推理证明与概率统计小题

合集下载

九年级数学概率统计练习题及答案

九年级数学概率统计练习题及答案

九年级数学概率统计练习题及答案一、选择题1. 下列各项中,属于概率的是:A. 李明抽到红球的可能性是10%B. 今天下雨的可能性是80%C. 买彩票中奖的可能性是1/1000000D. 扔一次骰子掷出的点数是4的可能性是1/62. 某班级有30个学生,其中有18个男生和12个女生。

从班级中随机选取一个学生,男生和女生被选到的概率相等。

那么,被选到的学生是男生的概率是多少?A. 2/3B. 1/3C. 3/5D. 1/23. 一副扑克牌中有52张牌,其中红心牌有13张。

从扑克牌中随机抽一张牌,抽到红心牌的概率是多少?A. 1/4B. 1/2C. 1/13D. 1/52二、填空题1. 从数字1、2、3、4、5中任意抽取一个数,抽到奇数的概率是_________。

2. 一组数据:10、12、14、16、18中,大于15的数的概率是_________。

3. 一枚硬币抛掷,正面向上的概率是_________。

三、计算题1. 某班级有40个学生,其中有18个男生和22个女生。

从班级中随机选取两个学生,分别计算:a) 选出的两个学生都是男生的概率是多少?b) 选出的两个学生一个是男生一个是女生的概率是多少?2. 一副扑克牌中有52张牌,其中黑色牌有26张。

从扑克牌中随机抽取两张牌,并将它们放回,再抽取一张牌。

计算:a) 三次抽取都是黑色牌的概率是多少?b) 三次抽取中至少有一张黑色牌的概率是多少?四、解答题1. 一组数据:5、7、9、11、13,从中随机抽取一个数。

计算抽取奇数的概率。

答案解析:一、选择题1. D2. A3. A二、填空题1. 3/52. 3/53. 1/2三、计算题1.a) 18/40 × 17/39 = 9/20 × 17/39 = 153/780b) 18/40 × 22/39 + 22/40 × 18/39 = 396/780 = 2/5 2.a) 26/52 × 26/52 × 26/52 = 27/64b) 1 - (26/52 × 26/52 × 26/52) = 37/64四、解答题1. 3/5通过以上习题,希望能够帮助同学们加深对数学概率统计的理解和掌握。

高中数学概率与统计推理

高中数学概率与统计推理

高中数学概率与统计推理概率与统计是高中数学中的一门重要学科,它涉及到我们日常生活中的各种情况和问题。

通过学习概率与统计,我们可以更好地理解和解决现实生活中的一些难题。

本文将从概率与统计的基本概念入手,探讨其在推理和决策中的应用。

概率,作为一种描述事件发生可能性的数学工具,可以帮助我们理解和预测各种事件的结果。

在概率的世界里,我们常常使用“可能性”这个词来描述事件发生的程度。

例如,掷一枚硬币,我们可以说正反面出现的可能性是相等的,即概率为1/2。

而在生活中,我们也常常需要根据已知的信息来推断未知的概率。

比如,我们可以根据过去的天气数据来预测未来的天气情况,或者根据历史数据来预测股票的涨跌。

这些都是概率在推理中的应用。

统计是概率的衍生学科,它通过收集、整理和分析数据来揭示事物之间的关系和规律。

统计学的核心是样本与总体的关系。

通过对样本的分析,我们可以推断出总体的特征。

例如,我们可以通过对一部分人的身高进行测量,来推断全体人的身高分布。

在推断的过程中,我们需要利用概率的工具来估计未知的参数。

这就是统计学中的参数估计问题。

通过对样本的分析,我们可以得到样本的均值、方差等统计量,并利用这些统计量来估计总体的参数。

例如,通过对一批手机的重量进行测量,我们可以估计出整个批次手机的平均重量。

概率与统计在推理和决策中的应用是多样的。

在推理方面,概率与统计可以帮助我们评估和比较不同的假设。

例如,在医学研究中,我们可以通过对一组病人的观察来判断某种治疗方法的有效性。

通过对病人的分组和观察,我们可以比较不同治疗方法的效果,并用概率的工具来评估这些差异是否显著。

在决策方面,概率与统计可以帮助我们做出最优的选择。

例如,在投资决策中,我们可以通过对历史数据的分析来评估不同投资方案的风险和收益。

通过计算和比较不同方案的概率分布,我们可以选择最有利的投资策略。

概率与统计的应用还可以延伸到其他领域,如生物学、经济学、社会学等。

在生物学中,概率与统计可以帮助我们理解和解释生物现象。

2024年高考数学贝叶斯统计与推理历年真题

2024年高考数学贝叶斯统计与推理历年真题

2024年高考数学贝叶斯统计与推理历年真题2024年高考数学真题第一题:(3分)已知事件A与事件B独立,且P(A)=0.6,P(B)=0.4。

求P(A|B)。

解答:根据贝叶斯定理,有P(A|B) = (P(B|A) * P(A)) / P(B)。

由于事件A与事件B独立,所以P(B|A) = P(B)。

代入已知条件,P(A|B) = (P(B) * P(A)) / P(B) = P(A) = 0.6。

第二题:(4分)某医院进行乳腺癌筛查,根据历年数据统计,该筛查方法的阳性率为85%,同时,已知乳腺癌的发病率为1%。

对于新来的患者,她的筛查结果为阳性,请问她真的患有乳腺癌的概率是多少?解答:设事件A为患有乳腺癌,事件B为筛查结果为阳性。

根据贝叶斯定理,求解P(A|B)。

已知P(B|A) = 0.85,P(A) = 0.01,求P(A|B)。

根据贝叶斯定理,有P(A|B) = (P(B|A)*P(A)) / P(B),代入已知条件进行计算,得到P(A|B) = (0.85*0.01) / (0.85*0.01 + 0.15*0.99) ≈ 0.053。

第三题:(5分)某机场对通过安检的旅客进行毒品筛查。

根据统计数据,已知在旅客中约0.5%携带毒品,而安检机器能够正确识别携带毒品的旅客的概率为90%,不携带毒品的旅客有10%的概率被识别为携带毒品。

现在,有一位旅客被安检机器识别为携带毒品,请问他实际携带毒品的概率是多少?解答:设事件A为旅客携带毒品,事件B为安检机器识别结果为携带毒品。

根据贝叶斯定理,求解P(A|B)。

已知P(B|A) = 0.90,P(A) = 0.005,求P(A|B)。

根据贝叶斯定理,有P(A|B) = (P(B|A)*P(A)) / P(B),代入已知条件进行计算,得到P(A|B) = (0.90*0.005) / (0.90*0.005 + 0.10*0.995) ≈0.043。

逻辑推理能力测试题与答案

逻辑推理能力测试题与答案

逻辑推理能力测试( 50 小题,每小题 2 分,满分100 分)1.教授: 美国和加拿大等国早就招收写作学的硕士生、博士生了,而我们还在为争取写作学的学位授予权而竭力呼吁。

这就是对应用性、技能性学科两种截然不同的态度。

是我们错了,还是人家错了以下哪一项所表述的问题对评估上述论证的合理性最为重要?A.如果允许我们招收写作学的硕士和博士,有多少人会报考这个专业?B.我们在写作学的师资和学科研究水平上是否具备招收硕士和博士的条件?C.我们在写作学以外的其它应用性、技能性学科是否招收了硕士和博士?D.我们是否应该重视对应用性、技能性学科硕士和博士的培养?2.一位音乐家在通讯商店买手机号时,发现一个号码比其它的便宜一半还多,就问店员:“这是为什么?”店员说“这个号不好。

