6(2)最大与最小
§2 2.2 最大值、最小值问题

一、预习教材·问题导入 1.问题:如何确定你班哪位同学最高? 提示:方法很多,可首先确定每个学习小组中最高的同学, 再比较每组的最高的同学,便可确定班中最高的同学.
2.如图为 y=f(x),x∈[a,b]的图像.
问题 1:试说明 y=f(x)的极值. 提示:f(x1),f(x3)为函数的极大值,f(x2),f(x4)为函数的极 小值. 问题 2:你能说出 y=f(x),x∈[a,b]的最值吗? 提示:函数的最小值是 f(a),f(x2),f(x4)中最小的,函数的 最大值是 f(b),f(x1),f(x3)中最大的. 问题 3:根据问题 2 回答函数 y=f(x),x∈[a,b]的最值可能 在哪些点取得. 提示:在极值点或端点中.
令 f′(x)=0,解得 x=59或 x=3(舍去). 当 0<x<59时,f′(x)>0,当59<x<1 时,f′(x)<0, 所以 x=59时,f(x)有最大值 f59=20 000. 所以当 x=59时,本年度的年利润最大,最大年利润为 20 000 万元.
[类题通法] 利用导数解决优化问题的一般步骤 (1)抽象出实际问题的数学模型,列出函数关系式 y=f(x). (2)求函数 f(x)的导数 f′(x),并解方程 f′(x)=0,即求函数 可能的极值点. (3)比较函数 f(x)在区间端点的函数值和可能极值点的函数 值的大小,得出函数 f(x)的最大值或最小值. (4)根据实际问题的意义给出答案.
二、归纳总结·核心必记 1.最值点 (1)最大值点:函数 y=f(x)在区间[a,b]上的最大值点 x0 指 的是:函数在这个区间上所有点的函数值都 不超过 f(x0). (2)最小值点:函数 y=f(x)在区间[a,b]上的最小值点 x0 指 的是:函数在这个区间上所有点的函数值都 不小于 f(x0). 2.最值 函数的 最大值 与 最小值 统称为最值.
第二章 专题突破二数列的单调性和最大(小)项

专题突破二 数列的单调性和最大(小)项一、数列的单调性(1)定义:若数列{a n }满足:对一切正整数n ,都有a n +1>a n (或a n +1<a n ),则称数列{a n }为递增数列(或递减数列).(2)判断单调性的方法①转化为函数,借助函数的单调性,如基本初等函数的单调性等,研究数列的单调性. ②利用定义判断:作差比较法,即作差比较a n +1与a n 的大小;作商比较法,即作商比较a n +1与a n 的大小,从而判断出数列{a n }的单调性.例1 已知函数f (x )=1-2x x +1(x ≥1),构造数列a n =f (n )(n ∈N *).试判断数列的单调性. 解 f (x )=1-2x x +1=-2+3x +1. 方法一 ∵a n =-2+3n +1(n ∈N *),a n +1=-2+3n +2, ∴a n +1-a n =3n +2-3n +1=3(n +1-n -2)(n +1)(n +2)=-3(n +1)(n +2)<0. ∴a n +1<a n .∴数列{a n }是递减数列.方法二 设x 1>x 2≥1,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫-2+3x 1+1-⎝ ⎛⎭⎪⎫-2+3x 2+1 =3x 1+1-3x 2+1=3(x 2-x 1)(x 1+1)(x 2+1), ∵x 1>x 2≥1,∴x 1+1>0,x 2+1>0,x 2-x 1<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴f (x )在[1,+∞)上为减函数,∴a n =f (n )为递减数列.反思感悟 研究数列的单调性和最大(小)项,首选作差,其次可以考虑借助函数单调性.之所以首选作差,是因为研究数列的单调性和研究函数单调性不一样,函数单调性要设任意x 1<x 2,而数列只需研究相邻两项a n +1,a n ,证明难度是不一样的.另需注意,函数f (x )在[1,+∞)上单调,则数列a n =f (n )一定单调,反之不成立.跟踪训练1 数列{a n }的通项公式为a n =-3×2n -2+2×3n -1,n ∈N *.求证:{a n }为递增数列. 证明 a n +1-a n =-3×2n -1+2×3n -(-3×2n -2+2×3n -1)=3(2n -2-2n -1)+2(3n -3n -1)=-3×2n -2+4×3n -1 =2n -2⎣⎡⎦⎤12×⎝⎛⎭⎫32n -2-3, ∵n ≥1,n ∈N *,∴⎝⎛⎭⎫32n -2≥⎝⎛⎭⎫321-2=23,∴12×⎝⎛⎭⎫32n -2≥8>3,∴12×⎝⎛⎭⎫32n -2-3>0,又2n -2>0, ∴a n +1-a n >0,即a n +1>a n ,n ∈N *.