水的离子交换除盐处理

合集下载

离子交换除盐

离子交换除盐

a
b
图3.7.2 交换器中离子分布情况 (a)开始进水时 (b)交换器失效时
图3.7.3 强酸H型阳离子交 换 器典型出水曲线
7、阴离子交换器
阴离子交换实质上是阴树脂中的OH与酸性水(经过阳离子交换
Hale Waihona Puke 及除碳)中的负离子进行交换。所以在强碱性阴离子交换器内发生的
反应为:
1/2H2SO4 HNO3 1/2H2CO3 HCl 1/2H2SiO3 1/2SO4 NO3 +ROH→ R 1/2CO3 CI HSiO3
+ (CH3)3 N →
CI
CH CI 氯球 2
三甲基胺
CH2N (CH3)3
苯乙烯季胺盐阴树脂
2 离子交换树脂的命名
离子交换树脂产品型号是根据国家标准 GBl631—79《离子交 换树脂产品分类、命名及型号》而制定的。 离子交换树脂的全名称由分类名称、骨架(或基团)名称、基本 名称依次排列组成。基本名称为离子交换树脂。大孔型树脂在全名称
1/2Ca2+ 1/2Mg2+ + Na+ 1/2 SO42NO3- + RH → CI HCO3
-
1/2 Ca R 1/2 Mg Na
1/2 H2SO4 HNO3 HCI 1/2 H2CO3





阳离子交换器的出水是酸性水。但当交换器运行失效时,其出水中就会有其 它阳离子的泄漏,而在诸多的阳离子中,首先漏出的阳离子是Na+,故习惯 上称之为漏钠。当出水中的Na+超过一个给定的极限值时,阳离子交换器被 判失效,需停运再生后才能投入运行。 为什么阳交换器失效时,首先发生漏钠,而不是漏Ca2+或Mg2+离子?这是因为 水中各种阳离子与树脂中H+发生交换反应时,因树脂对各种阳离子的吸收有 选择性,故被树脂吸收的离子在交换器内有分层现象,根据树脂对被吸收离 子的选择性顺序,最上层是最易被吸收的 Ca2+,次层以Mg2+为主,下层就是Na+。 当交换器不断进水,随离子交换的不断进行,由于水中的Ca2+比Mg2+、 Na+与树脂的亲合力更大,更易被树脂吸收,所以水中的Ca2+离子可和已吸 收了Mg2+的树脂进行交换反应,使Ca型树脂层向下扩展,而被置换下来的 Mg2+一起与Na+型树脂发生交换,使Mg2+型树脂层下移而Na+的交换区域也逐 渐下移。在运行过程中,这三层不同型态的交换剂的高度在不断地向下扩展, 如图3.7.2所示。 阳床整个制水周期(运行开始到交换器失效这段时间)中电导率、钠离子浓度、 酸度变化可用图3.7.3表示。 开始通水正洗时随水的不断通入,水质越来越好。因而电导率、酸度、钠离 子快速下降(a点前)。在ab为稳定制水过程,b点后树脂开始失效。此时水 中钠增加,氢离子减少而氢氧根增加,使酸度下降,电导率下降。

