第三章_LSI系统的时域分析和信号卷积

合集下载

第3章离散系统的时域分析ppt课件

第3章离散系统的时域分析ppt课件
3.1.1离散时间信号 连续系统的激励和响应都是连续时间信号,它们是
连续变量t的函数,离散系统的激励与响应都是离散时间 信号,表示这种信号的函数,只在一系列互相分离的时间 点上才有定义,而在其它点上则未定义,所以它们是离散 变量tk的函数〔或称序列〕.
《 信号与线性系统》
第3章 离散系统的时域分析
行取样.进行取样的取样器一般由电子开关组成.其工作 原理如图3.2所示.
x(t)
y(t)
T
x(t) 脉冲 y(t) 调制
p(t)
《 信号与线性系统》
图3.2 取样原理图
第3章 离散系统的时域分析
x (t)
p (t)
T
y (t)
(a ) t
(b ) t
(c ) t
图 3.3 信号的取样 <a>连续信号x<t>波形;<b>取样脉冲p<t>波形;<c>取样信号y<t> 波形
=sin<n ω0 +2kπ>
=sin<n ω0 >=x<n>
所以,x<n>=sin<n ω0 >是一个周期序列.
《 信号与线性系统》
第3章 离散系统的时域分析
3.3 离散时间系统的描述和响应
3.3.1 离散时间系统的描述 离散时间系统的输入和输出信号都是离散时间函
数〔序列〕.这种系统的工作情况,不能用连续时间系统 的微分方程来描述,而必须采用差分方程来描述.
y<2>=1,y<3>=2,y<4>=3,y<5>=5,…
《 信号与线性系统》
第3章 离散系统的时域分析

信号与线性系统分析第三章

信号与线性系统分析第三章

系统描述 分析方法
连续系统 微分方程 卷积积分 变换域(傅氏、s) 系统函数
离散系统 差分方程 卷积和 变换域(离散傅氏、z) 系统函数
第 2页
§2.1 LTI离散系统的响应
• 差分与差分方程 —前向差分、后向差分以及差分方程
• 差分方程解 —数值解、经典解,以及不同特征根对应的齐 次解和不同激励对应的特解
yzi (-2) = y(-2)
-----------
yzi (n) = ?
----------------yzi (-n) = y(-n)
第 13 页
零输入举例
例1:系统方程为 y(k) + 3y(k –1) + 2y(k –2) = f(k) 已知激励f(k)=2k , k≥0;初始状态 y(–1)=0, y(–2)=1/2 求系统的零输入响应
解:yzi(k)零输入响应满足:
yzi(k) + 3yzi(k –1)+ 2yzi(k –2)= 0
yzi(–1)= y(–1)= 0 yzi(–2) = y(–2) = 1/2 递推求 yzi(0)、 yzi(1) yzi(k)= – 3yzi(k –1) –2yzi(k –2)
yzi(0)= –3yzi(–1) –2yzi(–2)= –1
yzs(0)、yzs(1)、---yzs(n)=? 借助微分方程
n
若其特征根均为单根: yzk (k ) Czsjkj y p (k ) j 1
第 16 页
零状态举例
例1:系统方程为 y(k) + 3y(k –1) + 2y(k –2) = f(k) 已知激励f(k)=2k , k≥0;求系统的零状态响应 解:零状态响应yzs(k) 满足

信号与系统第三章

信号与系统第三章
例3.1-2 描述一阶LTI系统的常系数微分方程如 式(3.1-3)所示
设 f (t) 2 a 2, b 1 则有
dy(t) 2 y(t) 2 dt
已知初始值 y(0) 4 求 t 0时系统的响应 y(t)
解:第一步,由方程可知系统的特征方程为 2 0
2 由此可得系统的齐次解为
2
处理教研室
第三章 连续信号与系统的时域分析
教学重点:
1、常微分方程的建立及其解的基本特点; 2、阶跃响应和冲激响应的概念; 3、卷积及其在系统分析中的应用。
2020/6/7
信号
3
处理教研室
应用实例:汽车点火系统
汽车点火系统主要由电源(蓄电池和发电机)、电阻、 点火开关、点火线圈、分压器等组成。
系数 a,b都是常量。系统的阶数就是其数学模型——
微分方程的阶数。
而 n 阶常系数线性微分方程的一般形式为
an
dn y(t) dt n
an1
dn1 y(t) dt n1
L
a1
dy(t) dt
a0
y (t )
bm
dm f (t) dt m
bm1
dm1 f (t) dt m1
L
b1
df (t) dt
b0
即yf’(0+) = yf’(0-) = 0,yf(0+) = yf(0-) = 0
对t>0时,有 yf”(t) + 3yf’(t) + 2yf(t) = 6
不难求得其齐次解为Cf1e-t + Cf2e-2t,其特解为常数3,
于是有
yf(t)=Cf1e-t + Cf2e-2t + 3
代入初始值求得

