储罐设计
特种基础:储罐基础

1、罐底脆性破坏:罐底变形引起焊缝开裂,造成罐底脆 性破坏;
2、地震破坏:地震荷载引起;
3、罐底基础破坏:由于罐底泄漏等原因造成地基下沉, 地基承载力下降造成基础基础发生破坏。
五、储罐基础类型的选择 储罐基础的选型主要考虑储罐类型、容量、工艺要求、地 形地貌、地质条件和施工条件等因素。下表列出不同类型 储罐基础的选型要求。
环基的受力体系
(3) 环基内壁砂垫层的竖向摩擦力
主要是由于地基沉降引起的,作用方向向下。
(4) 环基底面地基反力(q3)
2、刚体假定
为便于分析,一般将环基分解为单元体进 行分析(取单位弧长),将每个单元体假 定为刚体,即不考虑单元体本身的变形, 只发生整体变形,作用在其上的分布荷载 可以用相应的等代集中荷载代替。另外, 由于环基结构及荷载的对称性,认为只有 法向力,没有切向力。根据以上原理,将 环基上的分布荷载按以下模式转换为等代 荷载。
① 当罐壁位于环墙顶面时,环墙环向力按下式计算
Ft k ( Qw w hw Qm m hx ) R
式中,Ft:环墙单位高度环拉力设计值 k:环墙侧压力系数,软土地基可取k=0.5或按1sinφ’计算 γQw、γQm:分别为水、填料的分项系数, γQw可取 1.1, γQm可取1.0 γw、γm:分别为水的容重,环梁填料的平均容重, γw取9.80,γm取18.00kN/m3计算。 hw:环墙顶面至罐内最高储液面高度 hx:环墙顶面至计算断面的高度 R:环墙中心线半径 ② 当罐壁位于环墙内侧一定距离(外环墙式),环墙环 拉力可按下式计算:
六、储罐基础的构造 储罐基础的构造主要包括基础顶面的绝缘防腐层、罐壁支 撑、边缘挡土结构、砂垫层、隔油防水层、检测信号管及 其他构造。 1、基础顶面绝缘防腐层 基础顶面铺筑的沥青砂垫层或沥青混凝土垫层,主要作用 是隔断地下毛细水、水汽等,保护底板。 沥青砂垫层一般采用中粗砂(质量比1:9),热拌合施工, 厚度80mm~100mm。沥青混凝土宜用细粒或中粒,具体 可以参照甲级路面的要求施工。 2、罐壁支撑 罐壁支撑结构主要由钢筋混凝土环梁或碎石环梁等构成,
储罐设计说明书

储罐设计说明书
储罐设计说明书是一份技术文件,由工程师根据客户的要求、工艺流程和作业条件来制定出来,存放在储罐里的物料有油、水、液体、气体等,储罐的设计要满足当前和预期的需求,考虑其坚固性、结构安全、使用寿命和制造成本。
储罐设计说明书应包括以下内容:
1)储罐的基本参数,如储罐容积、储罐有效高度、储罐外径、储罐壁厚度等;
2)材料要求,包括储罐的材质、储罐的等级、储罐的焊接等级等;
3)储罐的加工工艺,包括冲孔、开孔、焊接等;
4)检验要求,包括渗漏检验、水平检验、支承检验、表面检验等;
5)储罐的尺寸和连接,包括上口尺寸、下口尺寸、支架尺寸、法兰尺寸等;
6)储罐的抗压能力,主要包括设计压力、最大压力、最小压力等;
7)防腐要求,主要有防腐涂料要求、防腐层厚度要求等;
8)其他要求,如机械强度检验要求、安装要求、支架抗震要求等。
储油罐设计资质要求

储油罐设计资质要求
储油罐设计资质要求通常由相关国家或地区的法律法规和标准规定。
以下是一般性的要求:
1. 资质证书:设计单位需要具备相关的资质证书,该证书通常由国家或地区的相关机构颁发。
2. 工程经验:储油罐设计单位需要具备一定的工程经验,包括设计、施工和维护类似项目的经验。
3. 设计能力:设计单位需要具备充足的设计能力,包括使用现代化的设计软件和工具、具备相关技术知识和实践经验。
4. 了解法律法规:设计单位需要了解并遵守相关的油罐设计和安全法规,以及国家或地区的环境保护法规。
5. 专业团队:设计单位需要有一支具备专业知识和经验的团队,包括化工、机械、土木等相关专业背景。
6. 质量控制:设计单位需要建立和实施有效的质量控制体系,确保设计方案符合标准和要求。
7. 施工配合:设计单位需要与施工方进行配合,提供必要的技术支持和设计改动。
请注意,实际的资质要求可能因国家或地区的不同而有所差异。
