角形的基本模型有:边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS)、两角一边(AAS)、一边一角一边(SAS)、两边一角(SSA)和角一边一角(AAA)。
二、边边边(SSS)全等三角形当两个三角形的三条边分别相等时,这两个三角形全等。
判断方法:比较三边长度是否相等。
三、边角边(SAS)全等三角形当两个三角形的两边和夹角分别相等时,这两个三角形全等。
判断方法:比较两边长度和夹角是否相等。
四、角边角(ASA)全等三角形当两个三角形的两个角和一边分别相等时,这两个三角形全等。
判断方法:比较两个角和一边是否相等。
五、角角边(AAS)全等三角形当两个三角形的两个角和一边分别相等时,这两个三角形全等。
判断方法:比较两个角和一边是否相等。
六、两角一边(AAS)全等三角形当两个三角形有两个角和一个边相等时,这两个三角形全等。
判断方法:比较两个角和一个边是否相等。
七、一边一角一边(SAS)全等三角形当两个三角形的一边和一角分别相等时,这两个三角形全等。
判断方法:比较一边和一角是否相等。
注意:此条件仅在角的另一边也相等时成立。
八、两边一角(SSA)全等三角形当两个三角形的两边和夹角分别相等时,这两个三角形全等。
判断方法:比较两边长度和夹角是否相等。
注意:此条件仅在角的另一边也相等时成立。
九、角一边一角(AAA)全等三角形当两个三角形的两个角和一边分别相等时,这两个三角形全等。
判断方法:比较两个角和一边是否相等。
注意:此条件仅在边的另一端角也相等时成立。
十、总结全等三角形八大基本模型是我们解决全等三角形问题的基石。
全等三角形八大模型归纳

全等三角形八大模型归纳全等三角形是初中数学中重要的概念之一,它是指两个三角形的对应边相等且对应角相等。
全等三角形具有许多性质和特点,可以归纳为八大模型,分别是SSS、SAS、ASA、AAS、HL、LLL、LLA、LAL。
下面将分别介绍这八种模型的特点和应用。
第一种模型是SSS,即三边全等。
当两个三角形的三条边分别相等时,这两个三角形就是全等的。
这种模型在实际生活中的应用非常广泛,比如在建筑、工程设计中,需要测量房屋的各个边长是否相等,以确保建筑物的稳定性和均衡性。
第二种模型是SAS,即两边夹角边全等。
当两个三角形的两边和夹角分别相等时,这两个三角形就是全等的。
这种模型常常用于证明两个三角形全等的情况,可以通过辅助线的引入来简化证明过程。
第三种模型是ASA,即两角边角全等。
当两个三角形的两个角和夹边分别相等时,这两个三角形就是全等的。
这种模型在解题过程中也经常用到,特别是在证明题中,可以根据已知条件找到相等的角和边,从而得出结论。
第四种模型是AAS,即两角边角全等。
当两个三角形的两个角和一边分别相等时,这两个三角形也是全等的。
这种情况在证明过程中比较常见,可以通过找到两个角和一边相等来得出结论。
第五种模型是HL,即斜边和直角边全等。
当两个直角三角形的斜边和一个直角边分别相等时,这两个三角形就是全等的。
这种情况在解决直角三角形的问题时经常用到,可以利用勾股定理和全等三角形的性质来求解。
第六种模型是LLL,即三边全等。
这种模型和SSS模型类似,只不过LLL模型更加具体,强调了三个边全部相等的情况。
在实际问题中,可以通过测量三角形的三边长度来判断两个三角形是否全等。
第七种模型是LLA,即两边和一个角全等。
当两个三角形的两个边和一个非夹角的角相等时,这两个三角形是全等的。
这种情况在解题过程中也会经常遇到,可以通过找到两个边和一个非夹角的角相等来证明两个三角形全等。
第八种模型是LAL,即一边和两个角全等。
当两个三角形的一条边和两个角分别相等时,这两个三角形也是全等的。
全等三角形的九大经典模型(解析版)

全等三角形的九大经典模型【题型1平移模型】【题型2轴对称模型】【题型3旋转模型】【题型4一线三等角模型】【题型5倍长中线模型】【题型6截长补短模型】【题型7手拉手模型】【题型8角平分线模型】【题型9半角全等模型】【知识点1平移模型】【模型解读】把△ABC沿着某一条直线l平行移动,所得到△DEF与△ABC称为平移型全等三角形,图①,图②是常见的平移型全等三角线.【常见模型】【题型1平移模型】1(2023春·陕西咸阳·八年级统考期末)如图,将△ABC沿BC方向平移得到△DEF,使点B的对应点E恰好落在边BC的中点上,点C的对应点F在BC的延长线上,连接AD,AC、DE交于点O.下列结论一定正确的是()A.