离子交换和反渗透产除盐水的方案比较

离子交换和反渗透产除盐水的方案比较

离子交换和反渗透产除盐水的方案比较离子交换是一种化学处理方法,通过将含有盐分的水通过特殊的树脂
来处理,树脂上的离子与水中的盐分发生交换反应,从而实现水的除盐。

离子交换的主要原理是树脂上的离子具有较高的亲合力,它们会与水中的
盐分离子发生反应,从而将盐分吸附在树脂上面。

通过控制树脂的使用量
和处理时间,可以实现对水的有效除盐。

离子交换方法的优点是操作简单、效果明显,可以高效地除去水中的盐分,因此在一些需要快速除盐的情况
下比较适用。

然而,离子交换方法也存在一些问题,如树脂的使用寿命有限,需要定期更换,同时由于对树脂质量要求较高,所以成本相对较高。

反渗透是一种物理处理方法,通过应用压力将水分子从半透膜中逼出,从而实现水的除盐。

反渗透的主要原理是半透膜的微孔具有较小的孔径,
只能让水分子通过,而无法让盐分离子通过。

通过应用较高的压力,可以
将水分子从半透膜中逼出,从而除去盐分。

反渗透方法的优点是过程可逆,不需要使用化学物质,对水质没有污染,因此广泛应用于饮用水和制药工
业等领域。

然而,反渗透方法也存在一些问题,如能耗较高,需要使用较
为复杂的设备,同时也对半透膜的使用寿命有一定要求。

综上所述,离子交换和反渗透都是常用的除盐方法,各有优缺点。


子交换方法操作简单,效果明显,适用于一些需要快速除盐的情况。

反渗
透方法过程可逆,不会对水质造成污染,适用于饮用水和制药工业等领域。

选择哪种方法主要取决于具体的应用场景和需求。

需要根据实际情况综合
考虑成本、效果、设备和维护等因素,选择最适合的除盐方案。

离子交换法制盐的原理

离子交换法制盐的原理

离子交换法制盐的原理离子交换法制盐的原理是以离子交换树脂作为载体,通过交换树脂上吸附的钠离子(Na+)与水中的其他阳离子(如钙离子Ca2+、镁离子Mg2+等)进行交换,从而达到去除盐分的目的。

