加法原理与乘法原理

合集下载

加法原理,乘法原理

加法原理,乘法原理

加法原理,乘法原理运算是现代社会不可缺少的一种基本技能,它不仅在学校教育中被广泛的使用,在实际的日常生活中同样也被广泛的使用。

基本的运算有加法、减法、乘法和除法,加法和乘法是其中最重要的。

加法原理指:加法是求和,两数相加,求它们之和。

乘法原理指:乘法是求积,两数相乘,求它们之积。

加法原理的核心思想是“多位一体”,即可以把多个小的数字合并成一个大的数字。

它的标准形式是“两个数字相加,求它们之和”,其具体步骤如下:1、从个位开始,对两位数相加,如果其结果大于等于10,则将其十位数记录在结果中,将十位数和个位数相加,得出最终的结果。

2、从十位开始,对两位数相加,如果其结果大于等于10,则将其百位数记录在结果中,将百位数和十位数相加,得出最终的结果。

3、以此类推,不断对两位数相加,如果其结果大于等于10,则将其余位数记录在结果中,将余位数和相邻位数相加,得出最终的结果。

乘法原理的核心思想是“重复加法”,即可以连续的进行加法运算来进行乘法运算。

它的标准形式是“两个数相乘,求它们之积”,其具体步骤如下:1、将乘数乘以被乘数的每一位,得到一个临时结果,然后把所有的临时结果相加,得到最终的结果。

2、如果某一位的结果大于等于10,则将其结果的十位数加到下一位中,将其个位数留在当前位中,然后将所有的结果相加,得到最终的结果。

以上就是加法原理和乘法原理的基本概念,只要掌握了这两个原理的基本概念,我们就可以轻松的完成加法和乘法的运算。

在数学学习和实际应用中,加法和乘法原理是不可缺少的必修课程,能够帮助我们理解和掌握运算,有助于我们日常生活的更科学、更高效的运用。

乘法原理和加法原理

乘法原理和加法原理

乘法原理和加法原理加法原理:完成一件工作有几种不同的方法,每种方法又有很多种不同的方法,而且这些方法彼此互斥,那么完成这件方法的总数就是等于各类完成这件工作的综合。

这类方法称为加法原理,也叫分类计数原理。

乘法原理:如果完成一件工作需要很多步骤,每个步骤又有很多种方法,那么完成这件工作的方法就是把每一步骤中的不同方法乘起来,这类方法称为乘法原理,也叫分步计数原理。

例题:例1. 小军、小兰和小红三个小朋友排成一排照相,有多少种不同的排法, 例2. 书架上有5本不同的科技书,6本不同的故事书,8本不同的英语书。

如果从中各取一本科技书、一本故事书、一本英语书,那么共有多少种取法,例3.一个盒子里装有5个小球,另一个盒子里装有9个小球,所有的这些小球的颜色各不相同。

(1)从两个盒子任取一个球,有多少种不同的取法,(2)从两个盒子里各取一个球,有多少种不同的取法,例4.四个数字3、5、6、8可以组成多个没有重复数字的四位数,例5.用四种不同的颜色给下面的图形涂色,使相邻的长方形颜色不相同,有多少种不同的涂法,BACD当堂练:1. 五一前夕,学校举行亲子活动,玲玲有红、白、黄、花四件上衣和蓝、黄、青共三种颜色的裙子,找出来搭配着穿,一共有多少种不同的搭配方法,2.甲、乙、丙三个组,甲组6人,乙组5人,丙组4人,如果从三组中选出一个代表,有多少种不同的选法,3.有7、3、6三个数字卡片,能组成几个不同的三位数,课堂作业:1. 春节期间,有四个小朋友,如果他们互相寄一张贺卡,一共寄了多少张,2. 有8,0,2,4,6五个数字可以组成几个不同的五位数,3. 一个袋子里装有6个白色乒乓球,另一个袋子里装有8个黄色乒乓球。

(1).从两个袋子里任取一个乒乓球,共有多少种不同取法?(2).从两个袋子里各取一个乒乓球,有多少种不同取法,4. 南京到上海的动车组特快列车,中途只停靠常州、无锡、苏州三个火车站,共要准备多少种不同的车票,有多少种不同的票价,(考虑往返)5.在A、B、C、D四个长方形区域中涂上红、黄、蓝、黑这四种颜色,使任何相邻两个长方形颜色不同,一共有多少种不同的涂法,ABC D6.有6个不同的文具盒,4支不同的铅笔,4支不同的钢笔,2把不同的尺子。