第三章 LSI系统的时域分析和信号卷积

第三章  LSI系统的时域分析和信号卷积
1.将 x(n) 和 h(n) 的自变量换 成 k;
h( k
) x(k )
-1 1 n -1
1 0 1 0 1 2 1 2

k

k
2.将 h(k) 翻转并右移 n 得到
h(n-k); 3.将 x(k) 和 h(n-k) 相乘得到

h(n-k), n≥0
h(n-k), n<0
0 1 2 1 -1 0 1 -1 1 n k k
这一性质表明,一方面,若干个 LSI 系统级联的系统仍是一个
LSI 系统,总系统的单位单位冲激响应等于级联的所有 LSI 系 统的单位冲激响应的逐次卷积。另一方面,任意改变 LSI 系统
级联的先后次序是无关紧要的。
2. LSI系统的卷积及性质
分配律
x(t ) [h1 (t ) h2 (t )] x(t ) h1 (t ) x(t ) h2 (t )
如果能够找到一类基本信号 ϕ(t) 或 ϕ(n),它满足: 用它们能构成相当广泛的信号; LSI系统对每个 ϕ(t) 或 ϕ(n) 的响应十分简单。 则系统对任意输入信号的响应将会具有一个简单的表达式。 单位冲激信号 δ(t) 或 δ(n)、复正弦信号 ejΩt 或 ejωt、复指数信号 est 和 zn 同时具有上述两个性质。 如果 ϕ(n) 为单位冲激信号,即为时域分析方法。
x(n) B

n
h( n )
kh(k ) x(n k ) h(k ) x(n k ) B h(k )
k

3. 卷积的收敛和周期卷积


-T
0
T
t
2. LSI系统的卷积及性质

数字信号处理 实验作业:离散LSI系统的时域分析

数字信号处理 实验作业:离散LSI系统的时域分析

实验2 离散LSI 系统的时域分析一、.实验目的:1、加深对离散系统的差分方程、单位脉冲响应、单位阶跃响应和卷积分析方法的理解。

2、初步了解用MA TLAB 语言进行离散时间系统时域分析的基本方法。

3、掌握求解离散时间系统的单位脉冲响应、单位阶跃响应、线性卷积以及差分方程的程序的编写方法,了解常用子函数的调用格式。

二、实验原理:1、离散LSI 系统的响应与激励由离散时间系统的时域分析方法可知,一个离散LSI 系统的响应与激励可以用如下框图表示:其输入、输出关系可用以下差分方程描述:[][]NMkk k k ay n k b x n m ==-=-∑∑2、用函数impz 和dstep 求解离散系统的单位脉冲响应和单位阶跃响应。

例2-1 已知描述某因果系统的差分方程为6y(n)+2y(n-2)=x(n)+3x(n-1)+3x(n-2)+x(n-3) 满足初始条件y(-1)=0,x(-1)=0,求系统的单位脉冲响应和单位阶跃响应。

解: 将y(n)项的系数a 0进行归一化,得到y(n)+1/3y(n-2)=1/6x(n)+1/2x(n-1)+1/2x(n-2)+1/6x(n-3)分析上式可知,这是一个3阶系统,列出其b k 和a k 系数: a 0=1, a ,1=0, a ,2=1/3, a ,3=0 b 0=1/6,b ,1=1/2, b ,2=1/2, b ,3=1/6程序清单如下: a=[1,0,1/3,0]; b=[1/6,1/2,1/2,1/6]; N=32; n=0:N-1; hn=impz(b,a,n); gn=dstep(b,a,n);subplot(1,2,1);stem(n,hn,'k');课程名称 数字信号处理 实验成绩 指导教师 ***实 验 报 告院系 班级学号 姓名 日期title('系统的单位序列响应'); ylabel('h(n)');xlabel('n');axis([0,N,1.1*min(hn),1.1*max(hn)]); subplot(1,2,2);stem(n,gn,'k'); title('系统的单位阶跃响应'); ylabel('g(n)');xlabel('n');axis([0,N,1.1*min(gn),1.1*max(gn)]); 程序运行结果如图2-1所示:102030系统的单位序列响应h (n )n1020300.20.30.40.50.60.70.80.911.11.2系统的单位阶跃响应g (n )n图2-13、用函数filtic 和filter 求解离散系统的单位序列响应和单位阶跃响应。