∴{a n }是递增数列.二、求数列中的最大(或最小)项问题常见方法:(1)构造函数,确定函数的单调性,进一步求出数列的最值.(2)利用⎩⎪⎨⎪⎧ a n ≥a n +1,a n ≥a n -1(n ≥2)求数列中的最大项a n ;利用⎩⎪⎨⎪⎧a n ≤a n +1,a n ≤a n -1(n ≥2)求数列中的最小项a n .当解不唯一时,比较各解大小即可确定.例2 在数列{a n }中,a n =n - 2 018n - 2 019,求该数列前100项中的最大项与最小项的项数. 解 a n =n - 2 018n - 2 019=1+ 2 019- 2 018n - 2 019,设f (x )=1+ 2 019- 2 018x - 2 019,则f (x )在区间(-∞, 2 019)与( 2 019,+∞)上都是减函数.因为44< 2 019<45,故数列{a n }在0<n ≤44,n ∈N *时递减,在n ≥45时递减,借助f (x )=1+2 019- 2 018x - 2 019的图象知数列{a n }的最大值为a 45,最小值为a 44.所以最大项与最小项的项数分别为45,44.反思感悟 本题考查根据数列的单调性求数列的最大项和最小项,此类题一般借助相关函数的单调性来研究数列的单调性,然后再判断数列的最大项与最小项.跟踪训练2 已知数列{a n }的通项公式a n =411-2n,则{a n }的最大项是( ) A .a 3B .a 4C .a 5D .a 6 答案 C解析 f (x )=411-2x 在⎝⎛⎭⎫-∞,112,⎝⎛⎭⎫112,+∞上都是增函数. 且1≤n ≤5时,a n >0,n ≥6时,a n <0.∴{a n }的最大值为a 5.例3 已知数列{a n }的通项公式为a n =n 2-5n +4,n ∈N *.(1)数列中有多少项是负数?(2)n 为何值时,a n 有最小值?并求出其最小值.解 (1)由n 2-5n +4<0,解得1<n <4.∵n ∈N *,∴n =2,3.∴数列中有两项是负数.(2)∵a n =n 2-5n +4=⎝⎛⎭⎫n -522-94,且n ∈N *, ∴当n =2或n =3时,a n 有最小值,其最小值为22-5×2+4=-2.反思感悟 有时也可借助函数最值来求数列最值.但应注意函数最值点不是正整数的情形.跟踪训练3 已知(-1)n a <1-12n 对任意n ∈N *恒成立,则实数a 的取值范围是 . 答案 ⎝⎛⎭⎫-12,34 解析 设f (n )=1-12n ,n ≥1,则f (n )单调递增.当n 为奇数时,有-a <1-12n 又f (n )min =f (1)=1-12=12. ∴-a <12即a >-12. 当n 为偶数时,a <1-12n . f (n )min =f (2)=1-14=34. ∴a <34.综上,-12<a <34. 例4 已知数列{a n }的通项公式为a n =n ⎝⎛⎭⎫79n +1,n ∈N *,则该数列是否有最大项,若有,求出最大项的项数;若无,说明理由.解 ∵a n +1-a n =(n +1)·⎝⎛⎭⎫79n +2-n ⎝⎛⎭⎫79n +1=⎝⎛⎭⎫79n +1·7-2n 9,且n ∈N *,∴当n >3,n ∈N *时,a n +1-a n <0;当1≤n ≤3,n ∈N *时,a n +1-a n >0.综上,可知{a n }在n ∈{1,2,3}时,单调递增;在n ∈{4,5,6,7,…}时,单调递减.所以存在最大项.又a 3=3×⎝⎛⎭⎫793+1<a 4=4×⎝⎛⎭⎫794+1,所以第4项为最大项. 反思感悟 如果本例用函数单调性来解决,就会变得很麻烦.跟踪训练4 已知数列{b n }的通项公式为b n =2n -92n ,n ∈N *,求{b n }的最大值. 解 ∵b n +1-b n =2n -72n +1-2n -92n =-2n +112n +1,且n ∈N *, ∴当n =1,2,3,4,5时,b n +1-b n >0,即b 1<b 2<b 3<b 4<b 5.当n =6,7,8,…时,b n +1-b n <0,即b 6>b 7>b 8>…,又b 5=132<b 6=364. ∴{b n }的最大值为b 6=364. 三、利用数列的单调性确定变量的取值范围常利用以下等价关系:数列{a n }递增⇔a n +1>a n 恒成立;数列{a n }递减⇔a n +1<a n 恒成立,通过分离变量转化为代数式的最值来解决.