最新汽车起重机伸缩臂系统综述
汽车起重机吊臂结构与伸缩原理

汽车起重机吊臂结构与伸缩原理汽车起重机吊臂结构主要有固定吊臂和伸缩吊臂两种类型。
固定吊臂是最常见的吊臂结构,其长度固定不变,无法进行伸缩。
伸缩吊臂则可以根据需求进行伸缩操作,适用于更大范围的作业。
无论是固定吊臂还是伸缩吊臂,它们都有一套相似的结构,主要包括基座、动臂、起重臂和配重块。
首先是基座,它是起重机吊臂的主要支撑部分,可以固定在汽车底盘上。
基座通常由上方和下方两部分构成,上方是一个回转机构,通过液压系统控制吊臂的旋转;下方是一个液压机构,用于调整吊臂的倾角和高度,以满足不同工作的要求。
接下来是动臂,它是吊臂的起始部分,与基座相连接。
动臂一般较短,用于提升和转动起重臂。
然后是起重臂,它是吊臂的重要部分。
起重臂主要承担起重和搬运重物的作用,其长度和形状不同,可以适应不同种类和重量的货物。
起重臂一般由多个折叠节段组成,这些节段可以通过液压缸伸缩或折叠,以实现吊臂的伸缩操作。
最后是配重块,它是起重机吊臂的重要组成部分,用于平衡起重臂的重力和提升重物时产生的力矩。
配重块通常位于起重臂的尾部,可以根据工作需求增减数量,以达到平衡和稳定的状态。
伸缩吊臂相较于固定吊臂,具有更大的灵活性和适应性。
伸缩吊臂通过液压缸控制伸缩节段的伸缩,从而改变吊臂的长度,以适应不同距离的起重作业。
伸缩吊臂可以灵活伸展,能够实现大范围内的水平和垂直移动,提高吊装能力和作业效率。
总结起来,汽车起重机的吊臂主要包括固定吊臂和伸缩吊臂。
吊臂由基座、动臂、起重臂和配重块组成,其中起重臂可以通过液压缸的伸缩控制长度的变化。
伸缩吊臂具有更大的灵活性和适应性,能够提高起重机的作业范围和效率。
汽车起重机吊臂伸缩原理

汽车起重机吊臂伸缩原理你有没有好奇过汽车起重机那长长的吊臂是怎么伸缩自如的呀?今天呀,咱就来好好唠唠这个超有趣的事儿。
咱先来说说汽车起重机吊臂的基本构造。
你看啊,吊臂就像是一个超级神奇的变形金刚手臂。
它可不是简单的一根大铁杆子哦。
它是由好几节组成的,就像那种可以一节一节拉长的望远镜似的。
每一节呢,都有它自己的小秘密。
最里面的那一节是基础,就像大树的树干一样,稳稳地待在那儿。
其他的节就像树枝一样,可以沿着这树干伸出去或者缩回来。
这每一节的连接呀,可都是很有讲究的呢。
那它到底是怎么伸缩的呢?这里面就涉及到一个超酷的机械原理啦。
在吊臂里面呢,有一些叫做伸缩油缸的东西。
这个伸缩油缸呀,就像是一个大力士的肌肉一样。
当要把吊臂伸出去的时候,这个伸缩油缸就开始工作啦。
它会像打气筒一样,把里面的油给推出去,然后通过一些巧妙的装置,把力量传递到下一节吊臂上。
这个力量就会让下一节吊臂慢慢地沿着上一节吊臂的轨道滑出去。
你可以想象成是火车沿着铁轨缓缓前行的样子,只不过这个是在吊臂里面,而且是一节推动一节往外走。
而且哦,为了让这个伸缩的过程特别平稳,不会突然就冲出去或者卡住,还有好多小零件在帮忙呢。
比如说有一些滑块呀,它们就像是小小的保镖一样,在每一节吊臂的连接处,保证它们滑动得顺顺当当的。
如果没有这些滑块,那吊臂伸缩的时候可能就会像个调皮捣蛋的孩子,东倒西歪的,那可就危险啦。
再说说把吊臂缩回来的时候吧。
这时候伸缩油缸就像是一个温柔的大力士啦。
它会把外面那节吊臂慢慢地拉回来。
这个过程也不是简单粗暴的哦,也是要通过那些巧妙的装置,一点一点地把吊臂给拉回来。
就好像是把伸出去的手慢慢地收回来一样,得小心翼翼的。
你可能会想,这吊臂伸缩就这么简单呀?其实呀,这里面还有很多复杂的安全装置呢。
比如说,要是在吊臂伸出去或者缩回来的过程中,突然遇到了很大的阻力,就像有个大石头挡住了一样,这时候就有一些感应装置会察觉到。
然后呢,它就会告诉整个起重机的控制系统,控制系统就会让伸缩油缸停下来,防止把吊臂或者其他零件给弄坏了。
伸缩臂的工作原理