∠B=∠FB.AC⊥DEC.BC=DFD.AC、DE互相平分【答案】D【分析】根据平移的性质得到∠B=∠DEF,BE=CF=CE=AD,AD∥BC,DF=AC,由于只有当∠BAC=90°时,AC⊥DE;只有当BC=2AC时,DF=AC=BE,则可对A、B、C选项的进行判断;AC交DE于O点,如图,证明△AOD≌△COE得到OD=OE,OA=OC,则可对D选项进行判断.【详解】解:∵△ABC沿BC方向平移得到△DEF,使点B的对应点E恰好落在边BC的中点上,∴∠B=∠DEF,BE=CF=CE=AD,AD∥BC,DF=AC,只有当∠BAC=90°时,AC⊥DE;只有当BC=2AC时,DF=AC=BE,所以A、B、C选项的结论不一定正确;∵AD∥BC,∴∠OAD=∠OCE,∠ODA=∠OEC,而AD=CE,∴△AOD≌△COE(ASA),∴OD=OE,OA=OC即AC、DE互相平分,所以D选项的结论正确.故选:D.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.1.(2023·浙江·八年级假期作业)如图,△ABC的边AC与△CDE的边CE在一条直线上,且点C为AE的中点,AB=CD,BC=DE.(1)求证:△ABC≌△CDE;(2)将△ABC沿射线AC方向平移得到△A B C ,边B C 与边CD的交点为F,连接EF,若EF将CDE 分为面积相等的两部分,且AB=4,则CF=【答案】(1)见解析(2)2【分析】(1)首先由点C为AE的中点得出AC=CE,再根据SSS证明△ABC≌△CDE即可;(2)根据平移的性质得A B =CD=AB=4,再由EF将CDE分为面积相等的两部分得CF=DF=12CD =2【解析】(1)证明:∵点C为AE的中点,∴AC=CE在△ABC和△CDE中,AB=CD BC=DE AC=CE∴△ABC≌△CDE(2)解:将△ABC沿射线AC方向平移得到ΔA B C ,且AB=4,∴A B =CD =AB =4,∵边B C 与边CD 的交点为F ,连接EF ,EF 将CDE 分为面积相等的两部分,如图∴CF =DF =12CD =2,故答案为:2【点睛】本题主要考查了全等三角形的判定以及平移的性质,根据SSS 证明△ABC ≌△CDE 是解答本题的关键.2.(2023春·重庆·八年级校考期中)如图,将△ABC 沿射线BC 方向平移得到△DCE ,连接BD 交AC于点F .(1)求证:△AFB ≌△CFD ;(2)若AB =9,BC =7,求BF 的取值范围.【答案】(1)见解析(2)1<BF <8【分析】(1)根据∠A =∠FCD ,∠AFC =∠CFD ,即可证明;(2)在△BCD 中,利用三边关系求出BD 的取值范围即可解决问题.(1)证明:∵AB ∥CD ,∴∠A =∠FCD ,在△AFB 和△CFD 中,∠A =∠FCD ∠AFB =∠CFD AB =CD∴△AFB ≌△CFD .(2)【解析】解:∵△AFB ≌△CFD ,∴BF =FD ,在△BCD 中,BC =7,CD =9,∴2<BD <16,∴2<2BF <16,∴1<BF <8.【点睛】本题考查平移变换、全等三角形的判定和性质、三角形的三边关系等知识,解题的关键是正确寻找三角形全等的条件解决问题,属于中考常考题型.3.(2023春·八年级课时练习)已知△ABC ,AB =AC ,∠ABC =∠ACB ,将△ABC 沿BC 方向平移得到△DEF .如图,连接BD 、AF ,则BD AF (填“>”“<”或“=”),并证明.【答案】【答案】BD =AF ,证明见解析【分析】由△ABC 沿BC 方向平移得到△DEF ,得到AC =DF ,∠DFB =∠ACB =∠ABF ,即可证明;【解析】【详解】解:BD =AF .证明:由△ABC 沿BC 方向平移得到△DEF ,AB =AC ,得AC =DF =AB ,,∠DFB =∠ACB =∠ABF .在△ABF 和△DFB 中,{AB =DF∠ABF =∠DFB BF =FB,∴△ABF ≌△DFB (SAS ),∴BD =AF .故答案是=.【点睛】本题主要考查了全等三角形的判定和性质,准确分析证明是解题的关键.【知识点2轴对称模型】【模型解读】将原图形沿着某一条直线折叠后,直线两边的部分能够完全重合,这两个三角形称之为轴对称型全等三角形,此类图形中要注意期隐含条件,即公共边或公共角相等.【常见模型】【题型2轴对称模型】1(2023春·河北邯郸·八年级校考期末)如图,在长方形ABCD 中,点M 为CD 中点,将△MBC 沿BM 翻折至△MBE ,若∠AME =α,∠ABE =β,则α与β之间的数量关系为()A.α+3β=180°B.β-α=20°C.