为确保符合当地法律法规和标准,建议咨询当地相关机构或法律专业人士。
甲醇储罐设计规范

甲醇储罐设计规范甲醇储罐是存储甲醇的设备,其设计应符合相关的规范和标准,以保证储罐的安全和可靠性。
以下是甲醇储罐设计规范的主要内容:1. 设计压力和温度:甲醇储罐应根据实际使用要求确定设计压力和温度。
设计压力通常不得低于正常操作压力的1.25倍,设计温度通常为-40°C至55°C。
2. 材料选择:储罐的材质应选择耐腐蚀性能好、耐压性能高的材料,如碳钢、不锈钢等。
对于密封性要求较高的区域,可选用外涂一层防腐胶。
3. 结构设计:甲醇储罐的结构设计应考虑内外压力、温度变化等因素对储罐的影响。
通常采用圆形、柱形或球形结构,底部应设有底阀、松散阀等安全设备。
4. 安全装置:甲醇储罐应配备安全阀、泄漏探测器、防火装置等安全设备,以保障储罐在故障情况下的安全操作和紧急处理能力。
5. 容积计算:储罐的容积应根据实际存储需求进行计算和确定。
容积计算应考虑液位变化、温度变化等因素,并预留一定的安全裕量。
6. 储罐的操作与维护:储罐应具备方便操作和维护的条件,如设有观察孔、检修门等。
同时,应定期对储罐进行维护和检查,确保其正常运行。
7. 环境保护:储罐应设有排放口,以便处理废气和废水。
同时,应定期对废气和废水进行检测和处理,以减少对环境的影响。
8. 监控系统:储罐应配备监控系统,实时监测储罐内的温度、压力、液位等参数,并与中控室相连,以便及时处理异常情况。
9. 储罐的防火设计:储罐应对火灾进行防护设计,如设有防火隔离带、防火涂层等。
同时,应定期进行消防设备检查和维护,确保其有效性。
总之,甲醇储罐的设计规范是为了保证储罐的安全运行和环境保护,设计人员在设计储罐时应严格遵守相关规范和标准,并结合实际情况进行合理设计。
特种基础:储罐基础

1、不均匀沉降允许值
对于地基的不均匀沉降,虽然储罐具有一定的柔性可以适 应一定的不均匀沉降,但过大的不均匀沉降会造成储罐使 用的安全性下降,一般在设计过程中要规定安全使用的允 许不均匀沉降量。
通常规定,沿罐壁圆周方向每10m周长的相对不均匀沉降 不大于壁板发生扭曲的控制值。罐底由不均匀沉降引起的 变形,必须小于底板所允许的控制值。
外环墙式基础
外环墙式基础
四、储罐基础的破坏模式
储罐的破坏主要有以下几种模式:
1、罐底脆性破坏:罐底变形引起焊缝开裂,造成罐底脆 性破坏;
2、地震破坏:地震荷载引起;
3、罐底基础破坏:由于罐底泄漏等原因造成地基下沉, 地基承载力下降造成基础基础发生破坏。
五、储罐基础类型的选择
储罐基础的选型主要考虑储罐类型、容量、工艺要求、地 形地貌、地质条件和施工条件等因素。下表列出不同类型 储罐基础的选型要求。
外环墙各部构造及尺寸
(3) 环墙截面配筋
环墙单位高环拉力钢筋面积按下式计算:
At r0Ft / fy
式中,At:环墙环向单位高所需钢筋面积; r0:重要性系数,取1.0; Ft:环向单位高环拉力设计值; fy:钢筋抗拉强度设计值。
工程实践证明,用上述方法设计环基,尽管计算中没有考 虑地基差异沉降引起的环基内力,但实际上环基具有较大 的抵抗和调整地基局部不均匀沉降的能力,环基作为整体 在抵抗环基内侧压力的能力始终能够保持,环基事实上具 有比较大的安全储备。
(1) 护坡式基础
包括混凝土护坡、砌石护坡和碎石灌浆护坡等。一般当场 地足够,地基承载力允许,地基沉降量较小时,可采用护 坡式基础。(见下图)
储罐设计基础

1978年国内3000m3铝浮盘投人使用,通过测试蒸发损耗,收 到显著效果。 1985年中国从日本引进第一台10×104m3 全部执行日本标准JISB8501 同时引进原材料,零部件 及焊接设备. 目前国内对10×104m3油罐有比较成熟的设计、施工和使 用 的经验,国产 大型储罐用高强度刚材已能够批量生产。 15×104m3目前国内正在建设。 储罐的发展趋势---大型化
损耗类型与损耗量