加法原理和乘法原理

加法原理和乘法原理

加法原理和乘法原理
1.加法原理:
加法原理也称为分情形原理,是指对一个由相互独立的事件构成的事件总和,其计数等于这些事件各自计数的总和。

简单来说,当我们需要从A和B两个集合中选择元素,或者进行两个动作时,可以使用加法原理来计数。

加法原理的表达式可以表示为:,
A∪B,=,A,+,B,-,A∩B。

一个例子是,有5个红球和3个蓝球,我们要从中选3个球。

这里红球和蓝球是分别独立的集合,使用加法原理可以直接将选红球的方式数目与选蓝球的方式数目相加,即C(5,3)+C(3,3)=10+1=11
2.乘法原理:
乘法原理也称为连乘法则,是指对一个多步操作的计数问题,其计数等于每个步骤计数的乘积。

乘法原理可以用于计数多个独立事件同时发生的可能性。

乘法原理的表达式可以表示为:,A×B,=,A,×,B。

一个例子是,有4个人,每个人有3种选择,问有多少种不同的选择方式。

我们可以将这个问题分解成4个独立的选择过程,并将每个选择过程的可能性相乘:3^4=81
乘法原理还可以推广到更多步骤的操作。

比如,在一个密码中,每位密码有10个可能的选项,密码有4位。

使用乘法原理,我们可以计算出总共有10^4=10,000种不同的密码可能性。

总结起来,加法原理和乘法原理是计数问题中非常重要的基本原理。

它们可以帮助我们计算各种可能性的总数,从而解决各种实际问题。

在实际应用中,我们通常需要灵活地使用这两个原理,结合具体问题进行推理和计算。

加法原理和乘法原理

加法原理和乘法原理

加法原理和乘法原理首先,我们来了解一下加法原理。

加法原理是指求解一个问题的总数时,将问题分解为若干个子问题,并将每个子问题的解相加,从而得到整体的解的过程。

例如,假设一个班级有10个男生和15个女生,要从中选出一名学生担任班长。

根据加法原理,我们可以将问题分解为两个子问题:选出一个男生作为班长和选出一个女生作为班长。

然后,我们计算每个子问题的解的个数,并将它们相加,得到总的解的个数:男生子问题的解的个数为10个,女生子问题的解的个数为15个。

因此,根据加法原理,总的解的个数为10+15=25个。

在实际应用中,加法原理常常用于计算组合问题的总数。

例如,假设我们有4种不同的水果可以选择,要选择其中一个水果。

根据加法原理,我们可以将问题分解为4个子问题:分别选择苹果、橙子、香蕉和草莓。

然后,计算每个子问题的解的个数,并将它们相加,得到总的解的个数:4个。

也就是说,根据加法原理,我们共有4种选择。

接下来,我们来了解一下乘法原理。

乘法原理是指求解一个问题的总数时,将问题分解为若干个独立的步骤,并将每个步骤的解相乘,从而得到整体的解的过程。

例如,假设我们要从一副扑克牌中抽出一张红心牌并抽出一张A牌。

根据乘法原理,我们可以将问题分解为两个独立的步骤:先抽出一张红心牌,再从红心牌中抽出一张A牌。

然后,计算每个步骤的解的个数,并将它们相乘,得到总的解的个数:抽出一张红心牌的解的个数为26个(一副扑克牌中有52张牌,其中红心牌有26张),从红心牌中抽出一张A牌的解的个数为4个(红心牌中有4张A牌)。

因此,根据乘法原理,总的解的个数为26*4=104个。

综上所述,加法原理和乘法原理是数学中的基本原理,用于计算和解决组合问题和概率问题。

它们在实际应用中具有广泛的应用价值,帮助我们更好地理解和解决各种复杂的计算问题。

通过加法原理和乘法原理,我们可以将复杂的问题拆解为简单的子问题,从而更容易得到问题的解。

加法原理乘法原理

加法原理乘法原理

加法原理乘法原理加法原理和乘法原理是概率论中重要的基本原理,它们在计算概率问题时起到了至关重要的作用。

本文将详细介绍加法原理和乘法原理,并从实际问题的角度解释这两个原理。

一、加法原理:加法原理是指当可能发生的两个事件互不相容时,其概率可以通过将两个事件的概率相加来计算。

假设有两个事件A和B,它们互不相容,即A和B不可能同时发生。

那么,这两个事件的概率可以用加法原理进行计算。

对于事件A和B,它们的概率分别为P(A)和P(B),那么事件“A或B 发生”的概率可以表示为P(A∪B)。

根据加法原理,有以下公式:P(A∪B)=P(A)+P(B)加法原理可以简单地理解为,当两个事件互不相容时,事件“A或B 发生”的概率等于事件A发生的概率加上事件B发生的概率。

举例说明:假设考虑一个掷骰子的问题,事件A表示掷骰子出现1的概率,事件B表示掷骰子出现2的概率。

由于掷骰子不可能同时出现1和2,所以事件A和B互不相容。

根据加法原理,事件“A或B发生”的概率等于事件A发生的概率加上事件B发生的概率。

假设掷骰子出现1的概率为1/6,出现2的概率为1/6,那么事件“A或B发生”的概率为1/6+1/6=1/3加法原理的应用不仅仅局限于两个事件,它可以推广到多个互不相容的事件之间。