离子交换法制盐的过程主要分为两个步骤:吸附和再生。

首先,离子交换树脂会吸附水中的阳离子。

这是因为树脂上存在一种具有离子交换功能的功能基团,常见的功能基团有强酸型树脂上的-So3H和强碱型树脂上的-Quaternary Ammonium。

这些功能基团会与水中的阳离子发生离子交换,即树脂上的功能基团释放出树脂基团,并吸附水中的阳离子。

接下来,在一定时间的操作后,当吸附在树脂上的钠离子达到饱和状态,需要进行再生。

再生是指用高浓度盐水或其他一定浓度的酸、碱溶液将吸附在树脂上的其他阳离子释放出来,从而可以继续进行吸附过程。

再生的方法有多种,常见的有酸再生法和碱再生法。

酸再生法是将稀盐酸或稀硫酸溶液通过吸附塔循环冲洗离子交换树脂,将树脂上吸附的阳离子释放掉,使树脂恢复到原来的活性状态。

碱再生法则是将稀盐酸或稀硫酸溶液通过吸附塔循环冲洗离子交换树脂,将树脂上吸附的钙、镁等阳离子释放掉。

离子交换树脂具有选择性吸附的特点,可以根据需要选择不同类型的树脂。

强酸型树脂对钠离子选择性较弱,适用于中性至碱性条件下的水处理,比如软化水处理、除盐等;而强碱型树脂对钠离子选择性较强,适用于除碱处理等。

离子交换法制盐具有一定的优点,如操作简单、工艺成熟、可实现连续生产等。

然而,也存在一些问题。

首先,离子交换法制盐对水质要求较高,水中的杂质、有机质等会影响树脂的吸附效果,需要进行前处理。

其次,再生过程中产生大量废液,对环境造成一定污染。

总之,离子交换法制盐是一种重要的除盐方法,可以有效去除水中的盐分。

通过选择合适的树脂类型、合理控制再生条件,可以实现高效、稳定地制取纯净水和获得高纯度的盐产品。

水处理技术 4第四章 离子交换除盐

水处理技术 4第四章 离子交换除盐
离子交换法是一种借助于离子交换剂上的 离子和水中的离子进行交换反应而除去水中有 害离子的方法。在工业用水中占有极其重要的 位置,用以制取软水或纯水。
4.1 离子交换树脂
某些物质遇到溶液时,可以将其本身所具有的离子和溶液中同符 号离子发生相互交换,这种现象称为离子交换,具有离子交换性能 的这种物质称为离子交换剂。
• 新树脂常含有未参加反应的有机物和铁、铅、铜等无机杂质,使用前必须进 行处理,以除去这些杂质,
• 离子交换树脂在运行过程中,可能受到进水中氧化剂如游离氯的氧化而变质, 这种变质是无法恢复的。也可受到外来杂质的污染而改变其性能,影响出水 水质和周期制水量。但可以采取适当措施,清除污染物,使树脂性能复原或 有所改进。阳树脂的污染和复苏,阳树脂会受到进水中的悬浮物、铁、铝、 油、CaSO4等物质的污染。运行中可针对污染物的种类采取不同的处理方 法。
当增加离子交换剂层高度时,树脂交换能 力的平均利用率会提高。热力发电厂水处理用 的离子交换剂层的高度,一般最低不低于 1.0m,有的高达3.5m。但不能太高,否则水 通过交换剂时压降太大,给运行带来困难。
RH树脂与水中Ca2+、Mg2+、Na+交换时出水水质
4.3 水的离子交换处理
一、离子交换除盐系统
2.氢氧根离子交换反应 交换反应式为:
SO4
SO4
2ROH
H
Cl 2 2CO
3
R
Cl 2 2 ( HCO3)
2
2H 2O
SiO3
( HSiO3) 2
再生反应式为:
SO4
R
Cl 2 2 ( HCO3) 2
2NaOH
2ROH
SO4
Na
Cl 2 2CO

离子交换除盐实验报告

离子交换除盐实验报告

离子交换除盐实验报告离子交换除盐实验报告引言:离子交换是一种常见的除盐方法,通过交换树脂材料吸附水中的离子,实现除去水中的盐分。

本实验旨在通过离子交换除盐实验,探究离子交换技术在水处理中的应用和效果。

一、实验目的本实验旨在通过离子交换除盐实验,探究离子交换技术在水处理中的应用和效果。

二、实验原理离子交换是一种通过树脂材料吸附和释放离子的过程。

树脂是一种高分子化合物,其具有特定的结构和功能,可以选择性地吸附或释放特定的离子。

离子交换除盐实验中,我们使用的是阴离子交换树脂。

该树脂上带有正电荷的离子,可以吸附水中的阴离子,如氯离子、硝酸根离子等。

当水通过离子交换树脂时,树脂会吸附水中的阴离子,并释放出等量的阳离子,如钠离子、钙离子等。

三、实验步骤1. 准备实验所需材料:离子交换树脂、蒸馏水、离子交换柱、试管、移液器等。

2. 将离子交换树脂放入离子交换柱中,并用蒸馏水洗净。

3. 将待处理水样倒入离子交换柱中,让水通过离子交换树脂。

4. 收集通过离子交换柱的水样,进行离子浓度测定。

5. 将处理后的水样与原始水样进行对比分析。

四、实验结果与分析通过离子交换除盐实验,我们得到了处理后的水样和原始水样的离子浓度数据。

根据数据分析,我们可以得出以下结论:1. 经过离子交换处理后,水样中的阴离子浓度明显降低,阳离子浓度有所增加。

2. 离子交换树脂对不同离子的吸附效果有所差异,某些离子可能被部分保留在树脂中,导致处理后的水样中仍含有少量的盐分。

3. 离子交换除盐技术可以有效降低水中的盐分,提高水的质量。

五、实验总结通过离子交换除盐实验,我们了解了离子交换技术在水处理中的应用和效果。

离子交换除盐技术可以有效去除水中的盐分,提高水的质量。

然而,在实际应用中,我们还需要考虑离子交换树脂的选择、树脂的再生和替换等问题,以确保离子交换除盐技术的持续有效性。

六、参考文献[1] Smith, K. C., & Wegrzyn, J. (2012). Ion exchange in analytical chemistry. Journal of Chromatography A, 1221, 84-103.[2] Sengupta, A. K., & Clifford, D. A. (2012). Water purification by ion exchange. Chemical Reviews, 112(4), 2171-2202.以上为离子交换除盐实验报告的主要内容,通过实验步骤、实验结果与分析以及实验总结,我们可以对离子交换技术在水处理中的应用和效果有一个初步的了解。