信号与线性系统分析--第三章

信号与线性系统分析--第三章
信号与线性系统分析
第三章 离散系统的时域分析
本章概述
离散时间域的方程求解
连续时间域 时间函数 微分方程 卷积积分 离散时间域 离散序列 差分方程 卷积求和
求解方法
迭代法 经典法 卷积法
连续时间信号、连续时间系统
连续时间信号
f(t)是连续变化的t的函数,除若干不连续点之外 对于任意时间值都可以给出确定的函数值。函数 的波形一般具有平滑曲线的形状,一般也称模拟 信号
f (n) .... f (1) (n 1) f (0) (n) f (1) (n 1) ...
i
f (i) (n i)
f(k ) f(2) f(-1) f(1) f(0) … 1 2 i f(i) … k

可推出:离散系统的零状态响应
y zs (n)
m
f (m) (n m)

单位阶跃序列
与阶跃函数的不同?
延时的单位阶跃序列
用单位样值序列来表示
u( n) ( n) ( n 1) ( n 2) ( n 3) (n k )
k 0
( n) u(n) u( n 1)
题目中 y0 y1 0 ,是激励加上以后的,不是初始状 态,需迭代求出 y 1, y 2 。
n 1 y1 3 y0 2 y 1 2u 1 2 u 0
0
0 0 2 y1 2 1 1
1 y 1 2
n0
y0 3 y 1 2 y 2 2 u 0 2 u 1
0 1
0 3 y 1 2 y 2 1
y 2 5 4
将初始状态代入方程求系数

93第3章系统的时域分析(全)课件

93第3章系统的时域分析(全)课件

f (t) h(t)
f ( ) h(t )d
=
3u
(
)
2e3(t
)u
(t
)d
=
t 3 2e-3(t- )d
0
0
2(1 e3t ) =
0
t0 t0 t0 t0
= 2(1 e3t )u(t)
§3.3 连续系统的冲激响应
单位冲激响应:零状态下, f(t)=δ(t)的响应,简称冲激响应 h(t)
齐次方程
y(n) (t) an1 y(n1) (t) a1 y (t) a0 y(t) 0
y(n) (t) an1 y(n1) (t) a1 y (t) a0 y(t) 0
齐次解yh(t)的形式
sn an1sn1 a1s a0 0
(1) 特征根是不等实根s1, s2, , sn
h(t) ce3tu(t)
??:dh(t) 3h(t) d (t) (t)
dt
dt
② n=m时,有
h(t) c(t) n cieit u(t)
i1
③ n<m时,h(t)中还包含冲激函数的导数。
例1 已知某线性时不变系统的动态方程式为
dy(t) 3y(t) 2 f (t), t 0 dt
2. yf (t):初始状态为零,仅由f(t)产生的响应
f (t)
卷积法
f (kD)
δ(t)
系统 h(t)
D 0 D 2D
kD (k 1)D
连续信号表示为冲激信号的迭加
(t ) h(t )
t
f ( ) (t ) f ( )h(t )
f (t) f ( ) (t )d
y f (t)
f(t) f1(t) f2(t) f1()f2(t )d