例5 已知数列{a n }中,a n =n 2+λn ,n ∈N *.(1)若{a n }是递增数列,求λ的取值范围.(2)若{a n }的第7项是最小项,求λ的取值范围.解 (1)由{a n }是递增数列⇔a n <a n +1⇔n 2+λn <(n +1)2+λ(n +1)⇔λ>-(2n +1),n ∈N *⇔λ>-3. ∴λ的取值范围是(-3,+∞).(2)依题意有⎩⎪⎨⎪⎧ a 7≤a 6,a 7≤a 8,即⎩⎪⎨⎪⎧72+7λ≤62+6λ,72+7λ≤82+8λ, 解得-15≤λ≤-13,即λ的取值范围是[-15,-13].反思感悟 注意只有对二次函数这样的单峰函数,这个解法才成立,对于如图的多峰函数满足⎩⎪⎨⎪⎧a 7≤a 6,a 7≤a 8,不一定a 7最小.跟踪训练5 数列{a n }中,a n =2n -1-k ·2n -1,n ∈N *,若{a n }是递减数列,求实数k 的取值范围.解 a n +1=2(n +1)-1-k ·2n +1-1=2n +1-k ·2n ,a n +1-a n =2-k ·2n -1.∵{a n }是递减数列,∴对任意n ∈N *,有2-k ·2n -1<0,即k >22n -1恒成立, ∴k >⎝ ⎛⎭⎪⎫22n -1max =2, ∴k 的取值范围为(2,+∞).1.设a n =-2n 2+29n +3,n ∈N *,则数列{a n }的最大项是( )A .103B.8658C.8258D .108答案 D解析 ∵a n =-2⎝⎛⎭⎫n -2942+2×29216+3,而n ∈N *, ∴当n =7时,a n 取得最大值,最大值为a 7=-2×72+29×7+3=108.故选D.2.已知数列{a n }的通项公式为a n =⎝⎛⎭⎫49n -1-⎝⎛⎭⎫23n -1,则数列{a n }( )A .有最大项,没有最小项B .有最小项,没有最大项C .既有最大项又有最小项D .既没有最大项也没有最小项答案 C解析 a n =⎝⎛⎭⎫49n -1-⎝⎛⎭⎫23n -1=⎣⎡⎦⎤⎝⎛⎭⎫23n -12-⎝⎛⎭⎫23n -1,令⎝⎛⎭⎫23n -1=t ,则t 是区间(0,1]内的值,而a n =t 2-t =⎝⎛⎭⎫t -122-14,所以当n =1,即t =1时,a n 取最大值.使⎝⎛⎭⎫23n -1最接近12的n 的值为数列{a n }中的最小项,所以该数列既有最大项又有最小项. 3.设a n =-n 2+10n +11,则数列{a n }从首项到第几项的和最大( )A .10B .11C .10或11D .12答案 C解析 ∵a n =-n 2+10n +11是关于n 的二次函数,∴数列{a n }是抛物线f (x )=-x 2+10x +11上的一些离散的点,∴{a n }前10项都是正数,第11项是0,∴数列{a n }前10项或前11项的和最大.故选C.4.数列{a n }中,a 1=2,a n =2a n -1(n ∈N *,2≤n ≤10),则数列{a n }的最大项的值为 . 答案 1 024解析 ∵a 1=2,a n =2a n -1,∴a n >0,∴a n a n -1=2>1, ∴a n >a n -1,即{a n }单调递增,∴{a n }的最大项为a 10=2a 9=22a 8=…=29·a 1=29·2=210=1 024.5.已知数列{a n }中,a n =1+12n -1+m.若a 6为最大项,则实数m 的取值范围是 . 答案 (-11,-9)解析 根据题意知,y =1+12x -1+m 的图象如下:由a 6为最大项,知5<1-m 2<6.∴-11<m <-9.一、选择题1.已知数列{a n }满足a 1>0,2a n +1=a n ,则数列{a n }是( )A .递增数列B .递减数列C .常数列D .以上都不对答案 B解析 ∵a 1>0,a n +1=12a n ,∴a n >0,∴a n +1a n =12<1,∴a n +1<a n ,∴数列{a n }是递减数列.2.在数列{a n }中,a n =n ,则{a n }是( )A .递增数列B .递减数列C .常数列D .以上都不是答案 A解析 ∵a n +1-a n =(n +1)-n =1>0,∴数列{a n }是递增数列.3.已知数列{a n }的通项公式为a n =n 2-9n -100,则其最小项是() A .第4项 B .第5项C .第6项D .第4项或第5项答案 D解析 f (x )=x 2-9x -100的对称轴为x =92,且开口向上.∴a n =n 2-9n -100的最小项是第4项或第5项.4.在递减数列{a n }中,a n =kn (k 为常数),则实数k 的取值范围是( )A .RB .