伸缩臂的工作原理
伸缩臂是一种能够自由伸长和缩短的装置,常见于吊车、挖掘机和机械臂等工程设备中。
其工作原理是由液压系统驱动,通过控制液压油的流动来改变机械臂的长度。
伸缩臂的主要部分包括伸缩油缸、活塞、密封圈和液压管路等。
液压系统通过泵将液压油送入伸缩油缸,使活塞向外伸出。
活塞上的密封圈起到密封作用,防止液压油泄漏。
当伸缩臂需要缩短时,液压系统控制液压油回流,使油缸内的液压油减少,从而使活塞向内收回,缩短伸缩臂的长度。
为了确保伸缩臂的安全和稳定,通常会在伸缩油缸上安装防止过载的安全阀。
当液压油压力超过预设的安全值时,安全阀会打开并释放液压油,以保护伸缩臂不受损坏。
伸缩臂的长度可通过操纵台控制,在操作人员的指令下,液压系统调节液压油的流动速度和方向,从而实现伸缩臂的伸长和缩短。
这种工作原理使得伸缩臂可以适应不同工作环境和需求,具有灵活性和高效性的特点。
总之,伸缩臂的工作原理是通过液压系统的驱动,控制液压油的流动来改变机械臂的长度,实现伸缩功能。
这种机制使得伸缩臂在工程设备中发挥着重要作用。
汽车起重机伸缩臂结构有限元分析及优化

汽车起重机伸缩臂结构有限元分析及优化汽车起重机伸缩臂结构有限元分析及优化引言:汽车起重机作为一种重要的工程机械设备,在建筑、物流等行业中起着重要的作用。
而在汽车起重机的设计中,伸缩臂结构是其关键组成部分之一。
伸缩臂结构的合理设计和优化可以提高汽车起重机的工作效率和承载能力,降低其重量和成本。
因此,对汽车起重机伸缩臂结构进行有限元分析与优化具有重要的理论意义和实际应用价值。
1. 伸缩臂结构的设计和工作原理汽车起重机的伸缩臂结构由伸缩臂筒、伸缩臂滑块、伸缩臂大臂、伸缩臂小臂等组成。
其工作原理是通过液压系统控制伸缩臂筒的伸缩,从而实现伸缩臂的变化和起重高度的调节。
伸缩臂结构的设计直接影响汽车起重机的工作性能和稳定性。
2. 有限元分析的原理和方法有限元分析是一种数值分析方法,通过将结构离散化为有限个小元素,利用数学和力学原理对每个小元素进行计算,最后得到整个结构的应力、应变、位移等相关信息。
有限元分析方法可以精确计算伸缩臂结构在不同工况下的受力情况,为优化设计提供基础。
3. 初始结构的有限元分析首先,采用有限元分析方法对汽车起重机初始伸缩臂结构进行分析。
通过初始结构的有限元模型建立和边界条件的设定,计算得到伸缩臂结构在不同工况下的受力情况,包括应力、应变、变形等参数。
利用有限元分析结果,可以评估初始结构的工作性能,并确定需要改进的方向。
4. 结构优化设计与分析基于初始结构的有限元分析结果,可以进行伸缩臂结构的优化设计。
结构优化的目标是提高结构的工作效率和承载能力,降低结构的重量和成本。
通过在有限元模型中进行参数化设计和分析,可以获得不同设计方案下的结构性能指标。
综合考虑结构的强度、刚度、轻量化等因素,选择最优设计方案。
5. 优化设计的验证与验证对优化设计方案进行验证与评估是优化过程的重要环节。
通过将优化设计方案转化为实际工艺制造过程中的参数,并制作样件进行实际测试和评估,可以验证优化设计方案的有效性,并进一步优化设计方案。
汽车起重机伸缩臂系统综述

论文论文题目:汽车起重机伸缩臂系统综述姓名学号学院班级专业汽车起重机伸缩臂系统综述摘要:随着经济建设的迅速发展,我国的基础建设力度正逐渐加大,道路交通,机场,港口,水利水电,市政建设等基础设施的建设规模也越来越大,市场汽车起重机的需求也随之增加。
汽车起重机为安装在标准式或特制汽车底盘上的起重设备。
而臂架是起重机的主要承载构件。
起重机通过臂架直接吊载,实现大的作业高度与幅度。
臂架的强度决定了最大起重量时整机起重性能,其自重直接影响整机倾覆稳定性,因而臂架结构设计的优劣,将直接影响整机的性能,如整机重量、整机重心高度和整机稳定性等。
所以要在保证臂架安全工作的条件下尽量减轻臂架的重量,这对提高整机质量和经济性具有很大的现实意义。