”原来这个号的尾数是1414,很多人忌讳它的谐音“要死要死” ,可这位音乐家开口一唱,却是哆发哆发,其谐音是“都发都发”,非常高兴地买了这个号码。

如果以上陈述为真,不能支持以下哪一项陈述?A.对数字谐音所暗示含义的忌讳或悦纳是愚蠢的B.数字谐音所暗示的含义会影响购买号码的行为。

C.人们可以将不同的思想附加到同样的数字上去。

D.数字与它的谐音所暗示的含义并不具有唯一性。

3.在南非的祖鲁兰,每17个小时就有一头犀牛被偷猎。

“飞翔的犀牛” 行动从乌姆福洛奇保护区精心挑选了114头白犀牛和10 头黑犀牛,将它们空运到南非一个秘密的地区,犀牛保护者希望犀牛能在这里自然地繁殖和生长,以避免因偷猎而导致犀牛灭绝的厄运。

以下哪一项陈述不是“飞翔的犀牛”行动的假设?A.对犀牛新家的保密措施严密,使偷猎分子不知道那里有犀牛。

B.给犀牛人为选择的新家适合自犀牛和黑犀牛的繁殖和生长。

C.住在犀牛新家附近的居民不会有人为昂贵的犀牛角而偷猎。

D.60 年前为避免黑犀牛灭绝而进行的一次保护转移行动获得成功。

4.科学家:就像地球一样,金星内部也有一个炽热的熔岩核,随着金星的自转和公转会释放巨大的热量。

专题六 第一讲 概率与统计、推理证明、算法与复数

专题六 第一讲 概率与统计、推理证明、算法与复数

一、选择题1.(2011·江西高考)为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y 对x 的线性回归方程为( ) A .y =x -1 B .y =x +1 C .y =88+12xD .y =176 解析:设y 对x 的线性回归方程为y =bx +a , 因为b =-2×(-1)+0×(-1)+0×0+0×1+2×1(-2)2+22=12, a =176-12×176=88,所以y 对x 的线性回归方程为y =12x +88. 答案:C2.(2011·南昌模拟)甲、乙两个数学兴趣小组各有5名同学,在一次数学测试中,成绩统计用茎叶图表示如图,若甲、乙小组的平均成绩分别是x 甲,x 乙,则下列结论正确的是( )A.x 甲>x 乙B .x 甲>x 乙,乙比甲成绩稳定 C .x 甲<x 乙,甲比乙成绩稳定 D .x 甲<x 乙,乙比甲成绩稳定解析:依题意得x 甲=15(80×2+90×3+8+9+2+1+0)=90,x 乙=15(80×4+90×1+3+4+8+9+1)=87,x 甲>x 乙;s 2甲=15[(88-90)2+(89-90)2+(92-90)2+(91-90)2]=2,s 2乙=15[(83-87)2+(84-87)2+(88-87)2+(89-87)2+(91-87)2]=9.2,s 2甲<s 2乙,因此甲比乙成绩更稳定.答案:A3.(2011·重庆高考)从一堆苹果中任取10只,称得它们的质量如下(单位:克): 125 120 122 105 130 114 116 95 120 134 则样本数据落在[114.5,124.5)内的频率为( ) A .0.2 B .0.3 C .0.4D .0.5解析:依题意得,样本数据落在[114.5,124.5)内的频率为410=0.4.答案:C4.(2011·浙江高考)从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( )A.110 B.310 C.35D.910解析:从3个红球、2个白球中任取3个,根据穷举法,可以得到10个基本事件,其中没有白球的取法只有一种,因此所取的3个球中至少有1个白球的概率P =1-P (没有白球)=1-110=910.答案:D 二、填空题5.(2011·浙江高考)某中学为了解学生数学课程的学习情况,在3 000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测,这3 000名学生在该次数学考试中成绩小于60分的学生数是________.解析:由题意知,在该次数学考试中成绩小于60分的频率为(0.002+0.006+0.012)×10=0.2,故这3 000名学生在该次数学考试中成绩小于60分的学生数是3 000×0.2=600.答案:6006.在集合A ={m |关于x 的方程x 2+mx +34m +1=0无实根}中随机的取一元素x ,恰使式子lg x 有意义的概率为________.解析:由于Δ=m 2-4(34m +1)<0,得-1<m <4,若使lg x 有意义,必须使x >0.在数轴上表示为,故所求概率为45.答案:457.(2011·江西高考)某老师从星期一到星期五收到的信件数分别为10,6,8,5,6,则该组数据的方差s 2=________.解析:5个数据的平均数x -=10+6+8+5+65=7,所以s 2=15×[(10-7)2+(6-7)2+(8-7)2+(5-7)2+(6-7)2]=3.2.答案:3.2 三、解答题8.为了调查某生产线上质量监督员甲对产品质量好坏有无影响,现统计数据如下:质量监督员甲在现场时,990件产品中合格品有982件,次品有8件,甲不在现场时,510件产品中,合格品有493件,次品有17件.试分别用列联表、独立性检验的方法对数据进行分析.解:(1)2×2列联表如下.由列联表看出|ac -bd |=|982×17-493×8|=12 750,相差较大,可在某种程度上认为“甲在不在场与产品质量有关”.(2)由2×2列联表中数据,计算K 2=1 500×(982×17-493×8)21 475×25×510×990≈13.097>6.635.所以,约有99%的把握认为“质量监督员甲在不在现场与产品质量有关系”.9.为了调查甲、乙两个网站受欢迎的程度,随机选了14天,统计上午8:00~10:00间各自的点击量,得如右图所示的统计图,根据统计图回答下列问题: 茎叶图甲 乙 85 6(1)甲、乙两个网站点击量的极差分别是多少?(2)甲网站点击量在[10,40]间的频率是多少?(3)甲、乙两个网站哪个更受欢迎?并说明理由.解:(1)甲网站的极差为:73-8=65;乙网站的极差为:71-5=66.(2)甲网站点击量在[10,40]间的频率为414=0.286.(3)甲网站的点击量集中在茎叶图的下方,而乙网站的点击量集中在茎叶图的上方.从数据的分布情况来看,甲网站更受欢迎.10.(2011·天津高考)编号分别为A1,A2,…,A16的16名篮球运动员在某次训练比赛中的得分记录如下:(1)将得分在对应区间内的人数填入相应的空格:(2)从得分在区间[20,30)内的运动员中随机抽取2人,①用运动员编号列出所有可能的抽取结果;②求这2人得分之和大于50的概率.解:(1)4,6,6.(2)①得分在区间[20,30)内的运动员编号为A3,A4,A5,A10,A11,A13.从中随机抽取2人,所有可能的抽取结果有:{A3,A4},{A3,A5},{A3,A10},{A3,A11},{A3,A13},{A4,A5},{A4,A10},{A4,A11},{A4,A13},{A5,A10},{A5,A11},{A5,A13},{A10,A11},{A10,A13},{A11,A13},共15种.②“从得分在区间[20,30)内的运动员中随机抽取2人,这2人得分之和大于50”(记为事件B)的所有可能结果有:{A4,A5},{A4,A10},{A4,A11},{A5,A10},{A10,A11},共5种.所以P(B)=515=13.1 2 4 95 4 02 183 6 714 2 2 58 55 47 6 46 13 2 07 1。