(0,+∞)C .(-∞,0)D .(-∞,0]答案 C解析 ∵{a n }是递减数列,∴a n +1-a n =k (n +1)-kn =k <0.5.函数f (x )满足f (n +1)=f (n )+3(n ∈N *),a n =f (n ),则{a n }是( )A .递增数列B .递减数列C .常数列D .不能确定 答案 A解析 a n +1-a n =f (n +1)-f (n )=3>0.6.已知p >0,n ∈N *,则数列{log 0.5p n }是( )A .递增数列B .递减数列C .增减性与p 的取值有关D .常数列 答案 C解析 令a n =log 0.5p n .当p >1时,p n +1>p n ,∴log 0.5p n +1<log 0.5p n ,即a n +1<a n ;当0<p ≤1时,p n +1≤p n ,∴log 0.5p n +1≥log 0.5p n ,即a n +1≥a n .故选C.7.已知数列{a n }的通项公式为a n =n n 2+6(n ∈N *),则该数列的最大项为( ) A .第2项B .第3项C .第2项或第3项D .不存在 答案 C解析 易知,a n =1n +6n.函数y =x +6x (x >0)在区间(0,6)上单调递减,在区间(6,+∞)上单调递增,故数列a n =1n +6n(n ∈N *)在区间(0,6)上递增,在区间(6,+∞)上递减. 又2<6<3,且a 2=a 3,所以最大项为第2项或第3项.8.已知数列a n 的通项公式a n =n +k n,若对任意的n ∈N *,都有a n ≥a 3,则实数k 的取值范围为( )A .[6,12]B .(6,12)C .[5,12]D .(5,12)答案 A解析 n +k n ≥3+k 3对任意的n ∈N *恒成立,则k ⎝⎛⎭⎫1n -13≥3-n , k (3-n )3n≥3-n , 当n ≥4时,k ≤3n ,所以k ≤12,当n =1时,k ≥3,当n =2时,k ≥6,以上三个要都成立,故取交集得6≤k ≤12.二、填空题9.已知数列{a n }的通项公式为a n =3n 2-28n ,则数列{a n }的各项中的最小项是第 项. 答案 5解析 易知,a n =3n 2-28n =3⎝⎛⎭⎫n -1432-1963,故当n 取143附近的正整数时,a n 最小. 又4<143<5,且a 4=-64,a 5=-65,故数列{a n }的各项中的最小项是第5项. 10.若数列{a n }为递减数列,则{a n }的通项公式可能为 (填序号).①a n =-2n +1;②a n =-n 2+3n +1;③a n =12n ;④a n =(-1)n . 答案 ①③解析 可以通过画函数的图象一一判断,②有增有减,④是摆动数列.11.设函数f (x )=⎩⎪⎨⎪⎧(3-a )x -3,x ≤7,a x -6,x >7,数列{a n }满足a n =f (n ),n ∈N *,且数列{a n }是递增数列,则实数a 的取值范围是 .答案 (2,3)解析 由题意,得点(n ,a n )分布在分段函数f (x )=⎩⎪⎨⎪⎧ (3-a )x -3,x ≤7,a x -6,x >7的图象上. 因此当3-a >0时,a 1<a 2<a 3<…<a 7;当a >1时,a 8<a 9<a 10<…;为使数列{a n }递增还需a 7<a 8.故实数a 满足条件⎩⎪⎨⎪⎧3-a >0,a >1,f (7)<f (8),解得2<a <3,故实数a 的取值范围是(2,3). 三、解答题12.已知数列{a n }中,a n =n 2-kn (n ∈N *),且{a n }递增,求实数k 的取值范围. 解 因为a n +1=(n +1)2-k (n +1),a n =n 2-kn , 所以a n +1-a n =(n +1)2-k (n +1)-n 2+kn =2n +1-k . 由于数列{a n }递增,故应有a n +1-a n >0,即2n +1-k >0,n ∈N *恒成立,分离变量得k <2n +1, 故需k <3即可,所以k 的取值范围为(-∞,3).13.已知数列{a n }的通项公式为a n =n 2+11n .(1)判断{a n }的单调性; (2)求{a n }的最小项.解 (1)a n +1-a n =(n +1)+11n +1-⎝⎛⎭⎫n +11n =1+11n +1-11n =n (n +1)-11n (n +1),且n ∈N *,当1≤n ≤2时,a n +1-a n <0, 当n ≥3时,a n +1-a n >0, 即n =1,n =2时,{a n }递减, n ≥3时,{a n }递增.