离子交换技术在水处理中的应用

离子交换技术在水处理中的应用

离子交换技术在水处理中的应用水是生命之源,对于人类和其他生物来说,干净的水是必不可少的。

然而,随着工业化和城市化的发展,水污染问题日益严重。

离子交换技术作为一种常用的水处理方法,被广泛应用于水处理领域。

本文将介绍离子交换技术在水处理中的应用,并探讨其优势和局限性。

离子交换技术概述离子交换技术是一种通过固体材料与溶液中的离子发生置换反应,实现离子去除或转化的方法。

常见的离子交换材料包括树脂、活性炭和陶瓷等。

离子交换技术可以有效去除水中的有害离子,改善水质。

离子交换技术在硬水处理中的应用硬水是指含有高浓度钙、镁等金属离子的水。

硬水不仅影响家庭用水质量,还会导致管道堵塞和设备损坏。

离子交换技术可以通过选择合适的树脂材料,将水中的钙、镁离子与树脂上的钠离子进行交换,从而软化水质,解决硬水问题。

离子交换技术在除盐处理中的应用除盐是指去除水中的盐分,使其达到可饮用或工业用水标准。

离子交换技术可以通过选择具有高选择性的树脂材料,将水中的钠、钾等金属离子与树脂上的氢离子进行交换,从而实现除盐效果。

这种方法被广泛应用于海水淡化和地下水处理等领域。

离子交换技术在污水处理中的应用污水处理是保护环境和人类健康的重要环节。

离子交换技术可以通过选择具有特定功能的树脂材料,吸附和去除污水中的重金属离子、有机物和其他有害物质,从而实现污水的净化和回收利用。

离子交换技术的优势离子交换技术在水处理中具有以下优势: 1. 高效:离子交换材料具有较大的比表面积和孔隙结构,能够提供更多的吸附位点,从而提高去除效率。

2. 可控性强:通过选择不同类型和规格的离子交换材料,可以实现对特定离子的选择性去除。

3. 可再生性:离子交换材料可以通过再生操作,恢复其吸附能力,延长使用寿命,减少成本。

4. 适应性广:离子交换技术可以适用于不同水质和处理需求,具有较强的适应性。

离子交换技术的局限性离子交换技术在水处理中也存在一些局限性: 1. 选择性有限:离子交换材料对于不同离子的选择性有限,可能会导致一些有害物质无法完全去除。

水中溶解物质去除与处理方法

水中溶解物质去除与处理方法
化制得的疏水性吸附剂。 • 外观为暗黑色,有粒状和粉状两种,目前工业
上大量采用的是粒状活性炭。 • 活性炭主要成分除碳外,还含有少量的氧、氢、
硫等元素,以及水分、灰分。
• 活性炭的吸附中心点 • 具有良好的吸附性能和稳定化学性质,可以耐
强酸、强碱,能经受水浸、高温、高压作用, 不易破碎。
• 再生:即交换反应的逆过程。使具有较高 浓度的再生液流过树脂,将先前吸附的离 子置换出来,从而使树脂的交换能力得到 恢复。再生液的浓度对树脂的再生程度有 较大影响。
• 清洗:洗涤残留的再生液和再生时可能出 现的反应产物 。
三、 吸附法
1、吸附的基本理论
• 吸附是指利用多孔性固体物质吸附废水中某种 或几种污染物,以回收或去除某些污染物,使 废水得到净化的方法。
• 具有吸附能力的多孔性固体物质称为吸附剂。 而废水中被吸附的物质称为吸附质。
• 吸附是一种界面现象,发生在两个相的界面上。 • 根据吸附剂与吸附质之间作用力不同,可分为
物理吸附、化学吸附和离子交换吸附三种类型。
1)物理吸附的特点
• 吸附剂和吸附质之间通过分子间力作用所发生 的吸附为物理吸附,没有选择性。
3、吸附剂
工业吸附剂必须满足下列要求: (a)吸附能力强; (b)吸附选择性好; (c)吸附平衡浓度低; (d)容易再生和再利用; (e)机械强度好; (f)化学性质稳定; (g)来源广; (h)价格低。
一般工业吸附剂 难于同时满足这 八个方面的要求, 应根据不同的场
合选用.
(1)活性炭
• 活性炭是一种非极性吸附剂。 • 是由含炭为主的物质为原料,经高 指吸附质的离子由于静电引力作用聚集在吸附剂表 面的带电点上,并置换出原先固定在这些带电点上 的其他离子。

