高中数学教学 函数的基本性质——最大(小)值课件 新人教A版必修1

合集下载

高中数学必修一1.3.1函数的基本性质最大(小)值 课件(共22张PPT)

高中数学必修一1.3.1函数的基本性质最大(小)值 课件(共22张PPT)
例3 已知函数f(x)= x2 2x a ,x∈[1,+∞). x
(Ⅰ)当a= 1 时,求函数f ( x)的最小值. 2
(Ⅱ)若对任意x∈[1,+∞),f (x)>0恒成立, 试求实数a的取值范围.
名师课件免费课件下载优秀公开课课 件高中 数学必 修一1.3 .1函数 的基本 性质最 大(小 )值 课件(共22张PPT)
名师课件免费课件下载优秀公开课课 件高中 数学必 修一1.3 .1函数 的基本 性质最 大(小 )值 课件(共22张PPT)
名师课件免费课件下载优秀公开课课 件高中 数学必 修一1.3 .1函数 的基本 性质最 大(小 )值 课件(共22张PPT)
讲授新课
函数最大值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足: (1)对于任意x∈I,都有f (x)≤M. (2)存在x0∈I,使得f (x0)=M. 那么,称M是函数y=f (x)的最大值.
函数. 如果f (x)在区间[-6, -2]上递减,
在区间[-2, 11]上递增,画出f (x)的一
个大致的图象,从图象上可以发现f(-2)
是函数f (x)的一个
.
名师课件免费课件下载优秀公开课课 件高中 数学必 修一1.3 .1函数 的基本 性质最 大(小 )值 课件(共22张PPT)
名师课件免费课件下载优秀公开课课 件高中 数学必 修一1.3 .1函数 的基本 性质最 大(小 )值 课件(共22张PPT)
名师课件免费课件下载优秀公开课课 件高中 数学必 修一1.3 .1函数 的基本 性质最 大(小 )值 课件(共22张PPT)
名师课件免费课件下载优秀公开课课 件高中 数学必 修一1.3 .1函数 的基本 性质最 大(小 )值 课件(共22张PPT)

新人教A版高中数学必修一3.2.1.2《函数的最大(小)值》课件

新人教A版高中数学必修一3.2.1.2《函数的最大(小)值》课件

练一练 求下列函数的最大值和最小值:
(1) f (x) 3x 2 (x 1, 2) ;
(2)
f
(x)
1 x
(x
1,
2)

例题讲解
例 1 “菊花”烟花是最壮观的烟花之一 . 制造时一般是期望在它达到最高点 时爆裂. 如果烟花距地面的高度 h(单位:m)与时间 t(单位:s)之间的关系为 h(t) 4.9t2 14.7t 18 ,那么烟花冲出后什么时候是它爆裂的最佳时刻?这时距地面 的高度是多少(精确到 1 m)?
你能以函数 f (x) x2 为例,说明函数 f (x) 的最大值的含义吗?
y
O
x
x R ,都有 f (x) f (0) .
f(x)=-x2
你能以函数 f (x) x2 为例,说明函数 f (x) 的最大值的含义吗?
y
O
x
f(x)=-x2
x R ,都有 f (x) f (0) . 在 x 0 时,函数 f (x) x2 取得 最大值,最大值是 f (0) 0 .
问题(2):定义中的第(2)个条件是必不可少的吗?第一个条件中 f (x) M 是 否包含了至少有一个点的函数值等于 M ?
问题(2):定义中的第(2)个条件是必不可少的吗?第一个条件中 f (x) M 是 否包含了至少有一个点的函数值等于 M ?
“ f (x) M ” “ f (x) M ”
“ f (x) M ” “ f (x) M ” 举例: 对于函数 f (x) x, x [1, 2] ,是否满足 x [1, 2] , f (x) 4 ? 那么 4 是函数的最大值吗?
问题(2):定义中的第(2)个条件是必不可少的吗?第一个条件中 f (x) M 是 否包含了至少有一个点的函数值等于 M ?