(2)由(1)知{a n }的最小项从a 2,a 3中产生. 由a 2=152>a 3=203,∴{a n }的最小项为a 3=203.14.已知数列a n =n +13n -16,则数列{a n }中的最小项是第 项.答案 5解析 a n =n +13n -16=n -163+1933n -16=13+1933n -16,令3n -16<0,得n <163.又f (n )=a n 在⎝⎛⎭⎫0,163上单调递减,且n ∈N *, 所以当n =5时,a n 取最小值.15.作出数列{a n }:a n =-n 2+10n +11的图象,判断数列的增减性,若有最值,求出最值. 解 列表图象如图所示.由数列的图象知,当1≤n≤5时数列递增;当n>5时数列递减,最大值为a5=36,无最小值.。
(完整版)最大公因数与最小公倍数应用题

(完整版)最大公因数与最小公倍数应用题最大公因数与最小公倍数应用题1、有一些糖果,分给8个人或分给10个人,正好分完,这些糖果最少有多少粒?解:【8,10】=402、有一包糖,不论分给8个人,还是分给10个人,都能正好分完。
这包糖至少有多少块?解:【8,10】=40(人)3、一个数被2除余1,被3除余2,被4除余4,被6除余5,此数最小是几?解:【2,3,4,6】=1212-1=114、五年级学生参加植树活动,人数在30~50之间。
如果分成3人一组,4人一组,6人一组或者8人一组,都恰好分完。
五年级参加植树活动的学生有多少人?解:【3,4,6,8】=24(人)24×2=48(人)5、利用每一小块长6公分,宽4公分的长方形彩色瓷砖在墙壁上贴成正方形的图案。
问:拼成的正方形的面积最小是多少?解:【6,4】=12(公分)12×12=144(CM2)6、有一堆苹果,每8千克一份,9千克一份,或10千克一份,都会多出3千克,这堆苹果至少有多少千克?解:【8,9,10】=360360+3=363kg7、学校合唱队排练时,如果7人一排就差2人,8人一排也差2人,合唱队至少有多少人?解:【7,8】=56(人)56-2=54(人)8、把37支钢笔和38本书,平均奖给几个学习成绩优秀的学生,结果钢笔多出一支,书还缺2本,最多有几个学习成绩优秀的同学?解:37-1=36(本) 38+2=40(本)(36,40)=4(人)9、有24个苹果,32个梨,要分装在盘子里,每盘的苹果和梨的个数相同,最多可以装多少盘?每个盘子里苹果和梨各多少?解:(24,32)=8(盘)24÷8=3(个)32÷8=4(个)10、阜沙市场是20路和21路汽车的起点站。
20路汽车每3分钟发车一次,21路汽车每5分钟发车一次。
这两路汽车同时发车以后,至少再过多少分钟又同时发车?解:【3,5】=15(分钟)11、中心小学五年级学生,分为6人一组,8人一组或9人一组排队做早操,都刚好分完。
人教版小学数学最大公因数和最小公倍数知识点

最大公因数和最小公倍数1. 基本知识(1)因数与最大公因数几个数公有的因数,叫做这几个数的公因数,所有的公因数中最大的一个叫做这几个数的最大公因数。
自然数 a,b 的最大公因数记作(a,b),例如(12,8)=4,(4,6,10) =2。
如果(a,b)=l,则 a 与b 互质。
如果a 是b 的倍数,则(a,b)=b。
自然数 a 能被自然数b 整除,则称 a 是b 的倍数,b 是a 的因数。
(2)倍数与最小公倍数几个自然数公有的倍数,叫做这几个数的公倍数。
公倍数中最小的一个叫做这几个数的最小公倍数。
一般用符号[a,b]表示 a,b 的最小公倍数,例如:[4,10] =20。
(3)求解方法①求最大公因数常用的方法:短除法,列举法,分解质因数法,辗转相除法。
②求最小公倍数常用的方法:短除法,分解质因数法,列举法,最大公因数法。
2.性质(1)两个数的最大公因数的因数,都是这两个数的公因数。
如果(a,b)=d,c|d,那么 c|a,c|b。
(2)两个数分别除以它们的最大公因数,所得的商一定是互质的。
如果(a,b)=d,那么(a÷d,b÷d)=1。
(3)若一个数 c 能同时被两个自然数 a,b 整除,那么 c 一定能被这两个数的最小公倍数整除。
或者说,一些数的公倍数一定是这些数的最小公倍数的倍数。
(4)两个自然数的最大公因数与最小公倍数的乘积等于这两个数的乘积。
例1(★)已知两个数分别是 4 和 B,已知4 =2×2×3×5.B=2×3×3×5,求 A,B 的最大公因数。
例2(★)一箱图书可以平均分给 2,3,4,5,6 名小朋友,这箱图书最少有多少本?。
压水堆核电厂反应堆换料安全评价通用要求-最新国标