一点一练高考数学 第十章 推理证明、算法、复数专题演练 理(含两年高考一年模拟)-人教版高三全册数学

一点一练高考数学 第十章 推理证明、算法、复数专题演练 理(含两年高考一年模拟)-人教版高三全册数学

第十章 推理证明、算法、复数考点35 推理与证明、数学归纳法两年高考真题演练1.(2014·某某)用反证法证明命题“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 3+ax +b =0没有实根B .方程x 3+ax +b =0至多有一个实根C .方程x 3+ax +b =0至多有两个实根D .方程x 3+ax +b =0恰好有两个实根 2.(2015·某某)观察下列各式: C 01=40; C 03+C 13=41; C 05+C 15+C 25=42; C 07+C 17+C 27+C 37=43; ……照此规律,当n ∈N *时,C 02n -1+C 12n -1+ C 22n -1+…+ C n -12n -1=________.3.(2015·某某)一个二元码是由0和1组成的数字串x 1x 2…x n (n ∈N *),其中x k (k =1,2,…,n )称为第k 位码元.二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0).已知某种二元码x 1x 2…x 7的码元满足如下校验方程组:⎩⎪⎨⎪⎧x 4⊕x 5⊕x 6⊕x 7=0,x 2⊕x 3⊕x 6⊕x 7=0,x 1⊕x 3⊕x 5⊕x 7=0,其中运算⊕定义为0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k 等于________.4.(2014·某某)如图,在等腰直角三角形ABC 中,斜边BC =22,过点A 作BC 的垂线,垂足为A 1;过点A 1作AC 的垂线,垂足为A 2;过点A 2作A 1C 的垂线,垂足为A 3;…,依此类推,设BA =a 1,AA 1=a 2,A 1A 2=a 3,…,A 5A 6=a 7,则a 7=________.5.(2014·某某)若集合{a ,b ,c ,d }={1,2,3,4},且下列四个关系:①a =1;②b ≠1;③c =2;④d ≠4有且只有一个是正确的,则符合条件的有序数组(a ,b ,c ,d )的个数是________.6多面体 面数(F ) 顶点数(V )棱数(E ) 三棱柱 5 6 9 五棱锥 6 6 10 立方体6 812猜想一般凸多面体中F ,V ,E 所满足的等式是________.7.(2014·某某)设a 1=1,a n +1=a 2n -2a n +2+b (n ∈N *). (1)若b =1,求a 2,a 3及数列{a n }的通项公式;(2)若b =-1,问:是否存在实数c 使得a 2n <c <a 2n +1对所有n ∈N *成立?证明你的结论.考点35 推理与证明、数学归纳法一年模拟试题精练1.(2015·某某师大附中模拟)观察下列等式:13+23=1,73+83+103+113=12,163+173+193+203+223+233=39,…,则当n <m 且m ,n ∈N 时,3n +13+3n +23+…+3m -23+3m -13=________.(最后结果用m ,n 表示)2.(2015·某某黄冈模拟)对于集合N ={1,2,3,…,n }和它的每一个非空子集,定义一种求和称之为“交替和”如下:如集合{1,2,3,4,5}的交替和是5-4+3-2+1=3,集合{3}的交替和为3. 当集合N 中的n =2时,集合N ={1,2}的所有非空子集为{1},{2},{1,2},则它的“交替和”的总和S 2=1+2+(2-1)=4,请你尝试对n =3,n =4的情况,计算它的“交替和”的总和S 3, S 4,并根据计算结果猜测集合N ={1,2,3,…,n }的每一个非空子集的“交替和”的总和S n =________ (不必给出证明).3.(2015·某某威海模拟)对大于1的自然数m 的三次幂可用奇数进行以下方式的“分裂”23⎩⎪⎨⎪⎧35,33⎩⎪⎨⎪⎧7911,43⎩⎪⎨⎪⎧13151719,…仿此,若m 3的“分裂”数中有一个是2 015,则m 的值为________.4.(2015·某某七市模拟)将长度为l (l ≥4,l ∈N *)的线段分成n (n ≥3)段,每段长度均为正整数,并要求这n 段中的任意三段都不能构成三角形.例如,当l =4时,只可以分为长度分别为1,1,2的三段,此时n 的最大值为3;当l =7时,可以分为长度分别为1,2,4的三段或长度分别为1,1,1,3的四段,此时n 的最大值为4.则:(1)当l =12时,n 的最大值为________; (2)当l =100时,n 的最大值为________.5.(2015·某某模拟)已知n ,k ∈N * ,且k ≤n ,k C k n =n C k -1n -1,则可推出C 1n +2C 2n +3C 3n +…+k C k n +…+n C n n =n (C 0n -1+C 1n -1+…C k -1n -1+…C n -1n -1)=n ·2n -1,由此,可推出C 1n +22C 2n +32C 3n +…+k 2C k n +…+n 2C nn =________.6.(2015·某某日照模拟)已知2+23=223,3+38=338,4+415=4415,…,若7+a b =7ab,(a 、b 均为正实数),则类比以上等式,可推测a 、b 的值,进而可得a +b =________.7.(2015·某某某某模拟)已知函数f 1(x )=2x +1,f n +1(x )=f 1(f n (x )),且a n =f n (0)-1f n (0)+2.(1)求证:{a n }为等比数列,并求其通项公式; (2)设b n =(-1)n -12a n ,g (n )=1+12+13+…+1n (n ∈N *),求证:g (b n )≥n +22.考点36 算法与程序框图两年高考真题演练1.(2015·某某)阅读如图所示的程序框图,运行相应的程序,则输出的结果为( )A .2B .1C .0D .-12.(2015·)执行如图所示的程序框图,输出的结果为( )A .(-2,2)B .(-4,0)C .(-4,-4)D .(0,-8) 3.(2015·某某)执行如图所示的程序框图,若输出k 的值为8,则判断框内可填入的条件是( ) A .s ≤34B .s ≤56C .s ≤1112D .s ≤25244.(2015·新课标全国Ⅱ)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的a =( )A .0B .2C .4D .145.(2014·某某)执行如图所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是( )A .s >12B .s >35C .s >710D .s >456.(2014·某某)执行如图的程序框图,如果输入的x ,y ∈R ,那么输出的S 的最大值为( )A .0B .1C .2D .3考点36 算法与程序框图一年模拟试题精练1.(2015·某某某某模拟)执行如图所示的程序框图,若输入n的值为22,则输出的S 的值为( )A.232 B.211 C.210 D.1912.(2015·乌鲁木齐模拟)执行如图程序在平面直角坐标系上打印一系列点,则打出的点在圆x2+y2=10内的个数是( )A.2 B.3 C.4 D.53.(2015·某某模拟)在区间[-2,3]上随机选取一个数M,不断执行如图所示的程序框图,且输入x的值为1,然后输出n的值为N,则M≤N-2的概率为( )A.15B.25C.35D.454.