α+β=80°D.3β-2α=90°【答案】D【分析】直接利用平行线的性质结合翻折变换的性质得出△ADM≌△BCM(SAS),进而利用直角三角形的性质得出答案.【详解】∵M为CD中点,∴DM=CM,在△ADM和△BCM中∵AD=BC ∠D=∠C DM=CM ,∴△ADM≌△BCM(SAS),∴∠AMD=∠BMC,AM=BM∴∠MAB=∠MBA∵将点C绕着BM翻折到点E处,∴∠EBM=∠CBM,∠BME=∠BMC=∠AMD ∴∠DME=∠AMB∴∠EBM=∠CBM=12(90°-β)∴∠MBA=12(90°-β)+β=12(90°+β)∴∠MAB=∠MBA=12(90°+β)∴∠DME=∠AMB=180°-∠MAB-∠MBA=90°-β∵长方形ABCD中,∴CD∥AB∴∠DMA=∠MAB=12(90°+β)∴∠DME+∠AME=∠ABE+∠MBE∵∠AME=α,∠ABE=β,∴90°-β+α=β+12(90°-β)∴3β-2α=90°故选D.【点睛】本题考查的知识点是平行线的性质,解题关键是利用全等三角形对应角相等即可求解.1.(2023·全国·八年级专题练习)如图,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=12∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.【答案】DE +BF =EF ,见解析【解析】试题分析:通过延长CF ,将DE 和BF 放在一起,便于寻找等量关系,通过两次三角形全等证明,得出结论.猜想:DE +BF =EF .证明:延长CF ,作∠4=∠1,如图:∵将Rt △ABC 沿斜边翻折得到△ADC ,点E ,F 分别为DC ,BC 边上的点,且∠EAF =∠DAB ,∴∠1+∠2=∠3+∠5,∠2+∠3=∠1+∠5,∵∠4=∠1,∴∠2+∠3=∠4+∠5,∴∠GAF =∠FAE ,在△AGB 和△AED 中,∠4=∠1AB =AD ∠ABG =∠ADE,∴△AGB ≌△AED (ASA ),∴AG =AE ,BG =DE ,在△AGF 和△AEF 中,AG =AE ∠GAF =∠EAF AF =AF,∴△AGF ≌△AEF (SAS ),∴GF =EF ,∴DE +BF =EF .2.(2023春·山东青岛·八年级统考期中)如图,在Rt ΔABC 中,∠C =90°,将ΔABC 沿AB 向下翻折后,再绕点A 按顺时针旋转α度(α<∠ABC ).得到Rt ΔADE ,其中斜边AE 交BC 于点F ,直角边DE 分别AB 、BC 于点G ,H1 请根据题意用实线补全图形;(不得用铅笔作图).2 求证:ΔAFB ≅ΔAGE【答案】(1)作图见详解;(2)证明见详解.【分析】(1)根据题意画出图形,注意折叠与旋转中的对应关系;(2)由题意易得△ABC ≌△AED ,即可得AB =AE ,∠ABC =∠E ,然后利用ASA 的判定方法,即可证得△AFB ≌△AGE .【解析】解:(1)画图,如下图;证明:由题意得:△ABC ≌△AED .∴AB =AE ,∠ABC =∠E .在△AFB 和△AGE 中,∠ABC =∠EAB =AE∠α=∠α∴△AFB ≌△AGE (ASA ).【点睛】本题考查折叠与旋转的性质以及全等三角形的判定与性质,注意掌握数形结合思想的应用以及注意折叠与旋转中的对应关系.3.(2023春·山西临汾·八年级统考期末)阅读材料,并回答下列问题如图1,以AB 为轴,把△ABC 翻折180°,可以变换到△ABD 的位置;如图2,把△ABC 沿射线AC 平移,可以变换到△DEF 的位置.像这样,其中的一个三角形是另一个三角形经翻折、平移等方法变换成的,这种只改变位置,不改变形状大小的图形变换,叫三角形的全等变换.班里学习小组针对三角形的全等变换进行了探究和讨论(1)请你写出一种全等变换的方法(除翻折、平移外),.(2)如图2,前进小组把△ABC 沿射线AC 平移到△DEF ,若平移的距离为2,且AC =5,则DC =.(3)如图3,圆梦小组展开了探索活动,把△ABC 纸片沿DE 折叠,使点A 落在四边形BCDE 内部点A ′的位置,且得出一个结论:2∠A ′=∠1+∠2.请你对这个结论给出证明.(4)如图4,奋进小组则提出,如果把△ABC 纸片沿DE 折叠,使点A 落在四边形BCDE 外部点A ′的位置,此时∠A ′与∠1、∠2之间结论还成立吗?若成立,请给出证明,若不成立,写出正确结论并证明.【答案】(1)旋转;(2)3;(3)见解析;(4)不成立,正确结论:∠2-∠1=2∠A ',见解析【分析】(1)由题意根据三种全等变换翻折、平移、旋转的定义进行判断即可;(2)根据平移的距离的定义可知AD=2,则DC=AC-AD进行求解即可;(3)根据轴对称及三角形内角和定理进行分析即可得出结论;(4)由题意根据轴对称及三角形内角和定理,进行分析即可得出结论.