傅里叶变换与拉普拉斯变换区别
傅里叶变换、拉普拉斯变换、Z变换

如果看了这篇文章你还不懂傅里叶变换,那就过来掐死我吧Heinrich,生娃学工打折腿这篇文章的核心思想就是:要让读者在不看任何数学公式的情况下理解傅里叶分析。
傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。
但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生上来就懵圈并从此对它深恶痛绝。
老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。
(您把教材写得好玩一点会死吗会死吗)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。
所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。
至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。
————以上是定场诗————下面进入正题:抱歉,还是要啰嗦一句:其实学习本来就不是易事,我写这篇文章的初衷也是希望大家学习起来更加轻松,充满乐趣。
但是千万!千万不要把这篇文章收藏起来,或是存下地址,心里想着:以后有时间再看。
这样的例子太多了,也许几年后你都没有再打开这个页面。
无论如何,耐下心,读下去。
这篇文章要比读课本要轻松、开心得多……一、嘛叫频域从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。
这种以时间作为参照来观察动态世界的方法我们称其为时域分析。
而我们也想当然的认为,世间万物都在随着时间不停的改变,并且永远不会静止下来。
但如果我告诉你,用另一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会觉得我疯了我没有疯,这个静止的世界就叫做频域。
先举一个公式上并非很恰当,但意义上再贴切不过的例子:在你的理解中,一段音乐是什么呢这是我们对音乐最普遍的理解,一个随着时间变化的震动。
但我相信对于乐器小能手们来说,音乐更直观的理解是这样的:好的!下课,同学们再见。
傅里叶变换拉普拉斯变换的物理解释及区别

傅里叶变换在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。
傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。
在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。
傅里叶变换是一种解决问题的方法,一种工具,一种看待问题的角度。
理解的关键是:一个连续的信号可以看作是一个个小信号的叠加,从时域叠加与从频域叠加都可以组成原来的信号,将信号这么分解后有助于处理。
我们原来对一个信号其实是从时间的角度去理解的,不知不觉中,其实是按照时间把信号进行分割,每一部分只是一个时间点对应一个信号值,一个信号是一组这样的分量的叠加。
傅里叶变换后,其实还是个叠加问题,只不过是从频率的角度去叠加,只不过每个小信号是一个时间域上覆盖整个区间的信号,但他确有固定的周期,或者说,给了一个周期,我们就能画出一个整个区间上的分信号,那么给定一组周期值(或频率值),我们就可以画出其对应的曲线,就像给出时域上每一点的信号值一样,不过如果信号是周期的话,频域的更简单,只需要几个甚至一个就可以了,时域则需要整个时间轴上每一点都映射出一个函数值。
傅里叶变换就是将一个信号的时域表示形式映射到一个频域表示形式;逆傅里叶变换恰好相反。
这都是一个信号的不同表示形式。
它的公式会用就可以,当然把证明看懂了更好。
对一个信号做傅里叶变换,可以得到其频域特性,包括幅度和相位两个方面。
幅度是表示这个频率分量的大小,那么相位呢,它有什么物理意义?频域的相位与时域的相位有关系吗?信号前一段的相位(频域)与后一段的相位的变化是否与信号的频率成正比关系。
傅里叶变换就是把一个信号,分解成无数的正弦波(或者余弦波)信号。
也就是说,用无数的正弦波,可以合成任何你所需要的信号。
通俗浅谈傅里叶级数、傅里叶变换、拉普拉斯变换、z变换