(2015·某某一模)已知如图1所示是某学生的14次数学考试成绩的茎叶图,第1次到第14次的考试成绩依次记为A 1,A 2,…A 14,图2是统计茎叶图中成绩在一定X 围内考试次数的一个程序框图,则输出的n 的值是( )A .8B .9C .10D .115.(2015·某某一模)如图,给出的是计算12+14+16+…+12 016的值的程序框图,其中判断框内应填入的是( )A .i ≤2 021B .i ≤2 019C .i ≤2 017D .i ≤2 0156.(2015·某某枣庄模拟)某算法的程序框图如图所示,如果输出的结果为26,则判断框内的条件应为( )A .k ≤5?B .k >4?C .k >3?D .k ≤4?考点37 复 数 两年高考真题演练1.(2015·某某)设i 是虚数单位,则复数2i1-i 在复平面内所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.(2015·某某)若复数z =i(3-2i)(i 是虚数单位),则z =( ) A .3-2i B .3+2i C .2+3i D .2-3i3.(2015·新课标全国Ⅱ)若a 为实数,且(2+a i)(a -2i)=-4i ,则a =( ) A .-1 B .0 C .1 D .24.(2015·某某)设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,则y ≥x 的概率为( ) A.34+12π B.14-12π C.12-1π D.12+1π5.(2015·新课标全国Ⅰ)设复数z 满足1+z 1-z =i ,则|z |=( )A .1 B. 2 C. 3 D .26.(2015·某某)设i 是虚数单位,则复数i 3-2i=( )A .-iB .-3iC .iD .3i7.(2015·)复数i(2-i)=( ) A .1+2i B .1-2i C .-1+2i D .-1-2i8.(2015·某某)若集合A ={i ,i 2,i 3,i 4}(i 是虚数单位),B ={1,-1},则A ∩B 等于( )A .{-1}B .{1}C .{1,-1}D .∅9.(2015·某某)已知(1-i )2z=1+i(i 为虚数单位),则复数z =( )A .1+iB .1-iC .-1+iD .-1-i10.(2015·某某)若复数z 满足z1-i =i ,其中i 为虚数单位,则z =( )A .1-iB .1+iC .-1-iD .-1+i11.(2014·某某)复平面内表示复数i(1-2i)的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限12.(2014·某某)已知i 是虚数单位,a ,b ∈R ,则“a =b =1”是“(a +b i)2=2i ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件13.(2014·某某)已知a ,b ∈R ,i 是虚数单位,若a -i 与2+b i 互为共轭复数,则(a +b i)2=( )A .5-4iB .5+4iC .3-4iD .3+4i 14.(2015·某某)设复数a +b i(a ,b ∈R )的模为3,则(a +b i)(a -b i)=________. 15.(2015·某某)i 是虚数单位,若复数(1-2i)(a +i)是纯虚数,则实数a 的值为________.1.(2015·某某江南十校模拟)若复数6+a i3-i (其中a ∈R ,i 为虚数单位)的实部与虚部相等,则a =( )A .3B .6C .9D .122.(2015·某某某某模拟)已知i 为虚数单位,复数z =(1+2i)i 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.(2015·万州区模拟)设复数z =a +i1-i(a ∈R ,i 为虚数单位),若z 为纯虚数,则a =( )A .-1B .0C .1D .24.(2015·乌鲁木齐模拟)在复平面内,复数1+2i1-i对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 5.(2015·某某模拟)已知复数z 满足:z i =2+i(i 是虚数单位),则z 的虚部为( ) A .2i B .-2i C .2 D .-26.(2015·某某一模)已知i 为虚数单位,复数z 满足i z =1+i ,则z =( ) A .1+i B .1-i C .-1+i D .-1-i7.(2015·某某一模)设i 为虚数单位,复数2i1+i等于( )A .-1+iB .-1-iC .1-iD .1+i8.(2015·某某一模)已知复数z 1=2+i ,z 2=1-2i ,若z =z 1z 2,则z -=( )A.45+iB.45-i C .i D .-i 9.(2015·德阳模拟)复数2i 2-i =( )A .-25+45i B.25-45iC.25+45i D .-25-45i 10.(2015·某某枣庄模拟)i 是虚数单位,若z =1i -1,则|z |=( )A.12B.22C. 2 D .2 11.(2015·某某某某模拟)已知i 是虚数单位, 若⎝ ⎛⎭⎪⎫2+i 1+m i 2<0(m ∈R ),则m 的值为( )A.12 B .-2 C .2 D .-1212.(2015·某某某某模拟)设a ∈R ,i 是虚数单位,则“a =1”是“a +ia -i为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件13.(2015·某某模拟)复数z =m -2i1+2i(m ∈R ,i 为虚数单位)在复平面上对应的点不可能位于( )A .第一象限B .第二象限C .第三象限D .第四象限14.(2015·某某河西五地模拟)下面是关于复数z =21-i的四个命题: p 1:|z |=2, p 2:z 2=2i ,p 3:z 的共轭复数为-1+i, p 4:z 的虚部为1.其中真命题为( ) A .p 2,p 3 B .p 1,p 2 C .p 2,p 4 D .p 3,p 415.(2015·某某马某某模拟)若复数z =(a 2-4)+(a +2)i 为纯虚数,则a +i 2 0151+2i的值为( )A .1B .-1C .iD .-i第十章 推理证明、算法、复数考点35 推理与证明、数学归纳法 【两年高考真题演练】1.A [因为至少有一个的反面为一个也没有,所以要做的假设是方程x 3+ax +b =0没有实根.]2.4n -1[观察等式,第1个等式右边为40=41-1,第2个等式右边为41=42-1,第3个等式右边为42=43-1, 第4个等式右边为43=44-1,所以第n 个等式右边为4n -1.]3.5 [(ⅰ)x 4⊕x 5⊕x 6⊕x 7=1⊕1⊕0⊕1=1,(ⅱ)x 2⊕x 3⊕x 6⊕x 7=1⊕0⊕0⊕1=0;(ⅲ)x 1⊕x 3⊕x 5⊕x 7=1⊕0⊕1⊕1=1.由(ⅰ)(ⅲ)知x 5,x 7有一个错误,(ⅱ)中没有错误,∴x 5错误,故k 等于5.]4.14 [由题意知数列{a n }是以首项a 1=2,公比q =22的等比数列,∴a 7=a 1·q 6=2×⎝ ⎛⎭⎪⎫226=14.] 5.6 [根据题意可分四种情况:(1)若①正确,则a =1,b =1,c ≠2,d =4,符合条件的有序数组有0个;(2)若②正确,则a ≠1,b ≠1,c ≠2,d =4,符合条件的有序数组为(2,3,1,4)和(3,2,1,4);(3)若③正确,则a ≠1,b =1,c =2,d =4,符合条件的有序数组为(3,1,2,4); (4)若④正确,则a ≠1,b =1,c ≠2,d ≠4,符合条件的有序数组为(2,1,4,3),(4,1,3,2),(3,1,4,2).