【解析】解:(1)除翻折、平移外全等变换的方法还有旋转;故答案为:旋转.(2)∵AD=2,AC=5,∴DC=AC-AD=5-2=3;故答案为:3.(3)∵把△ADE沿DE翻折,得到△A'DE,∴△ADE≌△A'DE,∴∠ADE=∠A'DE,∠AED=∠A'ED,在△DEA'中,∠A'=180°-(∠A'DE+∠A'ED);由平角定义知,∠2=180°-∠A'DA=180°-2∠A'DE,∠1=180°-∠A'EA=180°-2∠A'ED,∴∠1+∠2=180°-2∠A'DE+180°-2∠A'ED=2(180°-∠A'ED-∠A'DE),∴2∠A′=∠1+∠2.(4)∠2-∠1=2∠A',理由如下:∵把△ADE沿DE翻折,得到△A'DE,∴△ADE≌△A'DE,∴∠ADE=∠A'DE,∠AED=∠A'ED,在△DEA'中,∠A'=180°-(∠A'DE+∠A'ED),由平角定义知,∠2=180°-∠A'DA=180°-2∠A'DE,∠1=2∠A'ED-180°,∴∠2-∠1=(180°-2∠A'DE)-(2∠A'ED-180°)=180°-(∠A'DE+∠A'ED),∴∠2-∠1=2∠A'.【点睛】本题是三角形综合题,综合考查平移的性质,折叠的性质,三角形内角和定理,全等三角形的性质等知识,灵活运用这些性质进行推理是解答本题的关键.【知识点3旋转模型】【模型解读】将三角形绕着公共顶点旋转一定角度后,两个三角形能够完全重合,则称这两个三角形为旋转型三角形,识别旋转型三角形时,涉及对顶角相等、等角加(减)公共角的条件.【常见模型】【题型3旋转模型】1(2023春·全国·八年级期末)(1)问题引入:如图1,点F是正方形ABCD边CD上一点,连接AF,将△ADF绕点A顺时针旋转90°与△ABG重合(D与B重合,F与G重合,此时点G,B,C在一条直线上),∠GAF的平分线交BC于点E,连接EF,判断线段EF与GE之间有怎样的数量关系,并说明理由.(2)知识迁移:如图2,在四边形ABCD中,∠ADC+∠B=180°,AB=AD,E,F分别是边BC,CD延长线上的点,连接AE,AF,且∠BAD=2∠EAF,试写出线段BE,EF,DF之间的数量关系,并说明理由.(3)实践创新:如图3,在四边形ABCD中,∠ABC=90°,AC平分∠DAB,点E在AB上,连接DE,CE,且∠DAB=∠DCE=60°,若DE=a,AD=b,AE=c,求BE的长.(用含a,b,c的式子表示)【答案】(1)EF=GE,理由见详解;(2)BE-DF=EF,理由见详解;(3)BE=a+b-c2,理由见详解【分析】(1)根据SAS直接可证△GAE≌△FAE即得GE=EF;(2)在BE上取BG=DF,连接AG,由∠ADC+∠B=180°,∠ADF+∠ADC=180°,得∠B=∠ADF,从而SAS证△ABG≌△ADF,再通过SAS证△GAE≌△FAE,得GE=EF,从而解决问题;(3)作CF⊥AD,交AD的延长线于F,取FG=BE,连接CG,由(2)同理可两次全等证明出DE=GD即可.【详解】解:(1)EF=GE,理由如下:∵△ADF绕点A顺时针旋转90°与△ABG重合,∴AG=AF,∵AE平分∠GAF,∴∠GAE=∠FAE,在△GAE和△FAE中,AG=AF∠GAE=∠FAE AE=AE,∴△GAE≌△FAE(SAS),∴GE=EF;(2)BE-DF=EF,理由如下:如图2,在BE上取BG=DF,连接AG,∵∠ADC+∠B=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF,在△ABG和△ADF中,BG=DF∠B=∠ADF AB=AD,∴△ABG≌△ADF(SAS),∴∠BAG=∠FAD,AG=AF,∵∠BAD=2∠EAF,∴∠GAF=2∠EAF,∴∠GAE=∠EAF,在△GAE和△FAE中,AG=AF∠GAE=∠FAE AE=AE,∴△GAE≌△FAE(SAS),∴GE=EF,∴BE-DF=EF;(3)如图,作CF⊥AD,交AD的延长线于F,取FG=BE,连接CG,∵AC平分∠BAD,CF⊥AF,CB⊥AB,∴CF=CB,∠EBC=∠GFC,∵BE=GF,∴△CBE≌△CFG(SAS),∴∠BCE=∠FCG,CG=CE,∵∠DAB=60°,∴∠FCB=120°,∵∠DCE=60°,∴∠DCF+∠BCE=60°,∴∠DCG=60°,又∵CG=CE,∴△ECD≌△GCD(SAS),∴GD=DE,∵Rt△ACF≌Rt△ACB(HL),∴AF=AB,∴b+a-BE=c+BE,∴BE=a+b-c2.【点睛】本题主要考查了全等的判定与性质,结合问题引入,构造出全等三角形是解题的关键.1.(2023春·八年级课时练习)如图,等边△ABC中,∠AOB=115°,∠BOC=125°,则以线段OA,OB,OC为边构成的三角形的各角的度数分别为.【答案】55°,60°,65°.【分析】通过旋转△AOB至△CDB,可得△BOD是等边三角形,将OA,OB,OC放在一个三角形中,进而求出各角大小。