高中数学 1.3.1 单调性与最大(小)值 第2课时 函数的最值课件 新人教A版必修1

高中数学 1.3.1 单调性与最大(小)值 第2课时 函数的最值课件 新人教A版必修1
(1)令 x 为年产量,y 表示利润,求 y=f(x)的表达式; (2)当年产量为何值时,工厂的利润最大?其最大值是多 少?
第三十四页,共48页。
(3)求解:选择合适的数学方法求解函数. (4)评价:对结果进行验证或评估,对错误加以改正,最后 将结果应用于现实,做出解释或预测. 也可认为分成“设元——列式——求解——作答”四个步
第三十三页,共48页。
3
某工厂生产一种机器的固定成本为 5 000 元,且每生产 1 部,需要增加投入 25 元,对销售市场进行调查后得知,市场对 此产品的需求量为每年 500 部,已知销售收入的函数为 N(x)= 500x-12x2,其中 x 是产品售出的数量(0≤x≤500).
(3)最大(小)值定义中的“存在”是说定义域中至少有一个 实数(shìshù)满足等式,也就是说y=f(x)的图象与直线y=M至 少有一个交点.
第十一页,共48页。
2.最值 定义 函数的__最__大__值__和__最__小_值___统称为函数的最值 几何 函数y=f(x)的最值是图象_最__高__点___或_最__低__点___的 意义 纵坐标 说明 函数的最值是在整个定义域内的性质
第二十三页,共48页。
②由①知,f(x)在(0,+∞)上是增函数,所以若函数 f(x)的 定义域与值域都是[12,2],则ff122==122,,
即1a1a--212==122,, 解得 a=25.
第二十四页,共48页。
规律总结:1.利用单调性求最值 的一般步骤
(1)判断函数的单调性.(2)利用单调性写出最值. 2.利用单调性求最值的三个常用结论 (1)如果函数f(x)在区间[a,b]上是增(减)函数,则f(x)在区间 [a,b]的左、右端点(duān diǎn)处分别取得最小(大)值和最大 (小)值. (2)如果函数f(x)在区间(a,b]上是增函数,在区间[b,c)上 是减函数,则函数f(x)在区间(a,c)上有最大值f(b). (3)如果函数f(x)在区间(a,b]上是减函数,在区间[b,c)上 是增函数,则函数f(x)在区间(a,c)上有最小值f(b).

3.2.2函数的基本性质单调性与最大(小)值课件高一上学期数学人教A版

3.2.2函数的基本性质单调性与最大(小)值课件高一上学期数学人教A版

问题1:已知函数y=x2+2x-3 ,且x [-03,,-22],
求函数的最值.
y
解:因为由图易知:对称轴
x0= -1[0,2]
f(x)在区间[0,2]上
-10 1 2
x
单调递增。
所以:ymin= f(0)= -3 ymax= f(2)= 5
答:函数的最小值为-3,最大值为5
例三:二次函数在闭区间上的最值
y f (x)
2 O 6
11
x
例5已知函数 f (x) 2 (x [2, 6]),求函数f (x) x 1
的最大值和最小值.
y
2
0.5
02
6x
猜想 证明 运用(结论)
证明: 设任意 x1, x2 [2, 6], 且 x1 x2 , 则
22
f
(x1)
f
(x2 )
x1
1
x2
1
2[(x2 1) (x1 1)] 2(x2 x1) . (x1 1)(x2 1) (x1 1)(x2 1)
h(t) 4.9(t 14.7 )2 4 (4.9) 18 14.72
2 (4.9)
4 (4.9)
当 t 14.7 1.5 时,函数h(t)有最大值 2 (4.9)
h(t ) max
h(1.5)
4 (4.9) 18 14.72 4 (4.9)
2.9
于是, 烟花冲出后 1.5s 是它爆裂的最佳时刻 这时距地面的高度约为 29 m.
例三:二次函数在闭区间上的最值
问题3:已知函数y=x2 +2x-3,且x[-2,2],
求函数的最值.
解:因为由图易知:对称轴
x0=-1 [-2,2] 所以 ymin= f(-1) = -4 ;

新教材高中数学3.2函数的基本性质3.2.1单调性与最大(小)值第1课时函数的单调性课件新人教A版必修第一册

新教材高中数学3.2函数的基本性质3.2.1单调性与最大(小)值第1课时函数的单调性课件新人教A版必修第一册
证明 ∀x1,x2∈R,且 x2>x1, 则 x2-x1>0, ∵当 x>0 时,f(x)<0,∴f(x2-x1)<0, ∴f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)=f(x2-x1)+f(x1)-f(x1)=f(x2-x1)<0, ∴f(x)为减函数.
答案
题型四 复合函数的单调性 例 4 求函数 f(x)=8-21x-x2的单调区间.
[证明] (1)根据题意,令 m=0,可得 f(0+n)=f(0)·f(n). ∵f(n)≠0,∴f(0)=1. (2)由题意知 x>0 时,0<f(x)<1, 当 x=0 时,f(0)=1>0, 当 x<0 时,-x>0,∴0<f(-x)<1. ∵f[x+(-x)]=f(x)·f(-x), ∴f(x)·f(-x)=1, ∴f(x)=f-1 x>0. ∴∀x∈R,恒有 f(x)>0.
数(decreasing function).
知识点三
单调区间
如果函数 y=f(x)在区间 D 上__□0_1_单__调__递__增___或_□_0_2_单__调__递__减___,那么就说
函数 y=f(x)在这一区间具有(严格的)__□0_3__单__调_性_____,__□0_4__区__间__D____叫做 y
7.图象变换对单调性的影响 (1)上下平移不影响单调区间,即 y=f(x)和 y=f(x)+b 的单调区间相同. (2)左右平移影响单调区间.如 y=x2 的单调递减区间为(-∞,0];y=(x +1)2 的单调递减区间为(-∞,-1]. (3)y=k·f(x),当 k>0 时单调区间与 f(x)相同,当 k<0 时单调区间与 f(x)相 反.