所以共有6个.故答案为6.]6.F +V -E =2 [因为5+6-9=2,6+6-10=2,6+8-12=2,故可猜想F +V -E =2.]7. 解 (1)法一 a 2=2,a 3=2+1. 再由题设条件知(a n +1-1)2=(a n -1)2+1. 从而{(a n -1)2}是首项为0公差为1的等差数列, 故(a n -1)2=n -1,即a n =n -1+1 (n ∈N *).法二 a 2=2,a 3=2+1.可写为a 1=1-1+1,a 2=2-1+1,a 3=3-1+1. 因此猜想a n =n -1+1. 下面用数学归纳法证明上式: 当n =1时结论显然成立.假设n =k 时结论成立,即a k =k -1+1,则a k +1=(a k -1)2+1+1=(k -1)+1+1=(k +1)-1+1.这就是说,当n =k +1时结论成立. 所以a n =n -1+1(n ∈N *). (2)设f (x )=(x -1)2+1-1, 则a n +1=f (a n ).令c =f (c ),即c =(c -1)2+1-1,解得c =14.下用数学归纳法证明加强命题a 2n <c <a 2n +1<1. 当n =1时,a 2=f (1)=0,a 3=f (0)=2-1, 所以a 2<14<a 3<1,结论成立.假设n =k 时结论成立,即a 2k <c <a 2k +1<1. 易知f (x )在(-∞,1]上为减函数, 从而c =f (c )>f (a 2k +1)>f (1)=a 2, 即1>c >a 2k +2>a 2.再由f (x )在(-∞,1]上为减函数得c =f (c )<f (a 2k +2)<f (a 2)=a 3<1. 故c <a 2k +3<1,因此a 2(k +1)<c <a 2(k +1)+1<1. 这就是说,当n =k +1时结论成立.综上,符合条件的c 存在,其中一个值为c =14.【一年模拟试题精练】1. m 2-n 2 [当n =0,m =1时,为第一个式子13+23=1此时1=12-0=m 2-n 2,当n =2,m =4时,为第二个式子73+83+103+113=12;此时12=42-22=m 2-n 2,当n =5,m =8时,为第三个式子163+173+193+203+223+233=39此时39=82-52=m 2-n 2,由归纳推理可知等式:3n +13+3n +23+…+3m -23+3m -13=m 2-n 2.故答案为:m 2-n 2]2.n ·2n -1[S 1=1,S 2=4,当n =3时,S 3=1+2+3+(2-1)+(3-1)+(3-2)+(3-2+1)=12,S 4=1+2+3+4+(2-1)+(3-1)+(4-1)+(3-2)+(4-2)+(4-3)+(3-2+1)+(4-2+1)+(4-3+1)+(4-3+2)+(4-3+2-1)=32,∴根据前4项猜测集合N ={1,2,3,…,n }的每一个非空子集的“交替和”的总和S n=n ·2n -1,故答案为:n ·2n -1.]3.45 [由题意,从23到m 3,正好用去从3开始的连续奇数共2+3+4+…+m =(m +2)(m -1)2个,2 015是从3开始的第1 007个奇数,当m =44时,从23到443,用去从3开始的连续奇数共46×432=989个. 当m =45时,从23到453,用去从3开始的连续奇数共47×442=1 034个.] 4.(1)5 (2)9 [当l =12时,为使n 最大,先考虑截下的线段最短,第1段和第2段长度为1、1,由于任意三段都不能构成三角形,∴第3段的长度为1+1=2,第4段和第5段长度为3、5,恰好分成了5段;(2)当l =100时,依次截下的长度为1、1、2、3、5、8、13、21、34的线段,长度和为88,还余下长为12的线段,因此最后一条线段长度取为34+12=46,故n 的最大值是9.]5.n (n +1)·2n -2[C 1n +22C 2n +32C 3n +…+k 2C k n +…+n 2C n n =n (C 0n -1+2C 1n -1+…+k C k -1n -1+…+n C n -1n -1)=n [(C 0n -1+C 1n -1+…+C k -1n -1+…+C n -1n -1)+(C 1n -1+2C 2n -1+…+(k -1)C k -1n -1+…+(n -1)C n -1n -1)].]6.55 [观察下列等式2+23=223,3+38=338,4+415=4415,…, 照此规律,第7个等式中:a =7,b =72-1=48,∴a +b =55,故答案为:55.] 7.(1)证明 由题设知a 1=f 1(0)-1f 1(0)+2=14,∴a n +1a n =f n +1(0)-1f n +1(0)+2f n (0)-1f n (0)+2=2f n (0)+1-12f n (0)+1+2f n (0)-1f n (0)+2=1-f n (0)2f n (0)+4f n (0)-1f n (0)+2=-12,∴数列{a n }为等比数列,项通次公式为a n =⎝ ⎛⎭⎪⎫-12n +1. (2)解 由(1)知b n =2n,g (b n )=1+12+13+…+12n ,只要证:1+12+13+…+12n ≥n +22,下面用数学归纳证明:n =1时,1+12=1+22,结论成立,假设n =k 时成立,即1+12+13+…+12k >k +22,那么:n =k +1时,1+12+13+…+12k +12k +1+…+12k +1>k +22+12k +1+…+12k +1>k +22+12k +1+12k +1+…+12k +1>k +22+12k +12k =k +32,即n =k +1时,结论也成立, 所以n ∈N ,结论成立.考点36 算法与程序框图【两年高考真题演练】1.C [当i =1,S =0进入循环体运算时,S =0,i =2;S =0+(-1)=-1,i =3;S=-1+0=-1,i =4;∴S =-1+1=0,i =5;S =0+0=0,i =6>5,故选C.]2.B [第一次循环:S =1-1=0,t =1+1=2;x =0,y =2,k =1; 第二次循环:S =0-2=-2,t =0+2=2,x =-2,y =2,k =2;第三次循环:S =-2-2=-4,t =-2+2=0,x =-4,y =0,k =3.输出(-4,0).] 3.C [由程序框图,k 的值依次为0,2,4,6,8,因此S =12+14+16=1112(此时k =6)还必须计算一次,因此可填S ≤1112,选C.]4.B [由题知,若输入a =14,b =18,则第一次执行循环结构时,由a <b 知,a =14,b =b -a =18-14=4; 第二次执行循环结构时,由a >b 知,a =a -b =14-4=10,b =4; 第三次执行循环结构时,由a >b 知,a =a -b =10-4=6,b =4; 第四次执行循环结构时,由a >b 知,a =a -b =6-4=2,b =4; 第五次执行循环结构时,由a <b 知,a =2,b =b -a =4-2=2; 第六次执行循环结构时,由a =b 知,输出a =2,结束,故选B.]5.C [程序框图的执行过程如下:s =1,k =9,s =910,k =8;s =910×89=810,k =7;s =810×78=710,k =6,循环结束.故可填入的条件为s >710.故选C.]6.C [先画出x ,y 满足的约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1,对应的可行域如图中的阴影部分:移动直线l 0:y =-2x .当直线经过点A (1,0)时,y =-2x +S 中截距S 最大,此时S max =2×1+0=2. 