离子交换制取除盐水的原理

离子交换制取除盐水的原理

离子交换制取除盐水的原理离子交换制取除盐水的原理是通过离子交换树脂去除溶液中的离子,从而实现除盐的目的。

离子交换树脂是一种高分子聚合物,具有特定的化学结构和物理性质,能够吸附和释放溶液中的离子。

以下将详细介绍离子交换制取除盐水的原理。

离子交换树脂是一种含有特定功能基团的高分子材料。

这些基团通常是有机阴离子或阳离子,能够与水溶液中的离子发生化学反应。

当离子交换树脂与溶液接触时,树脂中的功能基团会与溶液中的离子发生交互作用,形成化学键或静电相互作用。

离子交换树脂分为阴离子交换树脂和阳离子交换树脂两种类型。

阴离子交换树脂的功能基团是正电荷的阳离子基团,能够与溶液中的阴离子发生化学反应。

而阳离子交换树脂的功能基团是负电荷的阴离子基团,能够与溶液中的阳离子发生化学反应。

通过选择适当类型的离子交换树脂,可以实现对不同种类离子的选择性吸附和释放。

除盐过程中,将含有离子的水溶液通过离子交换树脂床层。

当水溶液流经树脂床层时,离子交换树脂上的功能基团能够与水溶液中的离子发生交互作用。

水溶液中的阳离子会与阴离子交换树脂上的功能基团发生反应,被吸附在树脂上。

相应地,水溶液中的阴离子会与阳离子交换树脂上的功能基团发生反应,也被吸附在树脂上。

随着溶液通过离子交换树脂床层的流动,树脂上吸附的离子会逐渐增多,从而减少溶液中的离子浓度。

当树脂床层达到一定吸附饱和度时,已被吸附的离子将无法再被进一步吸附,此时需要进行树脂的再生或更换。

离子交换树脂的再生可以通过向树脂床层中通入盐溶液来实现,也可以使用酸性或碱性溶液来改变功能基团的电荷状态,从而使吸附的离子被解离。

经过再生处理后,离子交换树脂就可以重新被用于除盐过程。

离子交换制取除盐水的原理是基于离子交换树脂具有选择性吸附和释放离子的特性。

通过选择适当类型的离子交换树脂和相应的操作条件,可以实现对不同种类离子的高效除盐。

这种方法具有操作简便、效率高、成本低等优点,因此在水处理和制备高纯度溶液等领域得到广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题
1、离子交换树脂的交换容量分为全交换容量、工作交换容量、平衡交换容量。

2、按离子交换树脂的结构,离子交换树脂分为凝胶型树脂、大孔型树脂、超凝胶型树脂和均孔型强碱型阴树脂。

3、树脂型号为001×7,第一位数字代表活性基团代号,第二位数字代表骨架代号,第三位数字代表顺序代号,×代表联接符号,第四位数字代表交联度。

4、树脂的污染主要分为有机物污染,无机物污染,硅酸根污染。

5、阴树脂发生硅酸根污染的主要原因为未及时再生或者再生不彻底。

6、离子交换器体内再生分为顺流再生、逆流再生、分流再生和串联再生四种。

7、被处理的水流经离子交换树脂层时,其离子交换树脂按水流顺序可分为失效层、工作层、保护层。

8、离子交换树脂的可逆性是反复使用的基础。

9、离子交换器再生过程中,提高再生液温度,能增加再生程度,主要因为加快了内扩散和膜扩散的速度。

10、混床反洗分层是利用阴阳树脂密度不同;若反洗效果不佳,可通过加碱浸泡后,重新反洗分层。

11、运行规程中,阳床出水Na>100ug/L,即为失效;阴床出水DD>5us/cm 或
SiO2>50ug/L,即为失效;混床出水DD>0.2us/cm或SiO2>20ug/L,即为失效。