如果有n个互不相容的事件A1,A2,...,An,那么它们的概率之和可以表示为:P(A1∪A2∪...∪An)=P(A1)+P(A2)+...+P(An)二、乘法原理:乘法原理指出当一个事件发生的次数与另一个事件发生的次数有关联时,可以通过将两个事件的概率相乘来计算它们同时发生的概率。

假设有两个事件A和B,它们的发生次数有一定的关联。

那么,这两个事件同时发生的概率可以用乘法原理进行计算。

对于事件A和B,它们的概率分别为P(A)和P(B),那么事件“A和B 同时发生”的概率可以表示为P(A∩B)。

根据乘法原理,有以下公式:P(A∩B)=P(A)×P(B,A)乘法原理可以简单地理解为,事件“A和B同时发生”的概率等于事件A发生的概率乘以事件B在已知事件A发生的条件下发生的概率。

加法原理、乘法原理

加法原理、乘法原理

加法原理、乘法原理基础知识:1.加法原理:如果完成一件事情可以分成几类方法,每一类又包含若干种不同方法,那么将所有类中的方法数累加就是完成这件事的所有方法数.加法原理的关键在于分类,类与类之间用加法.2.乘法原理:如果完成一件事情可以分成几个步骤,每一步又包含若干种不同方法,那么将所有步骤中的方法数连乘就是完成这件事的所有方法数.乘法原理的关键在于分步,步与步之间用乘法.3.分类原则:分类要做到“不重不漏”.任意两类之间不可以重复,这叫做不重;把所有的类别累加在一起就得到整体,这叫做不漏.4.分步原则:分步要做到“前不影响后”.无论前面步骤采取哪种方法,后面一个步骤都应该有相同多的方法数,也就是说后面一个步骤的方法数与前面步骤采取哪一种方法无关.例1.从1开始依次写下去一直到999,得到一个多位数1234567891011121314…997998999,请问:(1)这个多位数一共有多少位?(2)第999位数字是多少?(3)在这个多位数中,数字9一共出现了多少次?(4)数字0一共出现了多少次?问题(1)这个多位数一共有多少位?[答疑编号5721040101]【答案】(1)2889;(2)9;(3)300;(4)189【解答】分析1:999个自然数构成一个多位数,可以利用加法原理分类的思想求这个多位数的位数.将这999个自然数分成3类:第1类是1位数;第2类是2位数;第3类是3位数.分别计算每一类自然数占了多少位,再求和就可以得出多位数的位数了.详解1:按照自然数的位数去分类.构成这个多位数的自然数中1位数有9个,占了9位;2位数有90个,占了2×90=180位;3位数有900个,占了3×900=2700位;所以这个多位数总共有9+180+2700=2889位.问题(2)第999位数字是多少?详解2:1位数和2位数一共占了189位,999位数数字还需要3位数占据999-189=810位.由810÷3=270…0可知第999位数字是第270个3位数的最后1位.第270个3位数是369,所以第999位数字是9.问题(3)在这个多位数中,数字9一共出现了多少次?分析3:前面2问分类的方法是按照自然数的位数去分类,1位数,2位数,3位数各自分为一类.但按照这种分类的思路来解第3问就不是很方便了:1位数含有1个9,2位数含有19个9,但是考虑3位数含有多少个9还是比较复杂.通过这种分类的思路去分析问题并没有使问题变得简单.可以考虑按照分段的方法去分类,第1类1—99;第2类100—199;第3类200—299;……;第10类900—999.分别计算每一类中包含了多少个9,然后再加和就可以了.注意利用每一类的相似性,比如第1类到第9类每一类所包含9的个数应该一样多,当然第10类900—999中9的个数比前9类要多100个.再考虑一种分类的方法,按照9出现的位置去分类.首先考虑9在百位出现了多少次;再考虑9在十位出现了多少次;最后考虑9在个位出现了多少次.详解3:按照分段的方法去分类.实际这种分类方法也是按照百位数的不同去分类,在每一类中百位数是相同的(1—99可以看成百位数为0).考虑第1类1—99中包含了多少个9,个位包含9的有:9,19,29,39,49,59,69,79,89,99一共10个;十位包含9的有:90,91,92,93,94,95,96,97,98,99也是10个.这样在1—99中9在个位和十位各出现了10次,一共是20次.同理,第2类100—199;第3类200—299;……;第9类800—899;每一类中也都包含20个9.第10类900—999中9的个数比前9类要多100个,应该是120个.所以原来的多位数中总共有20×9+120=300个9.其实更快的方法是按9出现的位置去数,应用乘法原理.问题(4)数字0一共出现了多少次?详解4:按照0出现在个位、十位去分类当0出现在十位时,百位可以为1~9,个位可以为0~9,根据乘法原理,共有9×10=90次;同理,当0出现在个位时,共有9×10+9=99次,所以原来的多位数中0出现了99+90=189次.例2.允许数字重复,那么用数字0、1、3、5、7、9最多可以组成多少个不同的三位数?[答疑编号5721040102]【答案】180【解答】百位有5种选择,十位和个位都有6种选择.