通俗浅谈傅里叶级数、傅里叶变换、拉普拉斯变换、z变换中国航天科工集团二院706所宋晓秋一、傅里叶级数(1) 一个周期为2π的函数表示成不同周期的正弦函数、余弦函数之和。
f t=a02+a n cos nt+b n sin nt ∞n=1a n=1πf t cos nt dtπ−π,n=0,1,2,⋯b n=1πf t sin nt dtπ−π,n=1,2,3,⋯(2) 周期为T的函数怎么办?做下变换,令ω=2πTf t=a02+a n cos nωt+b n sin nωt ∞n=1a n=2Tf t cos nωt dtT2−T2,n=0,1,2,⋯b n=2Tf t sin nωt dtT2−T2,n=1,2,3,⋯(3) 时域、频域的概念f t是随时间t变化的函数,它转换成了不同频率(周期的倒数)三角函数的和,即对应成了反映频率特征的a n、b n。
直接分析f t那是时域分析,通过a n、b n分析那是频域分析。
(4) 傅里叶级数的复数表达形式基础知识:复数e ix=cos x+i sin x,可知cos nωt=12e inωt+e−inωtsin nωt=12ie inωt−e−inωt将其代入下式的傅里叶级数(这里ω=2πT)f t=a02+a n cos nωt+b n sin nωt ∞n=1a n=2Tf t cos nωt dtT2−T2,n=0,1,2,⋯b n=2Tf t sin nωt dtT2−T2,n=1,2,3,⋯得到傅里叶级数的复数表达形式f t=F n e inωt∞n=−∞F n=1Tf(t)e−inωt dtT2−T2,n=⋯,−2,−1,0,1,2,⋯同理,直接分析f t那是时域分析,通过F n分析那是频域分析。
记住周期函数的傅里叶级数复数表达形式,由此引出傅里叶变换。
二、傅里叶变换对于非周期函数怎么办?当然是让T→∞了,可以证明此时有f t=F n e inωt∞n=−∞→12πF(iΩ)e iΩt dΩ∞−∞F n T = f (t )e −inωt dt T 2−T 2→ f (t )e −iΩt dt ∞−∞=F (iΩ)直接分析 f t 那是时域分析,通过 F (iΩ)分析那是频域分析。
傅立叶变换、拉普拉斯变换、Z变换之间最本质地区别

傅立叶变换就是将任一个函数展开成一系列正弦函数的形式,从而能够在频域进行频谱分析。
而拉普拉斯变换是复频域,它的的引进主要是对微分方程起到了简便的变换作用,试想2阶的微分方程就够麻烦的了,高阶就别指望手动解了,数学系的牛人别见怪。
所以拉式变换就将时域的微分方程变换成代数方程。
而到了离散系统中,又出现了差分方程,因此人们就想既然连续系统中有拉式变换,那么是不是离散系统中也会有一个方法能够起到相同的简化作用呢?于是Z变化就提了出来。
傅立叶变换:时域变到实频域,主要是想得到频率信息,而且只能得到频域信息。
主要用于信号处理。
拉普拉斯变换:复频域,处理微分方程是一把好手,古典控制就是一个典型的应用。
z变换:现代控制理论的东西,相当于把微分方程离散化了。
第四章Z变换1 Z变换的定义(1) 序列的ZT:(2) 复变函数的IZT:,是复变量。
(3) 称与为一对Z变换对。
简记为或(4) 序列的ZT是的幂级数。
代表了时延,是单位时延。
(5) 单边ZT:(6) 双边ZT:2 ZT收敛域ROC定义:使给定序列的Z变换中的求和级数收敛的z的集合。
收敛的充要条件是它(3) 有限长序列的ROC序列在或(其中)时。
收敛域至少是。
序列的左右端点只会影响其在0和处的收敛情况:当时,收敛域为( 除外)当时,收敛域为( 除外)当时,收敛域为( 除外)右边序列的ROC序列在时。
如果,则序列为因果序列。
ROC的情况:当时,ROC为;当时,ROC为。
左边序列的ROC序列在时。
如果,则序列为反因果序列。
ROC的情况:当时,ROC为;当时,ROC为。
双边序列的ROC序列在整个区间都有定义。
双边序列可以看成是左边序列和右边序列的组合,于是如果存在且,则双边序列的ROC为,否则,ROC为空集,即双边序列不存在ZT。
注意:求得的是级数收敛的充分而非必要条件,实际收敛域可能会更大;实际的离散信号通常都是因果序列,此时单边ZT与双边ZT是一致的,收敛域也相同,都是z平面上的某个圆外面的区域。
傅里叶变换和拉普拉斯变换的性质及应用