12、运行分析中测量钠离子,所用碱化剂为二异丙氨,控制样水pH>10,
pNa4=2300ug/L。

13、每台阳离子交换器的额定制水量为205t/h,每台阴离子交换器额定制水量为205t/h,每台混合离子交换器的额定制水量为235t/h。

14、除盐水的主要监测的项目为电导率和二氧化硅,其标准分别为DD≤0.2μs/cm,SiO2≤20μg/L。

15、阳床或阴床或混床失效时应停运进行再生。

16、001×7型树脂是强酸阳离子交换树脂。

17、离子交换器的交换过程,实质上就是工作层逐渐下移的过程。

18、强弱碱树脂联合使用,弱阴树脂交换强酸根离子,强阴树脂交换弱酸根离子。

19、混床阴阳树脂的填装比例阴:阳=2:1。

20、阴树脂再生液加热温度控制范围30~45℃。

21、强碱阴离子交换器失效时首先漏过的是硅酸氢根。

22、树脂由骨架和活性基团两部分组成。

23、混床反洗的主要作用阴阳树脂分层。

24、树脂型号为201×7,其中2表示该树脂为强碱性。

25、离子交换树脂的再生过程实际上是除盐制水过程的逆反应。

26、判断混床阳阴树脂反洗分层终点的依据是阳阴树脂有明显的分层线。

27、若混床阳阴树脂反洗分层界线不明显时,应给混床进入1~2%浓度的NaOH 溶液,然后重新分层。

28、我厂除盐水系统混床反洗后,树脂分为两层,上层为阴树脂,下层为阳树脂,两层树脂高度分别为2比1。

29、我厂阳离子交换树脂再生采用的再生剂为盐酸,阴离子交换树脂的再生剂为氢氧化钠。

30、我厂除碳器填料为Φ40多面PP空心球,除碳器的作用是去除阳床出水中的二氧化碳。

31、我厂除盐水处理系统采用超滤-反渗透—一级除盐加混床系统。

32、阴床正常运行中监督的项目一般是出水的导电率和含硅量。

33、对阴离子交换器来讲,进水酸度越大越好。

34、我厂阴、阳离子交换器再生采用的是逆流再生方式。

35、我厂除碳器系统中,水和空气的进入方式为水从除碳器上部进入,空气从下部进入。

36、混合离子交换器再生不好的关键原因是反洗分层效果不好。

37、离子交换树脂的交联度值愈小,树脂的含水率愈大,抗污染性能愈强。

38、离子交换树脂受铁、铝及其氧化物污染后,颜色变深。

39、能有效去除水中硅化合物的是强碱阴树脂。

40、逆流再生离子交换器的特点是出水水质好。

41、逆流再生离子交换器压实层树脂的作用是防止再生时乱层。

42、我厂根据水处理要求规定一级除盐阴床出水SiO2≤100ug/L。

43、阳离子交换器失效时,会出现电导率暂时下降的现象。

44、一般来说,阴树脂的化学稳定性比阳树脂差。

45、遇到不同类型的树脂混在一体,可以利用它们密度的不同进行简单的分离。

46、在除盐系统中,强酸性H型离子交换为了要除去水中的H+以外的所有阳离子,必须在Na+超标时,立即停止运行。

47、在选用离子交换树脂时,树脂的颗粒越均匀越好。

48、混床出水水质标准为DD≤0.2μs/cm,二氧化硅≤20μg/L。

49、阳床失效最先穿透树脂层的阳离子是钠离子。

50、为了防止离子交换树脂的流失,一般在阴床及混床的出水管路上加装树脂捕捉器,作为预防措施。

51、离子交换树脂所包含的所有活性集团的总量,称为全交换容量。

52、除盐设备中树脂的污染主要是无机物或有机物渗入树脂结构内部造成的。

53、水温升高,水的电离度增大,H+和OH-的数目增多,同时水的粘度减小,使离子迁移速度加快。