再与x ≥0,y ≥0,x +y ≤1不成立时S =1进行比较,可得S max =2.] 【一年模拟试题精练】1.B [由循环程序框图可转化为数列{S n }为1,2,4,…并求S 21,观察规律得S 2-S 1=1,S 3-S 2=2,S 4-S 3=3,……,S 21-S 20=20,把等式相加:S 21-S 1=1+2+…+20=20×1+202=210,所以S 21=211.故选B.]2.B [根据流程图所示的顺序,该程序的作用是打印如下点:(1,1)、⎝ ⎛⎭⎪⎫2,12、⎝ ⎛⎭⎪⎫3,13、⎝ ⎛⎭⎪⎫4,14、⎝ ⎛⎭⎪⎫5,15、⎝ ⎛⎭⎪⎫6,16 其中(1,1)、⎝ ⎛⎭⎪⎫2,12、⎝ ⎛⎭⎪⎫3,13满足x 2+y 2<10,即在圆x 2+y 2=10内,故打印的点在圆x 2+y 2=10内的共有3个,故选:B.]3.C [ 循环前输入的x 的值为1, 第1次循环,x 2-4x +3=0≤0,满足判断框条件,x =2,n =1,x 2-4x +3=-1≤0,满足判断框条件,x =3,n =2,x 2-4x +3=0≤0,满足判断框条件,x =4,n =3,x 2-4x +3=3>0,不满足判断框条件,输出n :N =3.在区间[-2,3]上随机选取一个数M ,长度为5,M ≤1,长度为3,所以所求概率为35,故选C.]4.C [由程序框图知:算法的功能是计算学生在14次数学考试成绩中,成绩大于等于90的次数,由茎叶图得,在14次测试中,成绩大于等于90的有:93、99、98、98、94、91、95、103、101、114共10次,∴输出n 的值为10.故选C.] 5.C [根据流程图,可知第1次循环:i =2,S =12;第2次循环:i =4,S =12+14;第3次循环:i =6,S =12+14+16…,第1 008次循环:i =2 016, S =12+14+16+…+12 016; 此时,设置条件退出循环,输出S 的值.故判断框内可填入i ≤2 016.对比选项,故选C.]6.C[分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算S 值并输出,模拟程序的运行过程,即可得到答案,程序在运行过程中,各变量的值变化如下所示:S 条件? k循环前 0 / 1 第1圈 1 否 2 第2圈 4 否 3 第3圈 11 否 4 第4圈 26 是得,当k =4时,S =26,此时应该结束循环体并输出S 的值为26,所以判断框应该填入的条件为:k >3?,故选C.]考点37 复 数【两年高考真题演练】1.B [2i 1-i =2i (1+i )(1-i )(1+i )=2i (1+i )2=i -1=-1+i ,其对应点坐标为(-1,1),位于第二象限,故选B.]2.D [因为z =i(3-2i)=2+3i ,所以z =2-3i ,故选D.]3.B [因为a 为实数,且(2+a i)(a -2i)=4a +(a 2-4)i =-4i ,得4a =0且a 2-4=-4,解得a =0,故选B.]4.B [由|z|≤1可得(x -1)2+y 2≤1,表示以(1,0)为圆心,半径为1的圆及其内部,满足y ≥x 的部分为如图阴影所示,由几何概型概率公式可得所求概率为: P =14π×12-12×12π×12=π4-12π =14-12π.] 5.A [由1+z 1-z =i ,得1+z =i -z i ,z =-1+i1+i =i ,∴|z |=|i|=1.]6.C [i 3-2i =-i -2i i 2=-i +2i =i.选C.]7.A [i(2-i)=2i -i 2=1+2i.]8.C [集合A ={i -1,1,-i},B ={1,-1},A ∩B ={1,-1},故选C.]9.D [由(1-i )2z =1+i ,知z =(1-i )21+i =-2i1+i =-1-i ,故选D.]10.A [∵z1-i=i ,∴z =i(1-i)=i -i 2=1+i ,∴z =1-i.] 11.A [复数i(1-2i)=2+i ,在复平面内对应的点的坐标是(2,1),位于第一象限.] 12.A [当a =b =1时,(a +b i)2=(1+i)2=2i ,反之,若(a +b i)2=2i ,则有a =b =-1或a =b =1,因此选A.]13.D [根据已知得a =2,b =1,所以(a +b i)2=(2+i)2=3+4i.]14.3 [由|a +b i|=3得a 2+b 2=3,即a 2+b 2=3,所以(a +b i)(a -b i)=a 2+b 2=3.]15.-2 [(1-2i)(a +i)=a +2+(1-2a )i ,由已知,得a +2=0,1-2a ≠0,∴a =-2.]【一年模拟试题精练】 1.A [z =(6+a i )(3+i )(3-i )(3+i )=18-a +(3a +6)i10.由条件得,18-a =3a +6,∴a=3.]2.B [因为z =(1+2i)i =i +2i 2=-2+i ,所以z 对应的点的坐标是(-2,1),所以在第二象限,故选B.]3.C [z =a +i 1-i =(a +i )(1+i )(1-i )(1+i )=a -1+(1+a )i 2=a -12+1+a2i ,若z 为纯虚数,则a -12=0且1+a2≠0,解a =1,故选:C.] 4.B [∵复数 1+2i 1-i =(1+2i )(1+i )(1+i )(1-i )=-1+3i 2=-12+32i ,∴复数对应的点的坐标是⎝ ⎛⎭⎪⎫-12,32,∴复数1+2i 1-i 在复平面内对应的点位于第二象限,故选B.]5.D [由z i =2+i ,得z =2+i i =-i (2+i )-i2=1-2i ,∴z 的虚部是-2.] 6.A [∵i z =1+i ,∴-i ·i z =-i(1+i),化为z =1-i ,∴z -=1+i.] 7.D [2i 1+i =2i (1-i )(1+i )(1-i )=2+2i2=1+i.]8.D [∵复数z 1=2+i ,z 2=1-2i ,∴z =z 1z 2=2+i 1-2i =(2+i )(1+2i )(1-2i )(1+2i )=5i5=i ,则z =-i.]9.A [2i 2-i =2i (2+i )(2-i )(2+i )=-2+4i 5=-25+45i.]10.B [由题根据所给复数化简求解即可;∵z =1i -1=1+i -2,∴|z |=22.]11.B [由⎝ ⎛⎭⎪⎫2+i 1+m i 2<0,知2+i 1+m i 为纯虚数,∴2+i 1+m i =2+m +(1-2m )i 1+m 2为纯虚数,∴m =-2,故选B.]12.A [∵a +i a -i =a 2-1+2a i a 2+1,∴“a +ia -i为纯虚数”⇔“a =±1”, 故“a =1”是“a +ia -i为纯虚数”的充分不必要条件.] 13.A [由已知z =m -2i 1+2i =(m -2i )(1-2i )(1+2i )(1-2i )=15[(m -4)-2(m +1)i]; 在复平面对应点如果在第一象限,则⎩⎪⎨⎪⎧m -4>0,m +1<0而此不等式组无解.即在复平面上对应的点不可能位于第一象限.故选A.]14.C [p 1:|z |=⎪⎪⎪⎪⎪⎪21-i =2,故命题为假;p 2:z 2=⎝ ⎛⎭⎪⎫21-i 2=41-2i -1=2i ,故命题为真; z =21-i=1+i ,∴z 的共轭复数为1-i ,故命题p 3为假; ∵z =21-i =1+i ,∴p 4:z 的虚部为1,故命题为真.故真命题为p 2,p 4故选C.]15.D [∵z =(a 2-4)+(a +2)i 为纯虚数,∴⎩⎪⎨⎪⎧a 2-4=0,a +2≠0,即⎩⎪⎨⎪⎧a =2或a =-2,a ≠-2,解得a =2,则a +i 2 0151+2i =2+i 31+2i =2-i 1+2i =-i.]。