• 石油类或液体化学品储液的损耗可分为蒸发损耗和残漏损 耗两种类型。蒸发损耗和残漏损耗分别是指储液在生产、 储存、运输、销售中由于受到工艺技术及设备的限制,有 一部分较轻的液态组分气化而造成的在数量上不可回收的 损失和在作业未能避免的滴洒、渗漏、储罐(容器)内壁的 乳黏附、车、船底部余液未能卸净等而造成的数量损失, 储液(油品)的残漏损耗不发生形态变化。 • 文献和调查资料表明,储液损失,特别是油品损耗数量是 十分惊人的。1980年,中国11个主要油田的测试结果表明, 从井口开始到井场原油库,井场油品损耗量约占采油量的 2%,其中发生于井场库的蒸发损耗约占总损耗的32%。据 1995年第四届国际石油会议报道,在美国油品从井场经炼 制加工到成品销售的全过程中,品损耗数量约占原油产量 的3%。若以总损耗为3%估算,全世界每年的油品损耗约有 1X108t,几乎相当于中国一年的原油产量。
立式圆筒形储罐按其罐顶结构可分为 锥顶储罐 固定顶储罐: 拱顶储罐 伞形顶储罐 网壳顶储罐(球面网壳) 浮顶储罐(外浮顶罐) 浮顶储罐: 浮储罐(带盖浮顶)
1.2.1锥顶储罐 • 图1-1 自支撑锥顶罐简图 • 锥顶储罐又可分为自支撑锥顶和支撑锥顶两种。 • 锥顶坡度最小为1/16,最大为3/4,锥形罐顶是一种形状 接近于正圆锥体表面的罐顶。 • 自支撑锥顶其锥顶荷载靠锥顶板周边支撑于罐壁上,自支 撑锥顶又分为无加强肋锥顶和加强肋锥顶两种结构.储罐 容量一般小于1000m3。支承式锥顶其锥顶荷载主要布梁或 镶条(架) 及柱来承担。 • 柱子可采用钢管或型钢制造。采用钢管制造时,可制成封 闭式,也可设臵放空孔和排气孔。柱子下端应插人导座内, 柱子与导座不得相焊,导座应焊在罐底板上。其储罐容量 可大于1000m3以上。 • 锥顶罐制造简单,但耗钢量较多,顶部气体空间最小.可 减少“小呼吸”损耗。自支撑。锥顶还不受地基条件限制。 支撑式锥顶不适用于有不均匀沉陷的地基或地荷载较大的 地区。除容量很小的罐( 200m3以下)外,锥顶罐在国内很 少采用,在国外特别是地震很少发生的地区,如新加坡、 英国、意大利等用得较多。
GB50341储罐设计计算

1.设计基本参数:
设计规 范设:计压 力设:计温 度设:计风 压:
GB50341-2003《立式圆筒形钢制焊接油罐设计规范》
P
2000 Pa
-490 Pa
T
70 °C
ω0
500 Pa
设计雪压
Px
350 Pa
附加荷 载地:震烈 度罐:壁内 径罐:壁高 度充:液高 度液:体比 重罐:顶半 径焊:缝系 数腐:蚀裕 量钢:板负偏 差:
ths=0.42RsPower(Pw/2.2,0.5)+C2+
设计外载 荷
C1 Pw=Ph+Px+Pa
9.15 mm 4.98 KPa
注:按保守计算加上雪压值。
实际罐顶取用厚度为
th=
6
mm
本设计按加肋板结构
顶板及加强筋(含保温层)总质量 md=
53863 kg
罐顶固定载荷 4.2顶板计算
Pa
3429.03 N/m2
罐体总高
H'=H1+Hg
17.89 m
拱顶高度
Hg=Rs(1-COSθ)
1.89 m
7.2.2.空罐时,1.25倍试验压力产生的升举力之和:
N3=PtπD2/4
384845 N
罐体试验压力 7.2.3.储液 在最高液
7.3地脚螺栓计算:
Pt=1.25P N4=1.5PQπD2/4
2500.00 Pa 738841 N
μz—风压高度变化系数,
顶部抗风圈的实际截面模数 W=
∵ W>Wz故满足要求
0.690 KPa 0.500 KPa 1.00 1.00 1.38 500.00 cm3
储油罐设计规范

储油罐设计规范储油罐设计规范是为了确保储油罐在储存和运输过程中的安全性和可靠性而制定的一系列标准和规范。
下面是储油罐设计规范的一些基本要求:1. 抗震设计:储油罐必须满足的基本要求是在地震、风压等外力作用下能够保持安全稳定,不发生破裂或倾覆。
因此,在储油罐的设计中必须考虑地震、风压等外力的作用,并进行相应的抗震设计。