54、一般树脂的交联度越高,耐磨性越好。

55、装入新树指的离子交换设备,在使用前一般对新树脂进行处理,其处理步骤是用食盐、稀盐酸溶液和稀NaOH溶液分别进行处理。

56、离子交换器运行中,内部的树脂依次可以分为失效层、交换层和保护层。

57、混床失效再生时必须反洗分层或分别再生。

58、电厂水处理用的阴、阳离子交换树脂,是由苯乙烯和二乙烯苯共聚而成的高分子化合物。

59、强碱性阴树脂若要除硅彻底应首先排除OH-的干扰。

60、为了有利于除硅阴树脂必须是强碱性,再生剂采用NaOH。

61、溶液的浓度越大离子扩散速度越快。

62、树脂的颗粒越小,交换速度越快。

63、离子交换器正洗的目的,是把充满在交换剂颗粒孔隙中的再生液和再生产物冲洗干净。

64、混床是由阴树脂和阳树脂两种树脂组成的离子交换器。

65、离子交换树脂的交联度值越大,树脂的机械强度越大,溶胀性越小。

66、按孔型的不同,离子交换树脂可分为凝胶型和大孔型两大类。

67、离子交换树脂根据其所带活性基团的性质,可分为阳离子交换树脂和阴离子交换树脂。

68、001*7代表凝胶型强酸性苯乙烯系阳离子交换树脂。

201*7代表凝胶型强碱性苯乙烯系阴离子交换树脂。

D001代表大孔型强酸性苯乙烯系阳离子交换树脂
69、按合成离子交换树脂的单体分类,将其分为苯乙烯系离子交换树脂和丙烯酸系离子交换树脂等。

70、选择性系数反映了交换时树脂对离子的选择性大小。

71、离子交换树脂颗粒大小适中。

若颗粒太小,则水流阻力大。

72、有效粒径是指筛上保留90%体积树脂的相应试验筛筛孔孔径(mm),用符号d90表示。

73、湿真密度是指树脂在水中经充分溶胀后的真密度。

74、含水率可以反映树脂的交联度和孔隙率的大小,树脂含水率大则表示它的孔隙率大和交联度低。

74、树脂由两部分构成:1)骨架部分,2)交换基团。

75、大孔型树脂的抗氧化能力较强,机械强度较高。

76、湿视密度是指树脂在水中充分溶胀后的堆积密度。

77、鼓风式除碳器一般可将水中游离的CO2含量降至5 mg/L以下。

78、离子交换器反洗的目的是松动交换剂层,清除交换剂上层的悬浮物;排除
碎树脂;树脂层中的气泡。

79、在混合床离子交换器运行过程中,主要监督电导率;含硅量和钠离子含量等出水水质指标。

80、H型交换树脂再生后,颜色变浅,体积增大。

81、树脂交联度对离子交换速度的影响是,交联度越大,交换速度越慢。

82、混床的阴树脂与阳树脂的体积比一般为2 :1,阴树脂树脂体积大。

二、判断题
1、阳离子交换树脂在稀溶液中的的选择性顺序如下:Fe3+>A13+>Ca2+>Mg2+>K+≈NH4+>Na+>H+。

(√)
2、树脂颗粒越小,交换速度越快。

(√)
3、在离子交换除盐中,提高水温能同时加快内扩散和膜扩散。

(√)
4、离子交换器每周期中再生所耗用水量,与其周期制水量的比称为自用水率。

(×)
5、混床反洗分层后,上层为阳树脂,下层为阴树脂。

(×)
6、离子交换树脂的交联度越小,机械强度越大,溶胀性越大。

(×)
7、可以采用测量硬度的方法来控制阳床的失效点。

(×)
8、阴床再生时进碱浓度控制在2.5-3.0%。

(√)
9、混床失效时,出水的电导率和二氧化硅含量同事升高。

(√)
10、水通过离子交换树脂层流速越大,交换器出口树脂保护层越薄。

(×)
11、为合理控制再生液浓度,应采取先稀后浓的方式进行再生。

(√)。

相关文档
最新文档