奥数竞赛概率与统计推理

奥数竞赛概率与统计推理

奥数竞赛概率与统计推理概率与统计是数学中非常重要的一个分支,在奥数竞赛中也占有重要的地位。

本文将重点探讨奥数竞赛中的概率与统计推理问题,并介绍相关的概念和方法。

一、概率概率是研究随机事件发生可能性的数学工具。

在奥数竞赛中,对于概率的计算,常见的有排列组合、几何概率、贝叶斯定理等方法。

例如,我们考虑一个有n个元素的集合,从中取r个元素,通过排列组合可以得到选择的总数为C(n,r)。

其中C(n,r)表示从n个元素中选取r个元素的组合数。

而几何概率则是通过计算几何形状的面积或长度来求解概率。

二、统计推理统计推理是根据样本数据对总体进行推断的一种方法。

奥数竞赛中的统计推理问题常常涉及到各种抽样方法、数据分析和参数估计。

举个例子,我们可以通过样本数据计算出样本均值、方差等统计量,并利用这些统计量进行总体参数的估计。

同时,根据样本数据的分布情况,可以运用正态分布、t分布等概率分布进行统计推断。

三、常见题型与解题思路1. 概率题型在奥数竞赛中,常见的概率题型有生日悖论、扑克牌问题、盒子问题等。

对于这类题目,我们需要通过分析概率事件的发生情况,利用排列组合、条件概率等概率计算方法来求解。

此外,对于一些较为复杂的概率题目,我们可以使用数学期望、条件概率等概率理论的相关概念进行求解。

2. 统计推理题型统计推理题型包括抽样问题、置信区间估计、假设检验等。

对于抽样问题,我们需要熟悉各种抽样方法的原理和步骤,并能灵活运用。

在置信区间估计中,我们需要根据样本数据的分布情况和抽样误差的允许范围来计算置信区间。

而假设检验则是根据样本数据对总体参数进行推断。

四、解题技巧与要点在解决奥数竞赛概率与统计推理问题时,有一些常用的技巧和要点:1. 熟悉基本概念和定义:掌握基本的概率和统计概念,例如条件概率、独立事件等,有助于我们更好地理解和分析问题。

2. 理解题意与转化问题:仔细阅读题目,理清问题的要求和限制条件,并能够把问题转化为数学模型,以便进行计算。

复数、推理证明纯题目

复数、推理证明纯题目

2、复数534+i的共轭复数是:4、.若z C ∈且221z i +-=,则12z i --的最小值是:5、下列说法正确的个数是①若()()213x i y y i -+=--,其中,,I x R y C R I ∈∈为复数集。

则必有()2113x yy -=⎧⎪⎨=--⎪⎩②21i i +>+ ③虚轴上的点表示的数都是纯虚数④若一个数是实数,则其虚部不存在7、复数()1cos sin 23z i θθπθπ=-+<<的模为 8、当213m <<时,复数()()32m i i +-+在复平面内对应的点位于第 象限 10、把正整数按下图所示的规律排序,则从2003到2005 的箭头方向依次为11、221(1)(4),.z m m m m i m R =++++-∈23 2.z i =-则1m =是12z z =的_____________条件14、试求12345678,,,,,,,i i i i i i i i 的值,由此推测4ni=_____, 41n i +=______,42n i +=______, 43n i +=______, 12342000......i i i i i =___________19、已知,z ω为复数,(13)i z +⋅为纯虚数,2ziω=+,且||ω=ω。

1.化简=+-i i11 . 3.已知,11ni im-=-其中n m ,是实数,i 是虚数单位,则=+ni m . 9.已知推理:“因为△ABC 三边长依次为3,4,5,所以△ABC 是直角三角形”.若将其恢复成完整的三段论,则大前提是 . 10.观察下列等式:,),4321(16941,321941),21(41,11 +++-=-+-++=+-+-=-=由此推测第n 个等式为 .(不必化简结果) 11.已知,12121=-==z z z z 则21z z +等于 .12.在复平面内,O是原点,,,表示的复数分别为,51,23,2i i i +++-那么表示的复数为 . 13.设正数数列}{n a 的前n 项和为n S ,且),1(21nn n a a S +=推测出n a 的表达式为 . 14.将正奇数排列如右表所示,其中第i 行第j 个数表示为),,(**N j N i a ij ∈∈例如.932=a 若,2009=ij a 则=+j i .15.(本小题14分)已知复数,)32()1(2i m m m m z -++-=当实数m 取什么值时,复数z 是: (1) 零;(2)纯虚数; (3).52i z +=20.(本小题16分0设Q P ,是复平面上的点集,{}{}.,2,05)(3P z iz Q z z i z z z P ∈===+-+⋅=ωω(1)Q P ,分别表示什么曲线?(2)设,,21Q z P z ∈∈求21z z -的最大值与最小值.1. 设()R b a bi a z ∈+=,,,将一个骰子连续抛掷两次,第一次得到的点数为a ,第二次得到的点数为b ,则使复数2z 为纯虚数的概率为 2. 已知实数n m ,满足ni im-=+11,则双曲线122=-ny mx 的离心率为 设复数[]πθθθ,0,sin cos ∈⋅+=i z ,i +-=1ω,则ω-z 的最大值 13. 若虚数()()R y x yi x ∈+-,2的模长为3,则xy的最大值 14.已知复数z 满足,11=+z 且1-z i是纯虚数,则=z 16.已知R b a i z ∈+=,,1(1)若432-+=z z ω,求ω;(2)若i z z baz z -=+-++1122,求b a ,的值 17. 复数ββααsin cos ,sin cos 21⋅+=⋅+=i z i z ,且i z z 131213521+=+, 求()βα-cos 的值19. 设等比数列,,,,,321n z z z z 其中()0,,,,1321>∈+=+==a R b a ai b z bi a z z(1)求b a ,的值(2)求使0321=++++n z z z z 的最小正整数n 的值 20.设z 是虚数,,1zz +=ω且21<<-ω (1)求z 的值及z 的实部的取值范围; (2)设,11zz+-=μ求证μ为纯虚数 (3)在(2)的条件下,求2μω-的最小值 12、根据下面一组等式:1234561,235,45615,7891034,111213141565,161718192021111,s s s s s s ==+==++==+++==++++==+++++=…………可得13521n s s s s -+++⋅⋅⋅+= .12、*(),()n n f n i i n N -=+∈的值域中,元素的个数是___________个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题05 推理证明与概率统计小题(文)
一.推理证明
(一)命题特点和预测:分析近8年全国1卷试题,发现8年1考,主要考查合情推理,难度较低是送分题,2019年高考可能考查一个推理证明试题,主要考查合情推理、演绎推理或反证法,难度为容易题.
(二)历年试题比较:
甲说:我去过的城市比乙多,但没去过
【解析与点睛】
(2014年)【解析】∵丙说:三人同去过同一个城市,甲说没去过B城市,乙说:我没去过C城市
∴三人同去过同一个城市应为A,∴乙至少去过A,若乙再去城市B,甲去过的城市至多两个,不可能比乙多,∴可判断乙去过的城市为A.
(三)命题专家押题
所围成的平面图形绕
利用反证法证明:若
的三边长分别为,的面积为,则的内切圆半径为.将此结论类
,体积为,则四面体的内切球半径为