针对徐工50t汽车起重机伸缩机构的分析和研究,从而改进汽车起重机的整机性能,降低成本,同时提高了起重机的作业能力及使用经济性。
目前伸缩臂机构有两种形式,绳排系统和单缸插销式。
绳排系统在中国已经应用的比较成熟,也是一种历史比较悠久的技术。
此技术的优点是臂长变化容易、工作臂长种类多、可以带载伸缩、实用性很强,缺点是自重重、对整机稳定性的影响较大。
关键词:伸缩臂;液压缸;臂架结构Abstract:Boom is the main host of crane components. Directly through the jib crane hanging load, to achieve great height and range operations. Arm strength determines the maximum time from the weight lifting machine performance, its weight directly affect the machine overturning stability, structural design and therefore merits of boom, will directly affect the overall performance, such as the weight of the whole machine center of gravity height and machine stability. Thus, to ensure safe working conditions of boom to minimize the weight of boom, which improves overall quality and economy of great practical significance. Keywords:Telescopic boom; hydraulic cylinder; Structure of boom .1.1QY40全液压起重机主要技术参数整机主要性能参数最大起重量*幅度 40t*3m最大起升高度 46 m滑轮组倍率 11主臂长 11-33.5m(4节)主臂全程伸缩时间 162Sec主臂变幅范围 -2-80degree主臂变幅时间 60Sec主卷扬单绳速度 0-110 m/min副卷扬单绳速度 >40 m/minM最大起升力矩 1401 kN.m最大回转速度 0-2.0 r/min最高行驶速度 68 km/h最大爬坡度 37%最小转弯半径 12m行驶状态总重 37.51t外形尺寸13.65×2.75×3.46m支腿距离(纵向×横向) 5.45×6.2m上车空冷发动机斯太尔WD615.61最大功率 191KW(2600rpm)最大扭矩 828Nm(1600rpm)1.2起重机的技术参数表征起重机的作业能力,汽车式起重机的主要技术参数包括起重量、起升高度、幅度、起重力矩等。
《2024年度伸缩臂叉装车行走系统优化分析与实验研究》范文

《伸缩臂叉装车行走系统优化分析与实验研究》篇一一、引言随着工程机械的快速发展,伸缩臂叉装车作为重要的物流搬运设备,其行走系统的性能直接关系到工作效率和作业安全。
因此,对伸缩臂叉装车行走系统进行优化分析与实验研究,对于提高设备的整体性能具有重要意义。
本文旨在分析伸缩臂叉装车行走系统的结构特点及性能问题,通过优化设计及实验研究,提高行走系统的动力性、稳定性和经济性。
二、伸缩臂叉装车行走系统结构与性能分析1. 结构特点伸缩臂叉装车行走系统主要由驱动系统、传动系统、行走机构和制动系统等组成。
其中,驱动系统提供动力,传动系统将动力传递给行走机构,实现车辆的行进与转向。
行走机构采用履带式结构,具有较好的地面适应性。