信号与系统教案第3章

信号与系统教案第3章

k [C cos(k ) D sin( k )] A k cos(k 0 )
(4)当λ为r重共轭复根时,齐次解形式为:
k [ Ar 1k r 1 cos(k r 1 ) Ar 2 k r 2 cos(k r 2 ) A0 cos(k 0 )]
例2:若描述某系统的差分方程为
6y(k) - 5y(k – 1) + y(k – 2) = f (k)
初始条件 y(0)=0,y(1)= 1;激励f (k)=10cos(0.5πk),k≥0。 求方程的全解。 解: 特征方程为 特征根 齐次解为 特解为 6λ2 -5λ+ 1 = 0 λ1=1/2,λ2= 1/3, yh (k)= C1(1/2)k +C2 (1/3)k yp(k) = Pcos(0.5πk ) + Qsin(0.5πk ),k≥0 P = Q =1 得特解: yp(k) = cos(0.5πk ) + sin(0.5πk ),k≥0
②当a是r重特征根时, yp(k)=(Prkr+Pr-1kr-1+…+P1k+P0)ak (3)激励 f (k)=cos(βk)或sin(βk) 且所有特征根均不等于 e±jβ : yp(k) = P cos(βk) + Q sin(βk)
特解yp(k):
f (k ) km
yp (k )
Pm k m Pm 1 k m 1 P1 k P0 k r Pm k m Pm 1 k m 1 P1k P0
若已知初始条件和激励,利用迭代法可求得其数值解。
例:若描述某系统的差分方程为
y(k) + 3y(k – 1) + 2y(k – 2) = f (k) 初始条件y(0)=0,y(1)=2,激励 f (k)= 2kε(k),求y(k)。 解: y(k) = – 3y(k – 1) – 2y(k – 2) + 2kε(k) y(2) = – 3y(1) – 2y(0) + f (2) = -2 y(3) = – 3y(2) – 2y(1) + f (3) = 10 …… 一般不易得到解析形式的(闭合)解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. LSI系统的卷积及性质
卷积的计算方法:
图解法 解析法
习题:已知某离散时间LSI系统的输入 x(n) 和单位冲激响应 h(n)
分别为
x(n) a nu (n), 0 a 1 h(n) u (n)
求系统输出 y(n),并画出它的序列图形。
2. LSI系统的卷积及性质
计算步骤:
电器信息工程学院 蔡超峰
引言
如果某个 LSI 系统对离散时间信号 ϕ(n) 的响应为 φ(n),则基于 时不变性有:
(n k ) (n k )
LSI
再根据 LSI 系统的线性性质,系统对输入
x(n) ak (n k )
k
的响应为:
y(n) ak (n k )
这一性质表明,若干个 LSI 系统的并联系统仍是 LSI 系统,它 的单位冲激响应是各个并联的 LSI 系统单位冲激响应的代数和。 时移性质 若有 x(t ) h(t ) y(t ) ,则
x(t t0 ) h(t ) x(t ) h(t t0 ) y(t t0 )
这一性质表明,一方面,若干个 LSI 系统级联的系统仍是一个
LSI 系统,总系统的单位单位冲激响应等于级联的所有 LSI 系 统的单位冲激响应的逐次卷积。另一方面,任意改变 LSI 系统
级联的先后次序是无关紧要的。
2. LSI系统的卷积及性质
分配律
x(t ) [h1 (t ) h2 (t )] x(t ) h1 (t ) x(t ) h2 (t )
t T / 2 t T / 2 d u (t T ) d u (t ) T / 2 T / 2 t T / 2 t T / 2 d u ( t ) T / 2 T / 2 d u (t T ) (t T )u (t T ) 2tu (t ) (t T )u (t T )
4. 对所有的你重复上述2-4
的步骤。
1 a n 1 , n0 y ( n) 1 a 0, n 0
x(k)h(n-k), n≥0
0
1 -1
1
n
k
y(n)

0
1
n
2. LSI系统的卷积及性质
习题:假定 x(t) 和 h(t) 均为矩形脉冲信号,试求 y(t)= x(t)*h(t)
解答: 由定义,将 x(n) 换成 δ(n)
h(n) b(0) (n) b(1) (n 1) b(2) (n 2)
所以
b(0), b(1), h( n) b(2), 0, n0 n 1 n2 Otherwise
此类系统称为有限冲激响应(Finite Impulse Response, FIR)系统。
a n , n 0 h( n) 0, n 0
此类系统称为无限冲激响应(Infinite Impulse Response, IIR)系统。
1. 单位冲激响应
习题2:求系统
y ( n) b( k ) x ( n k )
k 0 2
的单位冲激响应。其中 b(0)、b(1) 、b(2) 为常数。
y (t ) x(t ) h(t )
y (t )



x( )h(t )d


x( ) d h(t ) d


如果参与卷积运算的两个信号或序列中一个是有界的,而另
外一个满足模可积或模可和,则它们的卷积积分与卷积和必定
收敛。
y(n) x(n) h(n)
x ( n)
k
x(k ) (n k )