函数的基本性质(课时2 函数的最大(小)值)高一数学课件(人教A版2019必修第一册)

函数的基本性质(课时2 函数的最大(小)值)高一数学课件(人教A版2019必修第一册)
问题3:.你能归纳求二次函数最值的方法吗?
[答案] 求解二次函数最值问题的方法:
(1)确定对称轴与抛物线的开口方向并作图.
(2)在图象上标出定义域的位置.
(3)观察函数图象,通过函数的单调性写出最值.
新知生成
二次函数 具有对称性、增减性、最值等性质,即对于 ,①其图象是抛物线,关于直线 成轴对称图形;②若 ,则函数在区间 上单调递减,在区间 上单调递增;③若 ,则函数在区间 上单调递增,在区间 上单调递减;④若 ,则当 时, 有最小值,为 ,若 ,则当 时, 有最大值,为 .
A. , B. , C. , D. ,
C
[解析] 由图可得,函数 在 处取得最小值,最小值为 ,在 处取得最大值,最大值为2,故选C.
3.函数 在区间 上的最大值、最小值分别是( ).A. , B. , C. , D.以上都不对
B
[解析] 因为 ,且 ,所以当 时, ;当 时, .故选B.
(2) 求函数 的最大值.
[解析] 当 时, , ;当 时, , ;当 时, , .综上所述, .
1.函数 在 上的图象如图所示,则此函数在 上的最大值、最小值分别为( ).
A. , B. , C. ,无最小值 D. ,
C
[解析] 观察图象可知,图象的最高点坐标是 ,故其最大值是3;无最低点,即该函数不存在最小值.故选C.
×
(2) 若函数有最值,则最值一定是其值域中的一个元素.( )

(3) 若函数的值域是确定的,则它一定有最值.( )
×
(4) 函数调递减,则函数 在区间 上的最大值为 .( )

自学检测
2.函数 在 上的图象如图所示,则此函数的最小值、最大值分别是( ).

人教A版必修一第一章1.3.1 第1课时单调性与最大(小)值

人教A版必修一第一章1.3.1 第1课时单调性与最大(小)值

k≠0)与一次函数(y= kx+b,k≠0)
k<0

R
反比例函数 (y=kx,k≠0)
k>0

k<0 (-∞,0)和 (0,+∞)
(-∞,0)和 (0,+∞)

二次函数 (y=ax2+bx+c,
a≠0)
a>0 a<0
[-2ba,+∞) (-∞,-2ba]
(-∞,-2ba] [-2ba,+∞)
• 1.函数y=f(x)在区间(a,b)上是减函数,x1,x2∈(a,b),
• 『规律方法』 利用函数的单调性解函数值的不等式就是 利用函数在某个区间内的单调性,去掉对应关系“f”,转
化为自变量的不等式,此时一定要注意自变量的限制条件, 以防出错.
• 〔跟踪练习3〕 • 已知函数g(x)是定义在R上为增函数,且g(t)>g(1-2t),求
实数t的取值范围.
[解析] ∵g(x)在R上为增函数,且g(t)>g(1-2t), ∴t>1-2t,∴t>13,即所求t的取值范围为(13,+∞).
• 『规律方法』 1.函数单调性的证明方法——定义法 • 利用定义法证明或判断函数单调性的步骤是:
• 2.用定义证明函数单调性时,作差f(x1)-f(x2)后,若f(x)为 多项式函数,则“合并同类项”,再因式分解;若f(x)是 分式函数,则“先通分”,再因式分解;若f(x)解析式是 根式,则先“分子有理化”再分解因式.
(2)设x1>x2>-1, 则x1-x2>0,x1+1>0, x2+1>0, y1-y2=x12+x11-x22+x21 =x12+x11-xx2+2 1>0, ∴y1>y2, ∴函数y=x+2x1在(-1,+∞)上为增函数.