2. 性能问题在实际使用过程中,伸缩臂叉装车行走系统存在动力不足、稳定性差、油耗高等问题。
这些问题主要源于设计不合理、制造工艺落后、使用维护不当等方面。
三、行走系统优化设计1. 动力系统优化为提高动力性能,可采取增加发动机功率、优化传动比、改善燃油供应系统等措施。
同时,采用先进的电控技术,实现动力系统的智能调控。
2. 稳定性优化为提高稳定性,可对履带式行走机构的框架结构进行优化设计,增加支撑面积,降低接地比压。
同时,采用先进的控制算法,实现行驶过程中的动态稳定控制。
3. 经济性优化为降低油耗,可采取轻量化设计、优化液压系统、改进润滑系统等措施。
同时,通过智能管理系统实现油耗的实时监测与控制。
四、实验研究1. 实验方案为验证优化设计的有效性,本文设计了多组对比实验。
首先,对优化前后的行走系统进行性能测试,包括动力性能、稳定性、油耗等指标。
然后,通过实际工况下的使用情况,对比分析优化前后的效果。
2. 实验结果与分析实验结果表明,经过优化设计后,伸缩臂叉装车行走系统的动力性能得到显著提升,稳定性得到有效保障,油耗得到有效降低。
具体数据详见附录中的实验数据表。
五、结论与展望本文通过对伸缩臂叉装车行走系统的优化分析与实验研究,有效提高了设备的动力性、稳定性和经济性。
《2024年度伸缩臂叉装车行走系统优化分析与实验研究》范文

《伸缩臂叉装车行走系统优化分析与实验研究》篇一一、引言随着工程机械的不断发展,伸缩臂叉装车作为现代物流、建筑、矿山等行业的关键设备,其性能的优化显得尤为重要。
其中,行走系统作为叉装车的重要组成部分,其性能的优劣直接关系到设备的作业效率和稳定性。
因此,本文旨在通过对伸缩臂叉装车行走系统的优化分析与实验研究,以提高其工作效率和稳定性。
二、伸缩臂叉装车行走系统概述伸缩臂叉装车的行走系统主要由驱动系统、传动系统、行走机构等组成。
其中,驱动系统为电动机或液压马达,传动系统则通过齿轮、链条等传动元件将动力传递给行走机构。
行走机构一般由履带或轮胎组成,用于支撑叉装车的重量并实现移动。
三、行走系统存在的问题及分析在实际使用中,伸缩臂叉装车的行走系统常存在以下问题:一是行走过程中稳定性不足,特别是在复杂地形条件下易发生侧翻;二是能耗较高,影响设备的作业效率;三是维护成本较高,影响了设备的长期使用。
针对这些问题,本文将从以下几个方面进行分析:1. 稳定性分析:通过对叉装车在不同地形条件下的受力分析,找出影响稳定性的关键因素。
2. 能耗分析:通过分析传动系统的能量损失,找出降低能耗的途径。
3. 维护成本分析:通过对行走系统的结构进行分析,找出降低维护成本的方法。
四、行走系统优化方案针对上述问题,本文提出以下优化方案:1. 稳定性优化:通过改进履带的设计,增加履带的接地压力分布均匀性,提高叉装车在复杂地形条件下的稳定性。
同时,优化驾驶室的布局和操作方式,使驾驶员能够更好地掌握车辆的状态。
2. 能耗优化:通过改进传动系统的设计,减少能量损失,提高传动效率。
同时,采用先进的控制策略,实现叉装车的智能节能运行。
3. 维护成本优化:通过采用高强度、耐磨损的材料,延长行走系统的使用寿命。
同时,简化结构,降低维修难度和成本。
五、实验研究为了验证优化方案的有效性,本文进行了以下实验研究:1. 稳定性实验:在复杂地形条件下进行实车测试,比较优化前后叉装车的稳定性。
起重机伸缩臂伸缩原理

起重机伸缩臂伸缩原理
起重机伸缩臂是一种常见的起重设备,它能够通过伸缩来适应不
同高度的工作需求。
其中,起重机伸缩臂的伸缩原理是其能够顺利运
转的基础。
首先,起重机伸缩臂伸缩原理是通过采用液压系统实现的。
液压
系统采用液体传递压力来实现机械运动,因此起重机伸缩臂伸缩也是
通过液压系统来实现的。
其次,起重机伸缩臂的伸缩原理是通过液压缸来实现的。
液压缸
是液压系统中的重要组成部分,它可以将液体的压力转换成机械力,