全等三角形9种经典几何模型

1初中数学几何模型【模型1】倍长1、 倍长中线;2、倍长类中线;3、中点遇平行延长相交EABCFABC---------------------------------------------------------------------------------------------------------------------- 【模型2】遇多个中点,构造中位线1、 直接连接中点;2、连对角线取中点再相连【例1】在菱形ABCD 和正三角形BEF 中,∠ABC =60°,G 是DF 的中点,连接GC 、GE . (1)如图1,当点E 在BC 边上时,若AB =10,BF =4,求GE 的长;(2)如图2,当点F 在AB 的延长线上时,线段GC 、GE 有怎样的数量和位置关系,写出你的猜想;并给予证明;(3)如图3,当点F 在CB 的延长线上时,(2)问中关系还成立吗?写出你的猜想,并给予证明.图1DFD【例2】如图,在菱形ABCD 中,点E 、F 分别是BC 、CD 上一点,连接DE 、EF ,且AE =AF ,BAF DAE ∠=∠. (1)求证:CE =CF ;(2)若︒=∠120ABC ,点G 是线段AF 的中点,连接DG ,EG .求证:DG 上GE .2E CODECOD O C【例3】如图,在四边形ABCD 中,AB =CD ,E 、F 分别为BC 、AD 中点,BA 交EF 延长线于G ,CD 交EF 于H .求证:∠BGE =∠CHE .HGEFA BDC【模型1】构造轴对称【模型2】角平分线遇平行构造等腰三角形---------------------------------------------------------------------------------------------------------------------- 【例4】如图,平行四边形ABCD 中,AE 平分∠BAD 交BC 边于E ,EF ⊥AE 交CD 边于F ,交AD 边于H ,延长BA 到点G ,使AG =CF ,连接GF .若BC =7,DF =3,EH =3AE ,则GF 的长为.HGFEADBC【条件】OA OB OC OD AOB COD ==∠=∠,,【结论】OAC OBD ≅;AEB OAB COD ∠=∠=∠(即都是旋转角);OE AED ∠平分;3CDA B EEFEBDAC---------------------------------------------------------------------------------------------------------------------- 【例5】如图,正方形ABCD 的边长为6,点O 是对角线AC 、BD 的交点,点E 在CD 上,且DE =2CE ,过点C 作CF ⊥BE ,垂足为F ,连接OF ,则OF 的长为 .【例6】如图,ABC 中,90BAC ︒∠=,AB =AC ,AD ⊥BC 于点D ,点E 在AC 边上,连结BE ,AG ⊥BE 于F ,交BC 于点G ,求DFG ∠GFD CBAE【例7】如图,在边长为62ABCD 中,E 是AB 边上一点,G 是AD 延长线上一点,BE =DG ,连接EG ,CF ⊥EG 于点H ,交AD 于点F ,连接CE 、BH 。
(完整)全等三角形的相关模型总结,推荐文档.docx