目次6.1 反应堆换料设计与换料安全评价 .................................................. 3 6.2 换料安全评价方法与要求 ........................................................ 3 6.3 关键安全参数选取原则 .......................................................... 4 范围..............................................................................1规范性引用文件....................................................................1术语和定义........................................................................1缩略语............................................................................2核电厂工况分类....................................................................3换料安全评价通用要求123456..............................................................36.4换料安全评价软件要求 .......................................................... 4 7 通用关键安全参数评价要求 .......................................................... 4 7.1 反应堆动力学通用关键安全参数 .................................................. 4 7.2 DBC-1工况包络功率分布的通用关键安全参数 ....................................... 5 7.3DBC-2工况反应堆保护定值的通用关键安全参数 ..................................... 5 8 特定关键安全参数评价要求 .......................................................... 6 8.1 硼稀释事故 .................................................................... 6 8.2 控制棒落棒事故 ................................................................ 7 8.3 次临界或低功率启动工况下控制棒组失控提出事故 .................................. 8 8.4 功率运行工况下单束控制棒失控提出事故 .......................................... 9 8.5 控制棒弹出事故 ................................................................ 9 8.6主蒸汽管道破裂事故 ........................................................... 10 9 报告编制要求 ..................................................................... 11 9.1 换料安全分析检验清单 ......................................................... 11 9.2 换料安全评价报告 . (11)压水堆核电厂反应堆换料安全评价通用要求1范围本文件规定了压水堆核电厂反应堆换料设计中的安全评价通用要求,给出了换料安全评价采用的方法和评价所需的通用关键安全参数与特定关键安全参数。
2.6.3函数的最值—2021-2022学年高二下学期数学 北师大版(2019)选择性必修第二册

∵ ℎ 1 = 0,当 ∈
1 时, ℎ > 0,从而
′ > 0这时函数f(x)单调递增;
当 ∈ 1 2 时, ℎ < 0,从而 ′ < 0,这时
函数f(x)单调递减.
.
min
= 1 = 1.