2. 安全阀装置:储油罐必须装备安全阀装置,以防止内部压力超过设计压力,避免发生爆炸事故。
安全阀需能自动启闭,确保储油罐压力在安全范围内。
3. 密封设计:储油罐的密封性能直接影响到储油罐的安全性和环保性。
储油罐必须具备良好的密封设计,能够防止油品泄漏和外界潮湿空气的进入,以保护油品的质量。
4. 材料选用:储油罐的材料选择要符合相关标准和规范。
常用的材料包括低合金构件钢、耐热耐腐蚀钢等。
材料必须具备一定的强度和耐腐蚀性能,能够承受长期储存和运输过程中的各种力和环境的侵蚀。
5. 定期检测和维护:储油罐必须进行定期的检测和维护,以确保储油罐的运行状态和安全性。
定期检测包括储油罐的机械性能检测、防腐蚀层检测等,维护工作包括清洗储油罐、修补漏点等。
6. 设备安装:储油罐设备在安装过程中要符合相关的安全规范和标准。
设备要安装在固定的基础上,以保证设备的稳定性和牢固性。
在设备安装过程中还要注意与周围设备和管道的连接,确保连接的牢固性和密封性。
7. 安全设施:储油罐周围必须设置安全设施,包括消防器材、监控设备等,以应对突发事件和保护储油罐的安全。
消防器材要配备在适当的位置,能够在事故发生时及时控制火灾和扑灭火源。
总之,储油罐设计规范是为了保证储油罐的安全运行和油品质量的保持而制定的一系列标准和要求。
其目的是减少事故的发生,保护人员的生命财产安全,同时保护环境,确保储油罐的安全和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕 业 设 计容器施工图设计—导热油储罐完成日期 2014 年 6 月 10日院系名称: 化学工程学院 专业名称: 过程装备与控制工程 学生姓名: *** 学 号: ********** 指导教师: ** 企业指导: 马程鹤、武彦巧容器施工图设计—导热油储罐摘要导热油是用于间接传递热量的一类热稳定性较好的专用油品,属于烃类有机物,导热油具有抗热裂化和化学氧化的性能,传热效率好,散热快等特性。
钢制储罐作为重要的基础设施,广泛应用于石油化工行业,本毕业设计主要依据《钢制卧式容器》[1]进行导热油储罐的机械设计计算。
计算部分包括:设备的选材和焊接的确定、强度及稳定性的设计计算和校核、支座和法兰的选用。
最后,利用AutoCAD绘图软件绘制出满足机械强度设计计算要求的导热油储罐的设备总图。
关键词:导热油、储罐、机械设计Design of h eat transfer oil storage tankAbstractHeat transfer oil is a type of special oil product with excellent thermal stability and is widely used indirect heat transfer .It belongs to the hydrocarbon organics . Heat transfer oil has good performance of thermal cracking and chemical oxidation , high heat transfer effect and fast heat dissipation .Steel storage tank as an important infrastructure ,is widely utilized in petrochemical industry .This paper aims to do the mechanical design of heat transfer oil storage tank on the basis of “JB/T 4731-2005 Steel horizontal vessels on saddle supports ”The design includes the selection of equipment material and determination of welding , design