全等的相关模型总结一、角平分线模型应用1.角平分性质模型:辅助线:过点G 作 GE射线AC(1) .例题应用:①如图 1,在ABC中,C900, AD 平分 CAB , BC 6cm, BD 4cm,那么点 D 到直线 AB 的距离是cm.②如图 2,已知,1 2 ,34 .求证: AP平分 BAC .图 1图2① 2(提示:作 DE AB 交 AB 于点 E )②12 , PM PN ,3 4 , PN PQ , PM PQ, PA平分 BAC .(2).模型巩固:练习一:如图3,在四边形 ABCD 中, BC>AB , AD=CD ,BD 平分BAC ..求证:A C180图3练习二:已知如图4,四边形 ABCD 中,B D 1800 , BC CD.求证: AC 平分BAD .图 4练习三:如图5,Rt ABC 中, ACB900, CD AB, 垂足为 D , AF 平分CAB ,交 CD 于点 E ,交 CB 于点 F.(1)求证: CE=CF.(2)将图 5 中的△ ADE 沿 AB 向右平移到A' D ' E '的位置,使点 E'落在BC边上,其他条件不变,如图 6 所示,是猜想:BE'于 CF 又怎样的数量关系?请证明你的结论.图 5图6练习四:如图7,∠ A90 , AD ∥ BC , P 是 AB的中点, PD平分∠ ADC.求证: CP平分∠ DCB.A D214E3PB C图 7练习五:如图8,AB> AC,∠ A 的平分线与 BC的垂直平分线相交于D,自 D 作 DE⊥ AB,DF⊥ AC,垂足分别为 E, F.求证: BE=CF.图 8练习六:如图9 所示,在△ ABC 中, BC 边的垂直平分线DF 交△ BAC 的外角平分线AD 于点 D, F 为垂足, DE ⊥AB 于 E,并且 AB>AC 。
求证: BE- AC=AE 。
全等三角形经典模型总结

全等三角形经典模型总结1.S-A-S(边-角-边)全等法则:当一个三角形的两边和夹角分别等于另一个三角形的两边和夹角时,两个三角形全等。
例如,在三角形ABC和DEF中,如果AB=DE,∠ABC=∠DEF,并且BC=EF,那么三角形ABC全等于三角形DEF。
2.A-S-A(角-边-角)全等法则:当一个三角形的两角和夹边分别等于另一个三角形的两角和夹边时,两个三角形全等。
例如,在三角形ABC和DEF中,如果∠ABC=∠DEF,BC=EF,并且∠BCA=∠EFD,那么三角形ABC全等于三角形DEF。
3.S-S-S(边-边-边)全等法则:当两个三角形的三边分别对应相等时,两个三角形全等。
例如,在三角形ABC和DEF中,如果AB=DE,BC=EF,并且AC=DF,那么三角形ABC全等于三角形DEF。
4.H-L(高-底)全等法则:如果两个三角形的高和底分别相等,那么这两个三角形全等。
例如,在三角形ABC和DEF中,如果h1是三角形ABC的高,b1是它的底,h2是三角形DEF的高,b2是它的底,如果h1=h2,b1=b2,则三角形ABC全等于三角形DEF。
5.A-A-S’(角-角-边)全等法则:若三角形的两个角和两个边分别与另一三角形的两个相对角和边对应,则两个三角形全等。
例如,在三角形ABC和DEF中,如果∠ABC=∠DEF,∠BCA=∠EFD,并且AC/DF=BC/EF,那么三角形ABC全等于三角形DEF。
6.1-1-1全等法则:如果两个三角形的边长度分别相等,那么这两个三角形全等。
例如,在三角形ABC和DEF中,如果AB=DE,AC=DF,并且BC=EF,那么三角形ABC全等于三角形DEF。
7.1-1-边(边-边)全等法则:如果两个三角形的两个边和一个夹角分别相等,那么这两个三角形全等。
例如,在三角形ABC和DEF中,如果AB=DE,BC=EF,并且∠ABC=∠DEF,那么三角形ABC全等于三角形DEF。
全等三角形经典模型总结-5.2

全等三角形相关模型总结一、角平分线模型(1)角平分线+两边垂线→全等三角形:角平分线的性质定理:角平分线上的点到角的两边距离相等;已知:AD平分∠BAC,CD⊥AC,垂足为C,过点D作DB⊥AB,垂足为B;辅助线:过点D作DB⊥AB,垂足为B;结论:①△ACD≌△ABD;② CD= DB(角分线垂两边,对称全等必呈现)(2)角平分线+垂线模型等腰三角形必呈现:遇到垂直于角平分线的线段,则延长该线段与角的另一边相交,构成等腰三角形;已知:OP平分∠AOB,MP⊥OP,垂足为P,延长MP交OB于点N;结论:①△OPM≌△OPN ;②△OMN为等腰三角形;③P是MN的中点(三线合一);(3)在角的两边上截取相等的线段,构造全等三角形:已知:OC是∠AOB的角平分线,D为OC上一点;辅助线:在OA上取一点E,在OB取一点F,使得OE=OF,并连接DE,结论:△OED≌△OFD ;(4)作平行线① 以角分线上一点作角的另一边的平行线,则△OAB 等腰三角形;② 过一边上的点作角平分线的平行线与另一边的反向延长线相交,则△ODH 等腰三角形; 已知:OP 平分∠MON ,AB ∥ON , 已知:OC 平分∠AOD ,DH ∥OC , 结论: △OAB 等腰三角形 结论: △ODH 等腰三角形角平分线+两边垂线→全等三角形 辅助线:过点G 作GE 射线AC已知:AD 是∠BAC 的角平分线,CD ⊥AC ,DB ⊥AB , 求证:CD=DB证明:∵AD 是∠BAC 的角平分线,∴∠1=∠2,∵CD ⊥AC ,DB ⊥AB , ∴∠ACD=∠ABD=90°, 在△ACD 和△ABD 中,∴△ACD ≌△ABD (AAS ) ∴CD=BD⊥⎪⎩⎪⎨⎧AD =AD 90=ABD ∠=ACD ∠2∠=1∠例1:已知:∠1=∠2,∠3=∠4,求证:AP平分∠BAC.