1.前言1.1背景利用变换可简化运算,比如对数变换,极坐标变换等。
类似的,变换也存在于工程,技术领域,它就是积分变换。
积分变换的使用,可以使求解微分方程的过程得到简化,比如乘积可以转化为卷积。
什么是积分变换呢?即为利用含参变量积分,把一个属于A函数类的函数转化属于B函数类的一个函数。
傅里叶变换和拉普拉斯变换是两种重要积分变换。
分析信号的一种方法是傅立叶变换,傅里叶变换能够分析信号的成分,也能够利用成分合成信号。
可以当做信号的成分的波形有很多,例如锯齿波,正弦波,方波等等。
傅立叶变换是利用正弦波来作为信号的成分。
Pierre Simon Laplace 拉普拉斯变换最早由法国数学家天文学家(拉普拉斯)(1749-1827)在他的与概率论相关科学研究中引入,在他的一些基本的关于拉普拉斯变换的结果写在他的著名作品《概率分析理论》之中。
即使在19世纪初,拉普拉斯变换已经发现,但是关于拉普拉斯变换的相关研究却一直没什么太大进展,直至一个英国数学家,物理学家,同时也是一位电气工程师的Oliver Heaviside奥利弗·亥维赛(1850-1925)在电学相关问题之中引入了算子运算,而且得到了不少方法与结果,对于解决现实问题很有好处,这才引起了数学家对算子理论的严格化的兴趣。
之后才创立了现代算子理论。
算子理论最初的理论依据就是拉普拉斯变换的相关理论,拉普拉斯变换相关理论的继续发展也是得益于算理理论的更进一步发展。
这篇文章就是针对傅里叶变换和拉普拉斯变换的相关定义,相关性质,以及相关应用做一下简要讨论,并且分析傅里叶变换和拉普拉斯变换的区别与联系。
1.2预备知识定理1.2.1(傅里叶积分定理)若在(-∞,+∞)上,函数满足一下条件:(1)在任意一个有限闭区间上面满足狄利克雷条件;(2),即在(-∞,+∞)上绝对可积;则的傅里叶积分公式收敛,在它的连续点处在它的间断点处定义1.2.1(傅里叶变换)设函数满足定理 1.2.1中的条件,则称为的傅里叶变换,记作。
傅里叶变换与拉普拉斯变换的关系

傅里叶变换与拉普拉斯变换的关系傅里叶变换和拉普拉斯变换是数学中的两种重要变换,它们在信号处理、数字图像处理等领域具有重要的应用。
本文将介绍这两种变换的关系以及它们在实际应用中的意义。
傅立叶变换是一种把时域信号转换为频域分量的线性变换,它可以把时域信号的复杂度转化为频率的复杂度,从而使得信号处理更容易实现。
它通过线性变换把时域信号变换为频域信号,进而转换为时域信号本质上没有改变。
傅立叶变换在分析实际信号中非常重要,它可以有效地提取信号的振幅、频率和相位特性。
拉普拉斯变换是一种把函数表示为一组共振模式的线性变换,它也可以用来描述某一特定频率信号的函数特征。
它可以把复杂的时域函数映射到频域,有效地提取出时域函数的频率特性。
此外,拉普拉斯变换也可以把频域信号转换到时域,以便去除噪声或者特定频率部分,提高信号处理效率。
傅立叶变换和拉普拉斯变换之间有着一种特定的关系,它们可以相互转换,实现信号的精确修复。
例如,当去除某一特定频率的高斯噪声时,可以通过拉普拉斯变换得到频域信号,然后再通过傅立叶变换将其转换回时域以去除噪声。
同时,傅立叶变换也可以把拉普拉斯变换得到的频域信号还原回时域。
同时,这两种变换可以同时融合,将傅立叶变换的时域信号依次与拉普拉斯变换的频域信号关联,从而有效地修复失真的时域信号,提高信号处理的效率。
两种变换都是用来进行信号分析的重要工具,可以有效地转换复杂的时域信号和频域信号,同时可以相互转换,以便更好地分析信号特征。
它们不仅在数字信号处理、图像处理中具有重要的应用价值,而且在其他科学领域如物理、化学、生物学等也有广泛的应用。
通过本文的介绍,读者可以了解到傅里叶变换与拉普拉斯变换之间的关系,以及它们在实际应用中的意义。
这两种变换不仅在数字信号处理、图像处理中具有重要的应用价值,而且在其他科学领域如物理、化学、生物学等也有广泛的应用。
借助信号处理的技术,傅立叶变换和拉普拉斯变换就可以帮助分析者有效地分析信号的时域和频域特征,进而更好地刻画信号的关联特性,为实践活动提供技术支持。
傅里叶变换和拉普拉斯变换的联系