从而实现伸缩臂的伸缩。
具体来说,当液压系统向液压缸中充入液体时,液压缸的活塞就
会被推动向伸缩臂的一端。
这样一来,伸缩臂就会向外伸展,从而实
现伸缩臂的伸长。
反之,当液压系统将液体从液压缸中排放时,液压
缸的活塞则会被拉回到起始位置,伸缩臂也会缩回到原来的长度。
此外,起重机伸缩臂伸缩原理还需要考虑到液压系统中的控制阀。
控制阀可以对液压系统中的液体流量进行控制,从而实现对起重机伸
缩臂伸缩速度和长度的控制。
因此,控制阀的调节是起重机伸缩臂能
否顺利运转的关键。
总之,起重机伸缩臂伸缩原理是通过采用液压系统和液压缸来实
现的。
液压缸的活塞可以将液压系统中的液体压力转换为机械力,从
而实现起重机伸缩臂的伸缩。
此外,起重机伸缩臂的运行速度和长度还受到控制阀的调节控制。
掌握这些原理,就可以更好地维护和操作起重机伸缩臂设备了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
论文论文题目:汽车起重机伸缩臂系统综述姓名学号学院班级专业汽车起重机伸缩臂系统综述摘要:随着经济建设的迅速发展,我国的基础建设力度正逐渐加大,道路交通,机场,港口,水利水电,市政建设等基础设施的建设规模也越来越大,市场汽车起重机的需求也随之增加。
汽车起重机为安装在标准式或特制汽车底盘上的起重设备。
而臂架是起重机的主要承载构件。
起重机通过臂架直接吊载,实现大的作业高度与幅度。
臂架的强度决定了最大起重量时整机起重性能,其自重直接影响整机倾覆稳定性,因而臂架结构设计的优劣,将直接影响整机的性能,如整机重量、整机重心高度和整机稳定性等。
所以要在保证臂架安全工作的条件下尽量减轻臂架的重量,这对提高整机质量和经济性具有很大的现实意义。
针对徐工50t汽车起重机伸缩机构的分析和研究,从而改进汽车起重机的整机性能,降低成本,同时提高了起重机的作业能力及使用经济性。
目前伸缩臂机构有两种形式,绳排系统和单缸插销式。
绳排系统在中国已经应用的比较成熟,也是一种历史比较悠久的技术。
此技术的优点是臂长变化容易、工作臂长种类多、可以带载伸缩、实用性很强,缺点是自重重、对整机稳定性的影响较大。
关键词:伸缩臂;液压缸;臂架结构Abstract:Boom is the main host of crane components. Directly through the jib crane hanging load, to achieve great height and range operations. Arm strength determines the maximum time from the weight lifting machine performance, its weight directly affect the machine overturning stability, structural design and therefore merits of boom, will directly affect the overall performance, such as the weight of the whole machine center of gravity height and machine stability. Thus, to ensure safe working conditions of boom to minimize the weight of boom, which improves overall quality and economy of great practical significance. Keywords:Telescopic boom; hydraulic cylinder; Structure of boom .1.1QY40全液压起重机主要技术参数整机主要性能参数最大起重量*幅度 40t*3m最大起升高度 46 m滑轮组倍率 11主臂长 11-33.5m(4节)主臂全程伸缩时间 162Sec主臂变幅范围 -2-80degree主臂变幅时间 60Sec主卷扬单绳速度 0-110 m/min副卷扬单绳速度 >40 m/minM最大起升力矩 1401 kN.m最大回转速度 0-2.0 r/min最高行驶速度 68 km/h最大爬坡度 37%最小转弯半径 12m行驶状态总重 37.51t外形尺寸13.65×2.75×3.46m支腿距离(纵向×横向) 5.45×6.2m上车空冷发动机斯太尔WD615.61最大功率 191KW(2600rpm)最大扭矩 828Nm(1600rpm)1.2起重机的技术参数表征起重机的作业能力,汽车式起重机的主要技术参数包括起重量、起升高度、幅度、起重力矩等。
这些参数表名起重机工作性能和技术经济指标,它是设计起重机的技术依据,也是生产使用中选择起重机技术性能的依据。
(1)起重量起重机起吊重物的质量称为起重量,通常以Q表示,单位为kg或t。
起重机的起重参数通常是以额定起重量表示的。
所谓额定起重量是指起重机在各种工况下安全作业所容许的起吊重物的最大质量的值,它是随着幅度的加大而减小的。
带有吊钩的起重机的额定起重量不包括吊钩和滑轮组的自重。
汽车式起重机的额定起重量随着吊臂的方位(侧方、后方、前方三个基本作业方位)不同而有所变化。
汽车式起重机的额定起重量还分支腿全伸、不用支腿吊臂行驶3种情况。
起重机吊重行使时,起重臂必须前置。
起重机不用支腿作业和吊重行使时的额定起重量决定于轮胎、车桥(或轮对转向架)的承载能力。
(2)起升高度起升高度是指从地面或轨道顶面至取物装置最高起生位置的铅垂距离(吊钩取取钩环中心),单位为米。
如果取物装置能下落到地面或轨面以下,从地面或轨面至取物装置最低下放位置间的铅垂距离称为下放深度。
此时总起升高度H为轨面以上的起升高度h2和轨面以下的下放深度h3之和,H=h2+h3。
由于汽车式起重机的起升高度随着臂架仰角和臂架长度变化,在各种臂长和不同臂架仰角时可得相应的起升高度曲线。
汽车式起重机起升高度的选择按作业要求而定。
在确定起升高度时,应考虑配属的吊具、路基和汽车高度保证起重机能将最大高度的物品装入车内。
汽车式起重机的最大起升高度的确定是根据起重机作业要求和起重机总体设计的合理性综合考虑。
(3)幅度旋转臂架式起重机处于水平位置时,回转中心线与取物装置中心线垂直之间的水平距离称为幅度(R)。
幅度的最小值Rmax和最大值Rmin根据作业要求而定。
在臂架变幅平面内起重机机体的最外边至取物中心铅垂线之间的距离称为有效幅度,有效幅度可为正值或副值。
汽车式起重机有效幅度通常是指使用支腿工作,臂架位于侧向最小幅度时,取物装置中心铅垂线至该侧两支腿中心连线的水平距离,它表示汽车式起重机在最小幅度时工作的可能性。
汽车式起重机的幅度R。
(4)起重力矩起重力矩是臂架类起重机主要技术数据之一,它等于额定起重量Q和其相对应的工作幅度R的乘积,即M=Q×R,起重力矩一般用t·m为单位。
伸缩回路伸缩回路如图3.4所示:图3.4伸缩回路此伸缩回路采用电磁液动阀组来控制各臂的伸缩,除了不能同步伸缩外,其他的伸缩方式都可以。
3.3.1性能要求起、制动平稳,各缸应具有一定的伸缩选择性能;3.3.2主要元件单向定量泵(4与变幅、支腿回路共用)、电液比例换向阀(24)、二位六通转阀(23)、缸(25、26、27)、电磁-液控组阀(30、31)、平衡阀(29)、单向阀组(28)3.3.3主要回路缸25、26、27伸出、缩回油路,控制油路3.3.4功能实现和工作原理(1) 缸25伸出A)控制回路35-1(常) 35-4(下位)(向伸缩臂油路通油)37-2(右移)电流 24(右)油油箱(24左移)23右转(切换成伸缩状态)B)主油路4 