根据乘法原理,一共可以组成5×6×6=180个三位数.变化:如果不允许数字重复呢?其中被5整除的无重复数字的三位数又有多少个呢?例3.在所有的三位数中,至少出现一个2的偶数有________个.[答疑编号5721040103]【答案】162【解答】①个位是2的有9×10=90个;②十位是2但个位不是2的偶数有9×4=36个;③百位是2但十位和个位都不是2的偶数有9×4=36个,所以一共有90+36+36=162个符合条件的三位数.例4.用1、2、3、4、5这5个数字组成四位数,至多允许有1个数字重复两次.例如1234、1233和2454是满足条件的,而1212、3335和4444就是不满足条件的.那么,所有这样的四位数共有________个.[答疑编号5721040104]【答案】480个【解答】方法1:分类讨论.如果包含4个互不相同的数字,一共有5×4×3×2=120个;如果包含3个互不相同的数字,我们可以先从5个数字中选出3个数字,然后再从挑出的3个数字中选1个可以重复,最后把这3个数字带上1个重复的数字共4个数字排成1行.根据乘法原理,就有个,所以一共有120+360=480个四位数.方法2:排除法.所有可能的四位数有5×5×5×5=625个;只包含1个数字的有5个,包含2个数字的有5×4×(2×2×2-1)=140个.那么包含3个或4个不同数字的四位数有625-5-140=480个.例5.书架上有1本英语书,9本不同的语文书,9本不同的数学书和7本不同的历史书.现在要从中取出3本书,而且不能有两本是同一科的.那一共有多少种取法?[答疑编号5721040105]【答案】774【解答】因为一共要4种书中选3种,所以要分4种情况讨论:如果拿的是英语、语文和数学书,根据乘法原理一共有1×9×9种方法;如果拿的是英语、语文和历史书,一共有1×9×7种拿法,同理另外两种情况分别有1×9×7种和9×9×7种拿法.最后我们根据加法原理,一共有1×9×9+1×9×7+1×9×7+9×9×7=1×9×16+10×9×7=144+630=774种拿法.例1.用0,1,2,3,4这五个数字可以组成多少个无重复数字的:(1)银行存折的四位密码;(2)四位数;(3)四位奇数.[答疑编号5721040201]【答案】(1)120(个);(2)96(个);(3)36(个).【解答】(1)完成“组成无重复数字的四位密码”这件事,可以分四个步骤:第一步:选取左边第一个位置上的数字,有5种选取方法;第二步:选取左边第二个位置上的数字,有4种选取方法;第三步:选取左边第三个位置上的数字,有3种选取方法;第四步:选取左边第四个位置上的数字,有2种选取方法;由乘法原理,可组成不同的四位密码共有N=5×4×3×2=120(个).(2)完成“组成无重复数字的四位数”这件事,可以分四个步骤:第一步:从1,2,3,4中选取一个数字作千位数字,有4种选取方法;第二步:从1,2,3,4中余下的三个数字和0中选取一个数字作百位数字,有4种选取方法;第三步:从余下的三个数字中选取一个数字作十位数字,有3种选取方法;第四步:从余下的两个数字中选取一个数字作个位数字,有2种选取方法;由乘法原理,可组成不同的四位数共有N=4×4×3×2=96(个).(3)完成“组成无重复数字的四位奇数”这件事,可以分四个步骤:第一步:从1,3中选取一个数字作个位数字,有2种选取方法;第二步:从1,3中余下的一个数字和2,4中选取一个数字作千位数字,有3种选取方法;第三步:从余下的三个数字中选取一个数字作百位数字,有3种选取方法;第四步:从余下的两个数字中选取一个数字作十位数字,有2种选取方法;由乘法原理,可组成不同的四位奇数共有N=2×3×3×2=36(个).例2.在1~20共20个整数中取两个数相加,使其和为偶数的不同取法共有多少种?[答疑编号5721040202]【答案】90(种)【解答】取a+b与取b+a是同一种取法.分类标准为两加数的奇偶性,第一类,偶偶相加,由乘法原理得(10×9)/2=45种取法,第二类,奇奇相加,也有(10×9)/2=45种取法.根据加法原理共有45+45=90种不同取法.例3.将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案有多少种?[答疑编号5721040203]【答案】150(种)【解答】5名志愿者分配到3个不同的奥运场馆,可以分成3,1,1和2,2,1两类,第一类:分成3,1,1,完成此件事可以分成3步,第1步:3个馆选一个馆去3个人,共有3种选法,第2步:5个人中选3个人,共有种选法,第3步:剩下的2个人分别去两个馆,所以当分配成3,1,1时,根据乘法原理,共有3×10×2=60(种);第二类:分成2,2,1,完成此件事可以分成3步,第1步:5个人中选出一个人,共有5种选法,第2步:3个馆中选出一个馆,共有3种选法,第3步:剩下的4个人中选2个人去剩下两个馆中的一个,最后一个人去另外一个馆,共有(种),所以当分配成2,2,1时,根据乘法原理,共有5×3×6=90(种);所以根据加法原理,不同的分配方案共有60+90=150(种).例4.