例2:如图,AB>AC,∠A的平分线与BC的垂直平分线相交于D,过D作DE⊥AB、DF⊥AC,垂足分别为E、F.求证:BE=CF.例4:如图,在△ABC中,M为BC的中点,DM⊥BC,DM与∠BAC的角平分线交于点D,DE⊥AB,DF⊥AC,E、F为垂足,求证:BE=CF.角平分线+垂线模型等腰三角形必呈现例1:如图,在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BE交BA的延长于F.求证:BD=2CE例2、如图,在△ABC中,∠BAC的角平分线AD交BC于点D,且AB=AD,作CM⊥AD 交AD的延长线于M. 求证:2AM=(AB+AC)例3:如图,已知△ABC中,CF平分∠ACB,且AF⊥CF,∠AFE+∠CAF=180°,求证:EF∥BC.截取构造全等:例1:如图,AB>AC ,∠1=∠2,求证:AB -AC>BD -CD 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形相關模型總結
一、角平分線模型
(一)角平分線の性質模型
輔助線:過點G作GE⊥射線AC
A、例題
1、如圖,在△ABC中,∠C=90°,AD平分∠CAB,BC=6cm,BD=4cm,那麼點D到直線ABの距離是cm.
2、如圖,已知,∠1=∠2,∠3=∠4,求證:AP平分∠BAC.
B、模型鞏固
1、如圖,在四邊形ABCD中,BC>AB,AD=CD,BD平分∠ABC,求證:∠A+∠C=180°.
(二)角平分線+垂線,等腰三角形必呈現
A、例題
輔助線:延長ED交射線OB於F 輔助線:過點E作EF∥射線OB 例1、如圖,在△ABC中,∠ABC=3∠C,AD是∠BACの平分線,BE⊥AD於F.
求證:
1
()
2
BE AC AB
=-.
例2、如圖,在△ABC中,∠BACの角平分線AD交BC於點D,且AB=AD,作CM⊥AD交A
Dの延長線於M. 求證:
1
()
2
AM AB AC
=+.
(三)角分線,分兩邊,對稱全等要記全
兩個圖形飛輔助線都是在射線ON上取點B,使OB=OA,從而使△OAC≌△OBC .
A、例題
1、如圖,在△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC於P,BQ平分∠ABC交AC於Q,求證:AB+BP=BQ+AQ .
2、如圖,在△ABC中,AD是∠BACの外角平分線,P是AD上異於點Aの任意一點,試比較PB+PC與AB+ACの大小,並說明理由.
ﻩ
B、模型鞏固
1、在△ABC中,AB>AC,AD是∠BACの平分線,P是線段AD上任意一點(不與A重合).
求證:AB-AC>PB-PC .
2、如圖,△ABC中,AB=AC,∠A=100°,∠Bの平分線交AC於D,
求證:AD+BD=BC .
3、如圖,△ABC中,BC=AC,∠C=90°,∠Aの平分線交BC於D,
求證:AC+CD=AB .
二、等腰直角三角形模型
(一)旋轉中心為直角頂點,在斜邊上任取一點の旋轉全等:
操作過程:
(1)將△ABD逆時針旋轉90°,得△ACM ≌△ABD,從而推出△ADM為等腰直角三角形.
(2)輔助線作法:過點C作MC⊥BC,使CM=BD,連結AM.
(二)旋轉中心為斜邊中點,動點在兩直角邊上滾動の旋轉全等:
操作過程:連結AD.
(1)使BF=AE(或AF=CE),導出△BDF ≌△ADE.
(2)使∠EDF+∠BAC=180°,導出△BDF ≌△ADE.
A、例題
1、如圖,在等腰直角△ABC中,∠BAC=90°,點M、N在斜邊BC上滑動,且∠MAN=45°,試探究BM、MN、CN之間の數量關係.
2、兩個全等の含有30°,60°角の直角三角板ADE和ABC,按如圖所示放置,E、A、C三點在一條直線上,連接BD,取BDの中點M,連接ME、MC.
試判斷△EMCの形狀,並證明你の結論.
B、模型鞏固
1、已知,如圖所示,Rt△ABC中,AB=AC,∠BAC=90°,O為BC中點,若M、N分別線上段AC、AB上移動,且在移動中保持AN=CM.
(1)試判斷△OMNの形狀,並證明你の結論.
(2)當M、N分別線上段AC、AB上移動時,四邊形AMONの面積如何變化?