高中数学人教A版必修1课件:1.3函数的基本性质

高中数学人教A版必修1课件:1.3函数的基本性质
②“对于…”,“任意…”,“都有…”,“ 对于”即两个自变量x1,x2,必须取自给定的 区间;“任意”即不能用特殊值代替;“都有 ”即只要x1<x2,就必须有f(x1)<f(x2)或f(x1)> f(x2).
(2)函数单调性的刻画: ①图形刻画,对于给定区间上的函数y=f(x), 它的图象若从左向右连续上升(下降),则称函 数在该区间上是单调递增(减)的; ②定性刻画,对于给定区间上的函数y=f(x), 若函数值随自变量的增大而增大(减小),则称 函数在该区间上是单调递增(减)的.
间应是定义域的子集.
2.画出函数 f(x)=-x2+2|x|+3 的 图象,并指出函数的单调区间.
解析: y=-x2+2|x|+3 -x2+2x+3=-x-12+4
=-x2-2x+3=-x+12+4 函数图象如图所示:
x≥0 x<0 .
函数在(-∞,-1],[0,1]上是增函数, 函数在[-1,0],[1,+∞)上是减函数. ∴函数的单调增区间是(-∞,-1]和[0,1], 单调减区间是[-1,0]和[1,+∞).
[0,1]
4.求证:函数 y=x-1 1在区间(1,+∞)上为单 调减函数.
证明: 设 1<x1<x2,
y1-y2=x1-1 1-x2-1 1 =x1-x21-xx21-1 ∵1<x1<x2 ∴x1-1>0,x2-1>0,x2-x1>0 ∴x1-x21-xx21-1>0. 即 y1>y2,
∴函数 y=x-1 1在区间(1,+∞)上为单调减函数.
解析: ∵f(x)在R上递减,且3<5,
∴f(3)>f(5).故选C.
答案: C
3.如图所示,函数y= f(x)的单调递增区间有 ________,递减区间有 ________.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)对于任意x∈I,都有f (x)≥M.
讲授新课
函数最小值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足:
(1)对于任意x∈I,都有f (x)≥M.
(2)存在x0∈I,使得f (x0)=M.
讲授新课
函数最小值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足:
(1)对于任意x∈I,都有f (x)≤M.
讲授新课
函数最大值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足:
(1)对于任意x∈I,都有f (x)≤M.
(2)存在x0∈I,使得f (x0)=M.
讲授新课
函数最大值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足:
2

试求实数a的取值范围.
课堂小结
1. 最值的概念;
课堂小结
1. 最值的概念; 2. 应用图象和单调性求最值的一般步骤.
课后作业
1. 阅读教材P.30 -P.32;
2. 《习案》:作业10.
思考题: 1.已知函数f (x)=x2-2x-3,若x∈ [t, t +2]时,求函数f(x)的最值.
思考题: 1.已知函数f (x)=x2-2x-3,若x∈ [t, t +2]时,求函数f(x)的最值. 2.已知函数f (x)对任意x,y∈R,总有 f (x)+f ( y)=f (x+y),且当x>0时,
(1)求证f (x)是R上的减函数; (2)求f (x)在[-3, 3]上的最大值和最小值.
2 f (x)<0,f (1)= . 3
1.3 函数的基本性质 ——最大(小)值
复习引入
问题1 函数f (x)=x2. 在(-∞, 0]上是减函数, 在[0, +∞)上是增函数. 当x≤0时,f (x)≥f (0), x≥0时, f (x)≥f (0). 从而x∈R,都有f (x) ≥f (0). 因此x=0时,f (0)是函数值中的最小值.
2 (x∈[2,6]), 例2 已经知函数y= x 1
求函数的最大值和最小值.
讲授新课
2 (x∈[2,6]), 例2 已经知函数y= x 1
求函数的最大值和最小值.
x
2 1
讲授新课
O
1
2
3
4
5
6 y
讲授新课
例3 已知函数f(x)= x 2 x a , x∈[1,+∞). x 1 f ( x )的最小值. (Ⅰ)当a= 时,求函数 2 (Ⅱ)若对任意x∈[1,+∞),f (x)>0恒成立,
(1)对于任意x∈I,都有f (x)≥M.
(2)存在x0∈I,使得f (x0)=M.
那么,称M是函数y=f (x)的最小值.
讲授新课
例1 设f (x)是定义在区间[-6, 11]上的
函数. 如果f (x)在区间[-6, -2]上递减,
在区间[-2, 11]上递增,画出f (x)的一 个大致的图象,从图象上可以发现f(-2) 是函数f (x)的一个 .
(1)对于任意x∈I,都有f (x)≤M.
(2)存在x0∈I,使得f (x0)=M.
那么,称M是函数y=f (x)的最大值.
讲授新课
函数最小值概念:
讲授新课
函数最小值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足:
讲授新课
函数最小值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足:


复习引入
问题2 函数f (x)=-x2.
同理可知x∈R,
都有f (x)≤f (0).
即x=0时,f (0)是函数值中的最大值.

讲授新课
函数最大值概念:
讲授新课
函数最大值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足:
讲授新课
函数最大值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足:
相关文档
最新文档