用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数有多少个?[答疑编号5721040204]【答案】40(个)【解答】可分三步来做这件事:第一步:先将3、5放到六个数位中的两个,共有2种排法;第二步:再将4、6插空放入剩下四个数位中的两个,共有2×2=4种排法;第三步:将1、2放到3、5、4、6形成的空位中,共有5种排法.根据乘法原理:共有2×4×5=40(种).例5.在一个3行4列的方格表内放入4枚相同的棋子,要求每列至多只有1枚棋子,每行不做限制,那么一共有多少种不同的放法?在一个3行4列的方格表内放入4枚互不相同的棋子,要求每列至多只有1枚棋子,每行不做限制,那么一共有多少种不同的放法?[答疑编号5721040205]【答案】81(种);1944(种)【解答】「问题1」4枚棋子放入4列,每一列有且仅有1枚棋子,因此总共分4个步骤考虑.第1步考虑第1列的棋子放在什么位置;第2步考虑第2列的棋子放在什么位置;第3步考虑第3列的棋子放在什么位置;第4步考虑第4列的棋子放在什么位置.每一步都有3种选择方法,所以方法数一共有3×3×3×3=81种.「问题2」假设4枚互不相同的棋子为A,B,C,D.将按照下面的4个步骤进行考虑,先放棋子A,12个格子可以随便选择,一共有12种方法.第2步放棋子B,A那一列的3个格子不能选择,其它的格子都可以放B,所以一共有9种方法.第3步放棋子C,A、B那两列一共6个格子不能选,所以一共有6种方法.第4步放棋子D,A、B、C三列一共9个格子不能选,还剩3个格子,所以一共有3种方法.利用乘法原理,放入4个不同棋子的方法数一共有12×9×6×3=1944种方法.另外一种解法.「问题2」4个棋子要占4个方格,先选出放棋子的4个方格.实际上挑出4个方格的方法数和第1问是完全相同的,总共有3×3×3×3=81种选择方法.选好方格后再将棋子排列进去,第1列的方格可以选择A,B,C,D中的任何一个棋子,所以有4种方法;第2列的方格还剩下三个棋子可供选择,所以有3种方法;第3列的方格还剩下两个棋子可供选择,有2种方法;第4列的方格只有1种方法.所以选好4个方格后排列棋子的方法数一共是4×3×2×1=24种.选4个方格有81种方法,选好4个方格后放棋子一共有24种方法,所以将表格中放入4个互不相同的棋子的总方法数是81×24=1944种.例6. 如图,把图中的8个部分用红、黄、绿、蓝4种不同的颜色着色,且相邻的部分不能使用同一种颜色,不相邻的部分可以使用同一种颜色.那么,这幅图共有多少种不同的着色方法?[答疑编号5721040206]【答案】768(种)【解答】按照A,B,D,E,C,G,F,H的步骤进行染色.对A进行染色的时候没有任何的限制,总共有4种染色的方法;对B进行染色的时候由于不能和A同色,所以有3种染色的方法;对D进行染色的时候由于不能和A,B同色,所以只剩2种染色的方法;对E进行染色时不能和B,D同色,所以有2种染色的方法;对C进行染色时不能和B,E 同色,所以有2种染色方法;对G进行染色时不能和D,E同色,所以有2种染色的方法;对F进行染色时不能和D,G同色,所以有2种染色的方法;对H进行染色时不能和E,G同色,所以有2种染色的方法.综合上面的八个步骤,利用乘法原理,共有4×3×2×2×2×2×2×2=768种着色的方法.「评议」本题染色的步骤还有很多种,大家考虑一下按照A,B,C,D,E,F,G,H的步骤进行染色是否可以?可能有同学发现按照A,B,C,D,E,F,G,H的步骤进行染色会算出另外一个答案4×3×3×2×1×3×1×2=432.当然,正确答案只能有一个,那么这种分步方法到底错在哪里呢?这里要提到利用乘法原理一条重要的原则:“前不影响后”.无论前面步骤采取哪种染色方法,后面一个步骤都应该有相同多的方法数,也就是说后面一个步骤的方法数与前面步骤采取哪一种方法无关.而按照A,B,C,D,E,F,G,H的步骤来染色就违反了这个原则.请看下面图中的例子:在上面的例子中,左图前4步采取的染色方法是红、黄、绿、蓝,第5步对E进行染色时只有1种方法;右图前4步采取的染色方法是红、黄、绿、绿,这样第5步对E进行染色时有2种方法.于是第5个步骤对E进行染色无法确定到底有几种染色的方法,前4步不同的染色方案影响到了第5步的方法数,既然不能确定是1种还是2种,乘法原理自然也就无法应用了.例7.如果一个数与11作竖式乘法的过程中不需要进位,那么就称这个数是“好数”.例如,11、131和142就都是“好数”,而65、78和75都不是“好数”.那么小于300的三位数中共有________个“好数”.[答疑编号5721040207]【答案】106(个)【解答】首先看首位数字是1的“好数”,其十位数字不能是9.在十位数字是8的“好数”中,只有180和181;在十位数字是7的“好数”中,只有170,171和172这3个……在十位数字是0的“好数”中,有100,101……109这10个.因此首位数字是1的“好数”有2+3+……+10=54个.同样方法,可以求出首位数字是2的“好数”有3+4+……+10=54个.因此,小于300的“好数”有54+52=106个.。