and examination of strength and stability ,selection of support and flange .Finally , software ,general drawing for the heat transfer oil storage tank is plotted via AutoCAD.Key words: h eat transfer oil . storage tank . mechanical design目录摘要 (I)Abstract (II)第1 章前言 (5)1.1导热油的基本性质 (5)1.2 储运设备的分类 (5)1.3储存介质对储罐的影响 ..................................................... (5)第2 章导热油储罐的设计的条件工艺表 (7)2.1导热油储罐设计的条件工艺表 (7)2.2导热油储罐设计的管口表 (8)第3章导热油储罐厚度的计算 (9)3.1储罐基本尺寸和封头厚度的确定 (9)3.2圆筒厚度的计算 (10)第4章导热油储罐的应力计算 (12)4.1支座反力的计算 (12)4.2筒体弯矩的计算 (16)4.3圆筒轴向应力的计算及其校核 (17)4.4圆筒切向剪切力计算及其校核 (19)4.5鞍座处圆筒周向应力的计算及应力校核 (19)4.6鞍座应力计算及校核 (20)第5章温差、地震引起的应力计算 (22)5.1温差引起的应力计算及校核 (22)5.2由地震引起的支座轴向弯曲强度计算 (22)5.3地震引起的地脚螺栓应力 (23)第6章开孔补强及焊接简述 (25)6.1径向接管的开孔补强计算 (25)6.2非径向接管的开孔补强计算 (27)6.3焊接结构的选择 (28)6.3.1容器接头形式 (28)6.3.2焊接方法的选择 (29)参考文献 (30)致谢 (31)附录 (32)第 1 章 前言1.1导热油的基本性质本课题来自北京燕化正邦设备检测有限公司,导热油是一种可将燃料燃烧产生的热量间接传递给用热设备、本身常压、沸点较高且可以循环使用的有机介质。
导热油属于烃类有机物,可分为天然油和合成油两类。
天然油指矿物油一类的天然产物,它是通过产品蒸馏获得,无须人工合成。
合成油又分为两类,一类是由同分异构体混合而成的有机液体,主要为芳香族化合物;另一类是几个沸点相同或相近的有机物混合物,如二苯醚和联苯的低共熔混合物。
导热油有如下的特点:沸点高;热稳定好;在操作温度范围内粘度低;对所接触材料腐蚀性低;对杂质(如氧气)不敏感等,因此导热油作为间接传热介质被广泛用于石油化工行业。
1.2 储运设备的分类储运设备主要是指用于储存与运输气体、液体、液化气体等介质的设备,在石油、化工、能源、环保、轻工、制药及食品等行业应用广泛。
大多数储运设备的主体是压力容器。
在固定位置使用、以介质储存为目的的容器称之为储罐。
储罐又有多种分类方法,按几何形状分为卧式圆柱形储罐、立式平底筒形储罐、球形储罐;按温度划分为低温储罐(或称为低温储槽)、常温储罐(090C <)和高温储罐(090~250C );按材料可划分为非金属储罐、金属储罐和复合材料储罐;按所处的位置又可分为地面储罐、地下储罐、半地下储罐和海上储罐等。
单罐容积大于10003m 的可称为大型储罐。
金属制焊接式储罐是应用最多的一种储存设备,目前国际上最大的金属储罐 容量已达到53210m ⨯。
1.3储存介质对储罐的影响储存介质的性质,是选择储罐结构形式与储存系统的一个重要因素。
介质特性包括闪点、沸点、饱和蒸汽压、密度、腐蚀性、毒性程度、化学反应活性(如聚合趋势)等。
储存介质的闪点、沸点以及饱和蒸汽压与介质的可燃性密切相关,是选择储罐结构形式的主要依据。
饱和蒸汽压是指在一定温度下,储存在密闭容器中的液化气体达到气液两相平衡时,气液分界面上的蒸气压力。
饱和蒸汽压与储存设备的容器大小无关,仅依赖于温度的变化,随着温度的升高而增大;对于混合储存介质,饱和蒸汽压还与各组分的混合比例有关。