环节五
最值与参数
3
2
4.函数 = − 6 + ,是否存在实数a,
北师大(2019)选择性必修第二册
§ 2.6.3 函数的最值
(第一课时)
胡
琪
知识目标
1、使学生理解函数的最大值与最小值的概念;
2、使学生掌握用导数求函数的最值的方法和步
骤
重点:
利用导数求函数的最大值与最小值的方法
难点:
函数的最大值、最小值与函数的极大值和极
小值的关系。
环节一
复习
函数的极值与导数之间的关系
4
−
3
又·: 0 = 4, 3 = 1
4
∴函数f(z)在[0,3]的最大值是4,最小值是 −
3
思
考
将例题中的区间[0,3]改为 −3 4 ,最大值最
小值又会是多少? −3 5 呢?
3
2
2.求 = − 3 + 2在区间 −1 1 上的最大值
与最小值.
′
2
= 3 − 6 = 3 − 2 ,
函数在定义域上的最小值.
注意
函数的最值是整体性的概念
函数的极值不一定是最值,最值不
一定是极值
当f(x)在区间[a,b]上连续 当f(x)在区间 上
连续不断且单调时,其最值在端不断时,其最
值在端点处或点处取得极值点处取得
一次函数的最大值和最小值

若直线 l 1 : A 1 x + B 1 y + C1 = 0 与直线 l 2 : A 2 x + B 2 y + C2 = 0 相交于 P , 则 l 1 与 l 2 的线性组合 (λ,μ ∈R , 且不全 为零) l 3 : λ( A 1 x + B1 y + C1 ) + μ( A 2 x + B 2 y + C2 ) = 0 表示过 P 点的所有直线 , 称为过 P 点的直线系方 程. 特别地 , 当 λ = 0 时 , l 3 成为 l 2 ; 当 μ = 0 时 , l 3 成为 l 1 . 对于 l 1 , l 2 以外的直线 , 我们往往只在 l 3 中
S △B′ , C′ D′
而 △B′ C′ D′ 只是 △B′ CD′ 的一部分 , 由计算易得
S △B′ CD′=
1 μ ). ab (λ+ μ - λ 2
因此 ,
1 μ ). ab (λ+ μ - λ 2 ②设 R = D , 则不论 P 和 Q 为 A , B′ , C′ , D′ 中
S △PQR ≤
假定 n 为偶数 , 那么从上式导出 S ≥一方面 , 若取 x 1 = x 2 = …= x 2 = 1 , x 2
n n
.另
+1
= x2
+2
=
© 1994-2006 China Academic Journal Electronic Publishing House. All rights reserved.
的最大值和最小值总是在区间 [α,β] 的某一个端点 处取到 . 假如 a = 0 , 那么 y = 常数 b , y 在整个实轴上处 处取到最大值和最小值 . 我们 以 f ( x ) 表 示 ax + b , 以 max f ( x ) 和
公因数、最大公因数与公倍数、最小公倍数

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 公因数、最大公因数与公倍数、最小公倍数公因数与最大公因数、公倍数与最小公倍数知识点复习:知识点复习:1、公因数:2、最大公因数:3、公倍数:4、最小公倍数:5、1、公因数:2、最大公因数:3、公倍数:4、最小公倍数:5、求几个数的最大公因数与最小公倍数的常用方法:倍数法、分解质因数法、短除法倍数法、分解质因数法、短除法 6、100 以内的质数有:2,3 ,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97. 7 、最大的公因数是 1 的两个自然数,叫做互质数操练练习:一、判断下列说法是否正确。
(1)16 是 2 和 4 的公倍数。
()(2)5 的公倍数是 20。
()(3)3 和 5 的公倍数中有 15、30。
1 / 5()(4)12 是 3 和 4 的最小公倍数。
()(5)几个数的公倍数是无限的,最小的只有一个.()(6)两个不同的自然数的最大公因数一定比最小公倍数小.()(7)如果三个自然数两两互质,它们的最大公因数是 1,最小公倍数就是三个数的乘积.()(8)如果一个质数与一个合数不是互质数,那么这个合数是这两个数的最小公倍数.()(9)一个数的因数必定小于它的倍数.()二、按要求写数。
(1)12 的因数有:(2)18 的因数有: (3)12 和 18 的公因数有:(4)12 和 18 的最大公因数是: (5)几个公有的因数叫做它们的(),其中最大的一个叫做这几个数的()。
(6)在下面集合圈内,分别填上下列数的因数和公因数,再说说它们的最大公因数是多少。
9 的因数 18 的因数 24 的因数 32 的因数9 和 18 的公因数 24 和 32 的公因数 9 和18 的最大的公因数是() 24 和 32 的最大公因数是()三、选择题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 最大与最小
例1、下面等式中,B 应是什么数时,才能使A 最大?