加法原理和乘法原理

加法原理和乘法原理

加法原理加法原理加法原理加法原理:完成一件工作共有N类方法。

在第一类方法中有m1种不同的方法,在第二类方法中有m2种不同的方法,……,在第N类方法中有mn种不同的方法,那么完成这件工作共有N=m1+m2+m3+…+mn种不同方法。

运用加法原理计数,关键在于合理分类,不重不漏。

要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。

合理分类也是运用加法原理解决问题的难点,不同的问题,分类的标准往往不同,需要积累一定的解题经验。

乘法原理乘法原理乘法原理乘法原理:完成一件工作共需N个步骤:完成第一个步骤有m1种方法,完成第二个步骤有m2种方法,…,完成第N个步骤有mn种方法,那么,完成这件工作共有m1×m2×…×mn种方法。

运用乘法原理计数,关键在于合理分步。

完成这件工作的N个步骤,各个步骤之间是相互联系的,任何一步的一种方法都不能完成此工作,必须连续完成这N步才能完成此工作;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此工作的方法也不同。

1、用1角、2角和5角的三种人民币(每种的张数没有限制)组成1元钱,有多少种方法?【【【【解析解析解析解析】:】:】:】:运用加法原理,把组成方法分成三大类:①只取一种人民币组成1元,有3种方法:10张1角;5张2角;2张5角。

②取两种人民币组成1元,有5种方法:1张5角和5张1角;一张2角和8张1角;2张2角和6张1角;3张2角和4张1角;4张2角和2张1角。

③取三种人民币组成1元,有2种方法:1张5角、1张2角和3张1角的;1张5角、2张2角和1张1角的。

所以共有组成方法:3+5+2=10(种)。

2、各数位的数字之和是24的三位数共有多少个?一个数各个数位上的数字,最大只能是9,24可分拆为:24=9+9+7;24=9+8+7;24=8+8+8。

加法原理与乘法原理

加法原理与乘法原理

加法原理与乘法原理加法原理和乘法原理都是数学中常用的基本原理,它们在组合计数和概率等领域中具有广泛的应用。

下面将分别对加法原理和乘法原理进行详细的介绍。

一、加法原理加法原理又称为求和原理,它指出当其中一事件可以通过若干个不同的方法实现时,其总的可能性数等于各种情况的可能性之和。

首先,我们假设有两个事件A和B,事件A可以通过m种方式发生,事件B可以通过n种方式发生。

那么,事件A和B共同发生的方式有多少种呢?加法原理告诉我们,共同发生的方式总共有m+n种。

这就是加法原理的基本形式。

这一原理可以推广到多个事件的情况。

假设有n个事件A1,A2,...,An,分别可以通过m1,m2,...,mn种方式实现。

那么,这n个事件共同发生的方式有多少种呢?根据加法原理,可以得出这n个事件共同发生的方式总共有m1+m2+...+mn种。

加法原理在实际问题中的应用非常广泛。

例如,在数列求和中,如果一些数列可以分成若干个部分进行求和,那么最终的求和结果就可以通过加法原理来计算。

又如,在排列组合问题中,如果一些问题可以拆分成若干个子问题,那么其总的可能性数也可以通过加法原理来计算。

二、乘法原理乘法原理又称积法原理,它指出当若干个独立的事件同时发生时,这些事件共同发生的方式数等于各事件发生方式数的乘积。

首先,我们假设有两个独立的事件A和B,事件A可以通过m种方式发生,事件B可以通过n种方式发生。

那么,事件A和B同时发生的方式有多少种呢?根据乘法原理,共同发生的方式总共有m*n种。

类似地,乘法原理也可以推广到多个事件的情况。

假设有n个独立的事件A1,A2,...,An,分别可以通过m1,m2,...,mn种方式实现。

那么,这n个事件同时发生的方式有多少种呢?根据乘法原理,可以得出这n个事件同时发生的方式总共有m1 * m2 *...* mn种。

乘法原理在实际问题中的应用也非常广泛。

例如,在排列组合问题中,如果一些问题可以拆分成若干个独立的子问题,那么其总的可能性数就可以通过乘法原理来计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