假设 x(n) 是某离散 LSI 系统的一个输入信号,y(n) 是相应的输 出信号。
2. LSI系统的卷积及性质
假设该 LSI 系统的单位冲激响应为 h(n),根据系统的时不变性 有: 再根据叠加性质有:
k
( n k ) h( n k )
如果 φ (n) 为复正弦信号和复指数信号,即为变换域分析方法。
第三章 LSI 系统的时域分析和信号卷积
1. 单位冲激响应
2.
3. 4.
LSI 系统的卷积及性质
卷积的收敛和周期卷积 单位冲激响应与 LSI 系统的特性之间的关系
1. 单位冲激响应
系统对冲激信号 δ(t)、δ(n) 的响应 h(t)、h(n)称为单位冲激响应。

u ( T / 2)u (t T / 2 )d u ( T / 2)u (t T / 2 )d


u ( T / 2)u (t T / 2 )d u ( T / 2)u (t T / 2 )d
2. LSI系统的卷积及性质
卷积积分的微分与积分性质:
d d d [ x(t ) h(t )] x(t ) [ h(t )] [ x(t )] h(t ) dt dt dt

t

[ x( ) h( )]d x(t ) [ h( )d ] [ x( )d ] h(t )
k
连续情况下与此类似。
引言
如果能够找到一类基本信号 ϕ(t) 或 ϕ(n),它满足: 用它们能构成相当广泛的信号; LSI系统对每个 ϕ(t) 或 ϕ(n) 的响应十分简单。 则系统对任意输入信号的响应将会具有一个简单的表达式。 单位冲激信号 δ(t) 或 δ(n)、复正弦信号 ejΩt 或 ejωt、复指数信号 est 和 zn 同时具有上述两个性质。 如果 ϕ(n) 为单位冲激信号,即为时域分析方法。
1. 将 x(n) 和 h(n) 的自变量 换成 k;
h(k)
-1
1 0 1 -1 0 1 2 1 2

k
x(k)

k
2. 将 h(k) 翻转并右移 n 得
到h(n-k); 3. 将 x(k) 和 h(n-k) 相乘得

n
1
h(n-k), n<0
0 1 2 1 -1 0 1 -1 1 n k k
h(n-k), n≥0
x( k ) y ( n k )
从上述公式可以看出,卷积与相关函数非常类似:这两种运算 过程都包含时移、相乘和无限积分(或求和)三个步骤;只有
一个差别,即卷积运算要对第二个信号先进行翻转然后再时移,
而相关运算无此步骤。
2. LSI系统的卷积及性质
卷积与相关存在如下关系:
rxy (t ) x(t ) y* (t ) rxy (n) x(n) y* (n)
x(n) B

n
h( n )
k

y(n)
k
h(k ) x(n k ) h(k ) x(n k ) B h(k )
2. LSI系统的卷积及性质
用时移单位冲激信号的线性组合表示离散信号:
x(n) x(3) (n 3) x(2) (n 2) x(1) (n 1) x(0) (n) x(1) (n 1) x(2) (n 2) x(3) (n 3)
习题1:求系统
y(n) ay(n 1) x(n)
的单位冲激响应,其中 a 为常数,初始条件为 h(−1) = 0。
解答: 由定义及初始条件可知:
h(n) ah(n 1) (n) h(0) 0 (0) 1 h(1) ah(0) 0 a h(2) ah(1) 0 a 2 h( n) a n
涉及单位冲激的卷积
x(t ) (t ) (t ) x(t ) x(t ) x(n) (n) (n) x(n) x(n)
这就表明任何信号和序列与单位冲激卷积,将分别等于原信号
和原序列。此外,任何信号和序列都可以用单位冲激激励一个
LSI系统来获得,只要该系统的单位冲激响应是所需信号本身。

t
t
卷积和的差分与累加性质:
[ x(n) h(n)] x(n) [h(n)] [x(n)] h(n)
n n n
k
[ x(n) h(n)] x(n) [ h(n)] [ x(n)] h(n)
k k
2. LSI系统的卷积及性质
计算步骤:
3. 求和; n<0时,
y ( n) 0
h(k)
-1
1 0 1 -1 0 1 2 1 2

k
x(k)

k

n
k
ห้องสมุดไป่ตู้
1
h(n-k), n<0
0 1 2 1 -1 0 1 -1 1 n k k
n≥0时, n
1 a n1 y(n) a 1 a k 0
h(n-k), n≥0

1 -T/2 0 T/2 t
解答:不难写出
x(t ) h(t ) u(t T / 2) u(t T / 2)
2. LSI系统的卷积及性质
则有:
y (t ) x( )h(t )d

[u ( T / 2) u ( T / 2)][u (t T / 2 ) u (t T / 2 )]d

到被求和序列 x(k)h(n-k)
n<0时,
x ( k ) h( n k ) 0
x(k)h(n-k), n≥0
0
1 -1
1
n
k
n≥0时,
a k , 0 k n x ( k ) h( n k ) 0, k 0, k n
相关文档
最新文档