2、在正方形ABCD中,BE=3,EF=5,DF=4,求∠BAE+∠DCF為多少度.
(三)構造等腰直角三角形
(1)利用以上(一)和(二)都可以構造等腰直角三角形(略);
(2)利用平移、對稱和絃圖也可以構造等腰直角三角形.
(四)將等腰直角三角形補全為正方形,如下圖:
A、例題應用
1、如圖,在等腰直角△ABC中,AC=BC,∠ACB=90°,P為三角形ABC內部一點,滿足PB=PC,AP=AC,求證:∠BCP=15°.
三、三垂直模型(弦圖模型)
A、例題
已知:如圖所示,在△ABC中,AB=AC,∠BAC=90°,D為AC中點,AF⊥BD於點E,交BC於F,連接DF .
求證:∠ADB=∠CDF.
變式1、已知:如圖所示,在△ABC中,AB=AC,AM=CN,AF⊥BM於E,交BC於F,連接NF .
求證:(1)∠AMB=∠CNF;(2)BM=AF+FN.
變式2、在變式1の基礎上,其他條件不變,只是將BM和FN分別延長交於點P,
求證:(1)PM=PN;(2)PB=PF+AF .
四、手拉手模型
1、△ABE和△ACF均為等邊三角形
結論:(1)△ABF≌△AEC.
(2)∠BOE=∠BAE=60°.
(3)OA平分∠EOF .(四點共圓證)
拓展:△ABC和△CDE均為等邊三角形
結論:(1)AD=BE;
(2)∠ACB=∠AOB;
(3)△PCQ為等邊三角形;
(4)PQ∥AE;
(5)AP=BQ;
(6)CO平分∠AOE;(四點共圓證)
(7)OA=OB+OC;
(8)OE=OC+OD.((7),(8)需構造等邊三角形證明)
例、如圖①,點M為銳角三角形ABC內任意一點,連接AM、BM、CM.以AB為一邊向外作等邊三角形△ABE,將BM繞點B逆時針旋轉60°得到BN,連接EN.
(1)求證:△AMB≌△ENB;
(2)若AM+BM+CMの值最小,則稱點M為△ABCの費爾馬點.若點M為△ABCの費爾馬點,試求此時∠AMB、∠BMC、∠CMAの度數;
(3)小翔受以上啟發,得到一個作銳角三角形費爾馬點の簡便方法:如圖②,分別以△ABC のAB、AC為一邊向外作等邊△ABE和等邊△ACF,連接CE、BF,設交點為M,則點M 即為△ABCの費爾馬點.試說明這種作法の依據.
2、△ABD和△ACE均為等腰直角三角形結論:(1)BE=CD;(2)BE⊥CD.
3、四邊形ABEF 和四邊形ACH D均為正方形
結論:(1)BD=CF ;(2)BD ⊥C F .
變式1、四邊形ABEF 和四邊形ACH D均為正方形,AS
⊥BC交FD 於T ,
求證:(1)T 為F D中點;(2)ABC ADF S
S .
變式2、四邊形ABEF和四邊形ACHD均為正方形,T為FD中點,TA交BC於S,求證:AS⊥BC .
4、如圖,以△ABCの邊AB、AC為邊構造正多邊形時,總有:
360 12180
n
︒∠=∠=︒-
五、半角模型
條件:
1
,+=180
2
αββθβ
=︒
且,兩邊相等.
思路:1、旋轉
輔助線:①延長CD到E,使ED=BM,連AE或延長CB到F,使FB=DN,連AF
②將△ADN繞點A順時針旋轉90°得△
ABF,注意:旋轉需證F、B、M三點共線
結論:(1)MN=BM+DN;
(2)=2
CMN
C AB;
(3)AM、AN分別平分∠BMN、∠MND.
2、翻折(對稱)
輔助線:①作AP⊥MN交MN於點P
②將△ADN、△ABM分別沿AN、AM翻折,但一定要證明M、P、N三點共線.
A、例題
例1、在正方形ABCD中,若M、N分別在邊BC、CD上移動,且滿足MN=BM+DN,
求證:(1)∠MAN=45°;
C AB;
(2)=2
CMN
(3)AM、AN分別平分∠BMN和∠DNM .
變式:在正方形ABCD中,已知∠MAN=45°,若M、N分別在邊CB、DCの延長線上移動, AH⊥MN,垂足為H,
(1)試探究線段MN、BM、DN之間の數量關係;
(2)求證:AB=AH
例2、在四邊形ABCD中,∠B+∠D=180°,AB=AD,若E、F分別為邊BC、CD上の點,
且滿足EF=BE+DF,求證:
1
2
EAF BAD ∠=∠.
變式:在四邊形ABCD中,∠B=90°,∠D=90°,AB=AD,若E、F分別為邊BC、CD上の
點,且
1
2
EAF BAD
∠=∠,求證:EF=BE+DF .。