例2、如果四个人平均年龄是30岁,且在四人中没有小于21岁的,那么年龄最大的可能是几岁? 例3、把14分成几个自然数的和,再求出这些自然数的乘积,要使得乘积尽可能大,问这个乘积是几? 例4、120名少先队员选举大队长,有甲、乙、丙三个候选人,每个少先队员只能选他们之中一个人,不能弃权。
若前100票中,甲得了45票,乙得了20票,丙得了35票,甲要保证当选至少还需要多少张选票?
例5、和为10的两个自然数,它们的积的最大值是多少?
例6、把三根一样长的绳子分给甲、乙、丙三个小朋友,他们各自用绳子在地上围成一个封闭图形,即绳头和绳尾必须接在一起。
现知道绳长为4米,他们三个小朋友摆的图形是以下三种图形(如下图)。
试算一算他们的面积,然后比较他们的大小。
甲 乙 丙
例7、用30米长的篱笆围成一个长方形鸡舍(1)当长和宽各是多少时,鸡舍面积最大?(2)若长方形一面靠墙,长和宽各为多少时面积最大?最大面积是多少?
例8、如右图,侦察员骑马从A 然后去B 地取情报。
在去B 请你在图中标出来。
例9、设牧马营在M ,每天牧马要赶着马群先到河边饮水,再到草地吃草,然后回营地,问:怎样的放牧路程最短?
例10、一只小虫从图长方体的A 点出发,沿长方体的表面爬行,依次经过前面、上面、后面、底面,最后到达P 点。
请你为它设计一条最短的爬行路线。
例11、景泰蓝厂的工人师傅要给一个圆柱形的制品嵌金线,如下图(1),如果将金线的起点固定在A 点,绕一周之后终点为B 点,问沿什么线路才能使金线的用量最少?
A A′
(1)(2)
练习
1、将19分成若干个自然数的和,这些自然数乘积的最大值是多少?分成三个自然数的和呢?分成两个自然数呢?
2、不计算比较:12489×12356和12359×12486的大小。
3、两条直角边的和一定,什么样的直角三角形面积最大?若两条直角边和为10,求三角形最大面积。
4、把1、2、3、4、
5、6填入下面方框里,要使两个三位数的积最大,该怎样填?
5、已知PQ-1=X,其中P、Q为质数且均小于1000,X是奇数,那么X的最大值
6、如图(6)某次划船比赛规定从A点出发,先到左岸然后到右岸然后到B点,时间少者取胜。
请你设计一条航线,使船走的路程最短。
A·
B·
图(6) 图(7)
7、用6米长的篱笆材料在围墙角修建如右图所示的鸡圈,问鸡圈的长与宽分别是多少时,鸡圈的面积最大?
8、如图,小明住在甲村,奶奶住在乙村,星期天小明去看奶奶,先在北山坡打一捆草,又在南山坡砍一捆柴给奶奶送去,请问:小明应选择怎样的路线使路程最短?
9、如图是一张台球桌子,桌子上球A与球B之间有其他球阻隔。
现在要击A球,经桌边CD、CF两次反射再碰到B球,请你画出A球行走的最短路线。
·甲村
·乙村
D
(8)(9)
10、正方体上的A处有一只小虫,而B处有它急需的食物,小虫为了尽快吃到食物,它应该沿着怎样的路线爬行,画图表示出一条这样的路线,这样的路线有多少条?
11、某商场门口沿着马路向东是公园,向西是某中学。
该校两名学生
从商场出来准备去公园,他们商议两种方案:(1)先步行回校取自行车,然
后骑车去公园。
(2)直接从商场步行去公园。
已知骑车速度是步行速度的4
倍,从商场到学校有3千米的路程,结果他们采用了所用时间教少的方案
那么商场到公园的路程至少大于多少千米? A。