加法原理与乘法原理
教学内容: 思维训练内容《加法原理与乘法原理》。

教学目标:
(1)知识教学目标:理解和掌握加法原理和乘法原理。

(2)能力训练目标:通过分析、探究将现实情景问题转化为加法原理与乘法原理的数学问题来解决。

(3)情感、态度、价值观目标:通过对问题的解决激发学生的学习兴趣,感受数学与生活的密切联系
教学过程:
(一)加法原理
如果完成某件事共有几类不同的方法,而每类方法中,又有几种不同的方法,任选一种方法都可以完成此事,那么完成这件事的方法总数就等于各种方法的总和,这一原理称为加法原理。

例:从甲地到乙地,一天中火车有4班,汽车有2班,轮船有3班,那么,一天中乘坐这些交通工具从甲地到乙地,共有多少种不同的走法?
解析:把乘坐不同班次的车、船称为不同的走法。

要完成从甲地到乙地这件事,可以乘火车,也可以乘汽车,还可以乘轮船,一天中,乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法。

而乘坐火车、汽车、轮船中的任何一班次,都可以从甲地到乙地,符合加法原理。

所以从甲地到乙地的总的走法=乘火车的4种走法+乘汽车的2种走法+乘轮船的3种走法=9种不同的走法
(二)乘法原理
如果做某件事,需要分几个步骤才能完成,而每个步骤又有几种不同的方法,任选一种方法都不能完成这件事,那么完成这件事的方法总数,就等于完成各步骤方法的乘积。

例:用1、2、3、4这四个数字可以组成多少个不同的三位数?
解析:要完成组成一个三位数这件事,要分三个步骤做,首先选百位上的数,再选十位上的数,最后选个位上的数。

选百位上的数这一步骤中,可选1、2、3、4任何一个,共4种方法
选十位上的数这一步骤中,可选除百位上已选好那个数字之外的三个数字,共3种方法
选个位上的数这一步骤中,可选除百、十位上已选好的两个数字之外的另两个数字,共2种方法
单独挑上面的任何一步中的任何一种方法,都不能组成一个三位数,符合乘法原理所以,可以组成:4×3×2=24(个)不同的三位数
二、加法原理和乘法原理的区别
什么时候使用加法原理,什么时候使用乘法原理,最关键是要把握住加法原理与乘法原理的区别。

从上面两个例子我们容易发现,加法原理与乘法原理最大的区别就是:如果完成一件事有几类方法,不论哪一类方法,都能完成这件事时,运用加法原理,简称为“分类-----加法”;如果完成一件事要分几个步骤,而无论哪一个步骤,都只是完成这件事的一部分,只有每一步都完成了,这件事才得以完成,这里运用乘法原理,简称为“分步----乘法”。

三、加乘法原理的综合应用
有时候,做某件事有几类方法,而每一类方法又要分几个步骤完成。

在计算做这件事的方法时,既要用到加法原理,也要用到乘法原理,这就是加乘法原理的综合应用。

例:从甲地到乙地有4条路可走,从乙地到丙地有2条路可走,从甲地到丙地有3
条路可走,那么,从甲地到丙地共有多少种走法?
解析:从甲地到丙地共有两大类不同的走法:可以直接从甲地到丙地,也可以从甲地先到乙地再到丙地,选择任何一类方法,都可以从甲地到丙地,符合加法原理;而在第二类方法中(即从甲地先到乙地再到丙地),又分两步完成:第一步从甲地先到乙地,有4种走法,第二步再从乙地到丙地,有2种走法,这里的任何一种方法都不能完成从甲地到丙地这件事,符合乘法原理,这时共有4×2=8种走法。

所以从甲地到丙地总的走法=第一类方法+第二类方法
=3+4×2=11(种)
四、加法原理和乘法原理的应用
例1.(数字排列问题)用数字1、2、3、4、5可以组成多少个没有重复数字的三位数?
解析:组成一个三位数,要分三个步骤,先选百位数,再选十位数,最后选个位数,使用乘法原理
5×4×3=60(个)
例2.(数字排列问题)一种电子表6点24分30秒时,显示数字是:6:2430,那么从8点到9点这段时间里,此表5个数字都不相同的情况一共有多少种?
解析:在8点到9点间,电子表的第一位数字肯定8,在这段时间内是固定不变的,可以不考虑;第2位和第4位的取值范围只能是0、1、2、3、4、5,第3位和第5位只能从0、1、2、3、4、5、6、7、9。