35-4(下位) 24(右) 23(左)B 25 30-1(上)29-1(开) 25(无杆腔)(缸25伸出)25(无杆腔)A 23(左) 24(右)油箱(回油)(2)缸25缩回A)控制回路35-1(常) 35-4(下位)(向伸缩臂油路通油)37-1(左移)电流 24(左)油油箱(24右移)23右转(切换成伸缩状态)B)主油路4 35-4(下位) 24(左) 23(左)A 25(有杆腔)(缩回)25(无) 29-1(开) 30-1(上) 25 B 23(左) 24(左) 油箱(回油)(3)缸26伸出A)控制回路35-1(常) 35-4(下位)(向伸缩臂油路通油)37-2(右移电流 24(右)油油箱(24左移)23右转(切换成伸缩状态)DF5(+) 30-2(上位) 30-1(下位)(连通缸26油路)B)主油路4 35-4(下位) 24(右) 23(左)B 25 30-1(下) B′31-1(上)29-2(开) 26 (无杆腔)(缸26伸出)26(有杆腔) 25(有杆腔) B 23(左) 24(右) 油箱 (回油)(4)缸26缩回A)控制回路37-1(左移)电流 24(左)油油箱(24右移)其它的跟伸出相同B)主油路4 35-4(下) 24(左) 23(左)A 25(有杆腔)A′ 2 6(有杆腔) (26缩回) 26(无杆腔) 29-2(开) 31-1(上) 26 B′ 30-1(下) 25 B 23(左)24(左)油箱(回油)(5)缸27伸出A)控制油路DF6(+) 31-1(下位)其它的跟缸26伸出控制一样B)主油路跟缸26伸出相似(6)缸27缩回2.2伸缩臂架的截面形式分类伸缩臂是受弯为主的双向压弯构件,除受有整体强度、刚度、稳定性的约束限制外,主要受局部稳定性约束。
因此采用何种截面形式使吊臂的自重较小、材料的利用充分,是伸缩式吊臂设计的关键技术。
以下是目前伸缩式吊臂常见的截面形式(如图2.2所示):伸缩臂可以制成几种典型箱形截面:矩形、梯形、倒置梯形、五边形、六边形、八边形、大圆角矩形以及椭圆形截面等。
其中,矩形截面是由翼缘板和腹板焊接而成的,它是目前轮式起重机伸缩臂中用得最多的截面形式。
与其他截面形式相比,矩形截面的制造工艺简单,具有较好的抗弯能力和抗扭刚度,因此,中、小吨位轮式起重机的伸缩臂通常都采用这一形式,但是这种截面没有充分发挥材料的承载能力,为了使伸缩臂各节之间能很好地传递扭矩和横向力,需设附加支承。
梯形截面的上翼缘板窄,下翼缘板宽,截面中性层靠下能发挥上翼缘板的机械性能,提高腹板的稳定性,前部滑块可接近腹板布置,后部滑块传递给上翼缘板的集中力,因上翼缘板窄,产生的弯曲力矩减小。
梯形截面的扭转刚度和横向刚度均较矩形截面大,但是,这种截面的下翼缘板宽,对局部稳定不利,材料性能得不到充分发挥,且需设侧向支承装置,这是梯形截面的缺点。
倒置梯形的下翼缘板窄,上翼缘板宽,对提高下翼缘板的局部稳定性很有好处,材料能得到充分利用,且和梯形截面一样,具有较大的横向刚度和扭转刚度,倒置梯形伸缩臂对安装变幅油缸较为有利,但是这种截面对上翼缘板的局部弯曲和腹板的稳定性不是很有利,亦需设侧向支承。
梯形和倒置梯形截面的伸缩臂通常用于大吨位的轮式起重机。
八边形和大圆角矩形截面的下翼缘板和腹板的实际计算宽度较小,有利于提高抗失稳的能力。
前后滑块均支承在四角处,伸缩臂各板不产生局部弯曲,且能较好地传递扭矩与横向力,因此这两种截面形式的伸缩臂能较好的发挥材料机械性能,减轻结构自重。
对大吨位轮式起重机采用这种截面形式是合适的。
制造这两种截面形式的吊臂,需要大型轧床,但是随着工业的发展,这两种形式的吊臂应用会逐渐增多。
LIEB班RR的LTM1300起重臂的截面采用了椭圆形截面,其截面上弯板为大圆弧槽形板,下弯板为椭圆形槽形板,且由下向上收缩,其重量优化,抗扭性能显著,具有固有的独特稳定性和抗屈曲能力。