若等差数列
为正数的等比数列项积为,则等比数列的公比为(
在实数的原有运算法则(
时,时,函数
________________.
,且
【详细解析】
1.【答案】A
【解析】椭圆的长半轴长为a,短半轴长为b,先构造两个底面半径为b,高为a的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,根据祖暅原理得出椭球的体积为
,故选A。

2.【答案】B
,即0,选B.
3.【答案】C
【解析】设四面体S﹣ABC的四个面的面积分别为S1,S2,S3,S4,体积为V,设四面体的内切球的球心为O,则球心O到四个面的距离都是r,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱
锥体积的和.则四面体的体积为:S1+S2+S3+S4)r,∴r,故选C.
4.【答案】A
【解析】假设参与此案的两名嫌疑人是丙、丁,符合题意,故A正确;
假设参与此案的两名嫌疑人是乙、丙,则由乙参与此案,得丁一定参与,不合题意,故B错误;
假设参与此案的两名嫌疑人是甲、乙,则由乙参与此案,得丁一定参与,不合题意,故C错误;
假设参与此案的两名嫌疑人是甲、丁,则由甲参与此案,则丙一定没参与,丙没参与此案,则丁也一定没参与,不合题意,故D错误;故选A.
5.【答案】(22,20)
【解析】由题意可得第一组的各个数和为3,第二组各个数和为4,第三组各个数和为5,第四组各个数和
为6n40组各个数和为42,则第40组第
21
6.【答案】C
【解析】n,且写成了a1+(n−1)×所以在等比数列中应研
究前n n b1(n−1.其公比为,故选C.
7.【答案】C
【解析】由已知得所以,可求出:
函数最大值是-16
的最大值等于6,选C
8.
【解析】边长为a的等边三角形内任意一点到三边距离之和是由该三角形的面积相等得到的,由此可以推测棱长为a的正四面体内任意一点到各个面的距离之和可由体积相等得到.方法如下,如图,在棱长为a
的正四面体内任取一点P,P到四个面的距离分别为h1,h2,h3,h4.四面体A﹣BCD的四个面的面积相等,
,所以

9.【答案】①③④
【解析】因为,所以
,则当.
得中至少有两项相同,矛盾.
所以,所以
所以正确的序号是①③④.
10.【答案】C
第n行第一个数为:;
一共有1010行,∴第1010行仅有一个数:;故选C.
二.概率统计小题
(一)命题特点和预测:分析近8年的新课标1高考题发现,8年7考,每年1题,主要考查抽样方法、古典概型、几何概型、总体估计、独立性检验、回归分析等概率统计问题,难度为容易题,2019年高考仍将有1个小题,仍重点考查抽样方法、古典概型、几何概型、总体估计、独立性检验、回归分析等概率统计问题,难度为容易题.
(二)历年试题比较:
,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的
(C)【解析与点睛】
(2018年)(3)
【解析】设新农村建设前的收入为M ,而新农村建设后的收入为2M , 则新农村建设前种植收入为0.6M ,而新农村建设后的种植收入为0.74M ,所以种植收入增加了,所以A 项不正确;
新农村建设前其他收入我0.04M ,新农村建设后其他收入为0.1M ,故增加了一倍以上,所以B 项正确; 新农村建设前,养殖收入为0.3M ,新农村建设后为0.6M ,所以增加了一倍,所以C 项正确; 新农村建设后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济
收入的一半,所以D 正确;故选A.
(2017年)(2)【解析】刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B
(4)【解析】
(2016年)【解析】将4中颜色的花种任选两种种在一个花坛中,余下2种种在另一个花坛,有6种种法,
其中红色和紫色不在一个花坛的种数有4种,故概率为
2
3
,故选C. (2015年)【解析】从1,2,3,4,51,2,3,4,5
中任取
3个不同的数共有10种不同的取法,其中的勾股数只有
3,4,5,故3个数构成一组勾股数的取法只有1种,故所求概率为
1
10
,故选C. (2014年)【解析】设两本数学为A ,B ,语文书为C ,则将3本书排除一排所有可能为ABC ,BAC ,
ACB ,BCA ,CAB ,CBA ,其中两本数学书相邻的所有可能有ABC ,BAC ,CAB ,CBA ,故2本数学书相邻的概率为
46=2
3
. (2013年)【解析】从1,2,3,4中任取两个有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}6种不同取法,
其中取出的2个数之差的绝对值为2的由{1,3},{2,4}2种,故其概率为
26=1
3
,故选B .
(2011年)
【解析】[法1]∵每位同学参加各个小组的可能性相同,故某个同学参加某一小组的概率都为1
3

又∵甲、乙参加哪一小组之间没有相互影响,故甲、乙同在某一组的概率为11
33
=
1
9

又∵甲、乙同在3个兴趣小组的某一组的3个事件互斥,故甲、乙同在一组的概率为1
9
+
1
9
+
1
9
=
1
3
,故选
A.
(法2)设三个小组分别为1、2、3,则甲、乙参加各小组的情况有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)
共9种,其中在同一组有3种,故在同一组的概率为1
9
=
1
3
.
(三)命题专家押题
万元的项目投资占
,众数为
程度上缓解了出行的拥堵状况。

为了了
根据图中(

一卦,共有太极生两仪,两仪生四象,四象生八卦某图形由一个等腰直角三角形,一个矩形(矩形中的阴影部分为半圆),一个半圆组成,从该图
A.B.
采用系统抽样方法从人中抽取人做问卷调查,为此将他们随机编号为
人做问卷的人做问卷
附:
【详细解析】
1.【答案】D
【解析】按随机数表法,从随机数表第6行的第9列和第10列数字开始从左到右依次选取两个数字,则编号依次为33,16,20,38,49,32,则选出的第3个个体的编号为20,故选D.
2.【答案】B
【解析】由图可知,1万元以上的项目投资占:1-0.46-0.33=0.21=21%,500×0.21=105,少于3万元的
3105×65万元,故选B.
3.【答案】D
5,由中位数的定义知,得分的中位数为m e,是第15个数与第16个数的平均值,
由图知将数据从大到小排第15个数是5,第16个数是6, 5.5,(2×3+3×4+10×5+6×6+3×7+2×8
+2×9+2×10m e D.
4.【答案】C
【解析】甲的中位数为29,乙的中位数为30,故①不正确;甲的平均数为29,乙的平均数为30,故②正确;从比分来看,乙的高分集中度比甲的高分集中度高,故③正确,④不正确.故选C.
5.【答案】B
【解析】根据题意,i=25,i=174,﹣4×25=74,x+74,
当x=23时,计算4×23+74=166,据此估计其身高为166(厘米),故选B.
6.【答案】C
【解析】由左图知,样本中的男性数量多于女性数量,A正确;
B正确;
岁以下的男性人数比C错误;
D正确.故选C.
7.【答案】B
【解析】在一次所谓“算卦”中得到六爻,这六爻恰好有三个阳爻三个阴爻包含的
8.【答案】C
,阴影部分的面积为,故该点取自阴影部分的概率为.,故选
C
9.【答案】6
号码为,….因为
,所以,所以,即做问卷.
10.【答案】A
【解析】由表可知:a=30,b=15,c=45,d=10,n=100,则≈3.030≤3.841,故没有95%把握认为使用哪款手机与性别有关,故选A.。

相关文档
最新文档