题中要求5个数字各不相同。

所以我们要分开来考虑:
①第2位到第5位只取0----5中的数,有6×5×4×3=360种情况
②第2位和第4位只取0---5中的数,而第3位和第5位只取6、7、9中的数,有6×5×3×2=180种情况
③第2位、第3位和第4位只取0---5中的数,第5位只取6、7、9中的数,有6×5×4×3=360种情况
④第2位、第4位和第5位只取0---5中的数,第3位只取6、7、9中的数,有6×5×4×3=360种情况
所以,此表在8到9点间5个数字不同的情况共有:360+180+360+360=1260种
例3.(数字排列问题)从1到400的所有自然数中,不含数字3的自然数有多少个?
解析:在一位数前面添两个零,如把2写成002;在两位数前面添一个零,如把12写成012,这样,1—400中的数全成了“三位数”了,除去数字400外,考虑不含数字“3”的这样的“三位数”的个数,分三步考虑:百位、十位、个位上不含数字“3”,符合乘法原理。

百位上可取0、1、2,有三种取法;十位上都可取0、1、2、4、5、6、7、8、9,有9种取法;个位与十位情况一样,也有9种取法。

根据乘法原理,这样的数有:3×9×9=243(个)。

数“000”不合要求,另外还需要补上符合要求的数“400”,所以不含数字“3”的自然数有:243-1+1=243(个);(提示:这243个数中,有首位是“0”的,把“0”删掉,就成了一位数和两位数,不影响最后的个数。


例4.(站队排列问题)有6个同学排成一排照相,共有多少种不同的站法?
解析:6人中任何一位的位置换了,就是一种站法。

把这6个位置用字母表示为:A、B、C、D、E、F。

要排成一排,要分六步,依次排A、B、C、D、E、F这六个位置,使用乘法原理;A位置中有6种站法,B位置中就只剩5种站法、、、、、如此下去,F位置上就只剩1种站法,根据乘法原理,总的站法是:6×5×4×3×2×1=720种不同的站法
思考:看看下题与例4有何区别,又如何解答
A、B、C、D、E 5人排成一排,如果C不站在中间,一共有多少有种不同的排法?
例5.(取物排列问题)有5件不同的上衣,3条不同的裤子,4顶不同的帽子,从中取出一顶帽子、一件上衣和一条裤子配成一套装束,最多有多少种不同的装束?
解析:要完成一套装束要分三步完成,先取帽子,再取上衣,最后取裤子,而每一步分别有4、5、3种不同的方法,根据乘法原理,共有4×5×3=60种不同的装束例6.(信号排列问题)有5面颜色不同的小旗,任意取3面排成一行表示一种信号,问:一共可以表示多少种不同的信号?
解析:一种信号上有三个位置,要完成一种信号要分三步选好这三个位置上的小旗。

而每个位置上依次有5、4、3种不同的选小旗的选法,根据乘法原理,一共可以表示:5×4×3=60种不同的信号。

例7.(涂色问题)如图,用红、绿、蓝、黄四色去涂编号为1、2、3、4号的长方形,
解析:要分4种情况考虑:
①1、2、3、4号长方形颜色都不相同,根据乘法原理,有4×3×2×1=24种涂法
②只有1、4号长方形同色,有4×3×2=24种
③只有2、3号长方形同色,有4×3×2=24种
④2、4和1、3号长方形分别同色,有4×3=12种
最后用加法原理
共有24+24+24+12=84种不同的涂法
例8.深圳市的电话号码全是8位数,若前3位只能用1----9这9个数字,则深圳市可以安装多少台不同的电话号码的电话?
解析:要确定一个电话号码,就必须确定8位数上各个位置的数字,要分八个步骤完成。

使用乘法原理。

根据题目要求,先确定电话号码前3位数字的取法,由于数字可以重复,前3位上的每一位置上都可以取1、2、3、4、5、6、7、8、9中的一个数,各有9种取法。

电话号码中的后5位的每一个位置上都可以取0、1、2、3、4、5、6、7、8、9,各有10种取法。

根据乘法原理,共有不同的电话号码的电话:9×9×9×10×10×10×10×10=72900000台
例9.(棋子排列问题)如图,现在要把A、B、C、D、E 5个棋子放在方格里,每行
解析:要将5个棋子放入格子中,要分5步完成。

第一步先放A,有5×5=25个方格就有25种不同的放法;第二步放B,对应A的放法,由于不能在同一行与同一列,B放的行数和列数都会减少1,所以只能放在4×4=16个格子里,有16种放法;同理可推出,第三步放C,有3×3=9种放法;第四步放D,有2×2=4种放法;第五步放E,有1×1=1种放法。

根据乘法原理。

总的放法有:25×16×9×4×1=14400种。

相关文档
最新文档