储存介质的密度,将直接影响罐体载荷分布及其应力大小。
介质的腐蚀性是选择罐体材料的首要依据,将直接影响制造工艺和设备造价。
而介质的毒性程度则直接影响储罐制造与管理的等级和安全附件的配置。
另外,介质的粘度或冰点也直接关系到储存设备的运行成本。
这是因为当介质为具有更高粘度或高冰点的液体时,为保持其流动性,就需要对储存设备进行加热或保温,使其保持便于输送的状态。
当储存设备用于盛装液化气体时,还应考虑液化气体的膨胀性和压缩性。
液化气体的体积会随着温度的上升而膨胀,温度的降低而收缩。
当储罐装满液态气体时,如果温度升高,罐内压力也会升高。
压力的变化程度与液化气体的膨胀系数和温度变化量成正比,而与压缩系数成反比。
装量系数一般取0.9.对于储罐容积经实际测定者,可大于0.9,但不得大于0.95.环境对储存设备的影响:对于液化气体储罐,储罐的金属温度主要受使用环境的气温条件影响,其最低设计温度可按该地区气象资料,取历年来月最低气温的最低值。
月平均最低气温是指当月各天的最低气温相加后除以当月的天数。
由于随着温度降低,液化气体的饱和蒸汽压呈下降趋势,因而这类储罐的设计压力主要由可能能达到的最高工作温度下液化石油气的饱和蒸汽压决定。
一般无保冷设施时,通常取最高设计温度为050C,若储罐安装在天气炎热的南方地区,则在50C,当夏季中午时分必须对储罐进行喷淋冷却降温,以防止储罐金属壁温超过0所在地区的最低设计温度较低时,还应进行罐体的稳定性校核,以防止因温度降低使得罐内压力低于大气压时发生真空失稳。
设计储存设备,首先必须满足各种给定的工艺要求,考虑储存介质的性质、容量的大小、设置的位置、钢材的耗量以及施工的条件等来确定储罐的形式;在设计中还必须考虑场地的条件;环境温度、风载荷、地震载荷、雪载荷、地基条件等,因此设计者在设计储存设备时必须针对上述条件进行综合的考虑,以确定最佳的设计方案。
第 2 章导热油储罐的设计的条件工艺表2.1导热油储罐设计的条件工艺表:2.2导热油储罐设计的管口表:第3章 导热油储罐厚度的计算 第9页第3章 导热油储罐厚度的计算3.1储罐基本尺寸和封头厚度的确定由于储罐全容积为0.43m ,所以应该使封头和筒体的容积之和为0.43m ,查GB/T 25198-2010 《压力容器封头》[2],选用DN=600 ,H=175 标准椭圆封头.筒体长度1L 取1200mm (不含封头的直角边高度)内径i D 取600mm ,现进行容积核算: 查GB/T 25198-2010 ,知道DN=600 ,H=175 标准椭圆封头的容积1V 为0.03533m 筒体容积24332i 19101200mm =0.3393m 4V D L ππ==⨯⨯⨯储罐总容积为3312220.03530.33930.40990.4V V V m m =+=⨯+=> 经过核算该储罐的容积满足设计要求查GB150.2-2011《压力容器》[3]附录D 表D.1知道钢板Q235-B 的厚度n δ在满足3mm<n δ<16mm ,当温度为120oC 时,利用内插法,得其许用应力[]111tMPa σ=查GB150,得计算压力不低于操作压力的1.1倍,即:c 1.1 1.10.10.11pa P P M ≥=⨯=,因此c P 可以取0.15MPa 根据GB150.3-2011《压力容器》[3] (5-1)式[]20.5c i n tcKP D P δδφ=-对于标准椭圆形封头,应力增强系数K =1,焊接接头系数φ=1.0 则封头计算厚度[]10.156000.406211110.50.1120.5c i tcKP D P δσφ⨯⨯===⨯⨯-⨯-mm查JB/T 3274-2007 《碳素结构钢和低合金结构钢热轧厚钢板和钢带》[4]得到对于Q235B ,钢板负偏差1C =0.6mm对低合金钢制卧式容器,规定不包括腐蚀裕量的最小厚度应不小于3mm 导热油储罐的腐蚀速率为0.1毫米/年,设计寿命为15年,腐蚀裕量等于腐蚀速率与设计寿命的乘积。