傅里叶变换和拉普拉斯变换的联系主要表现在以下两个方面:
性质上的联系:从性质上来看,拉普拉斯变换可以说是傅里叶变换的推广。
傅里叶变换是将一个信号表示成一系列正弦波的叠加,用于频域分析;而拉普拉斯变换则可以将一个信号表示成复平面上的函数,用于更全面的时域和频域分析。
这主要是因为拉普拉斯变换引入了复指数函数,使得变换后的函数具有更丰富的性质,比如可以处理一些傅里叶变换无法处理的信号。
应用上的联系:在应用上,傅里叶变换和拉普拉斯变换常常是相互补充的。
对于一些在实数域内无法直接进行傅里叶变换的信号,可以通过引入拉普拉斯变换进行处理。
另一方面,对于一些在频域内表现复杂的信号,可以通过傅里叶变换进行简化分析。
同时,这两种变换也在很多领域有广泛的应用,比如信号处理、控制系统分析、图像处理等。
总的来说,傅里叶变换和拉普拉斯变换在性质和应用上都有密切的联系,它们都是信号和系统分析的重要工具。
拉普拉斯变换和傅里叶变换之间的区别

拉普拉斯变换和傅里叶变换之间的区别
1. 拉普拉斯变换和傅里叶变换都是频域分析的重要工具,但它们之间有一些明显的区别。
2. 拉普拉斯变换是用来分析离散信号的一种方法,它可以从时域信号转换到频域信号,从而可以确定信号的频率成分。
3. 而傅里叶变换则是一种用来分析连续信号的方法,它可以将一个连续时间信号转换为一个连续频率信号,从而可以确定信号的频率成分。
4. 另外,拉普拉斯变换是一种线性变换,它只能处理离散信号,而傅里叶变换则是一种非线性变换,可以处理连续信号。
5. 最后,拉普拉斯变换只能处理定义域上的有限信号,而傅里叶变换则可以处理定义域上的无限信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Differences Between Two Transforms
• 差别三(也是最本质的差别) 处理的函数范围不同
Fourier变换要求 1 函数f(x)在每个有限区间上可积; 2 存在数M>0,当|x|≥M时,f(x)单调,且
f(x)=0。
Differences Between Two Transforms
那么对于一些函数,例如eαtu(t) (α>0),无法满足上述收敛定理,因 此不存在傅里叶变换
Differences Between Two Transforms
与此同时,一些函数并不满足绝对可积条件,从而不能直接从定 义而导出它们的傅里叶变换。虽然通过求极限的方法可以求得它 们的傅里叶变换,但其变换式中常常含有冲激函数,使分析计算 较为麻烦。 以斜坡信号tu(t)为例
为例
Differences Between Two Transforms
利用matlab对函数进行傅里叶变换,得到其幅度频谱
-(2 cos(w) - 2)/w24
正因如此, 傅立叶变换 更多的 是针对信号 的分析和处 理,主要是 频谱分析。
0.2
0 -6 -4 -2 0 w 2 4 6
Background Of Two Transform—laplace
十九世纪末,英国工程师亥维赛德(O.Heaviside)发明了算子法,很 好地解决了电力工程计算中遇到的一些基本问题,但缺乏严密的 数学论证。后来,法国数学家拉普拉斯(P. S. Laplace)在著作中对这 种方法给予严密的数学定义。于是这种方法便被取名为拉普拉斯 变换,简称拉氏变换。----因为是"拉普拉斯"这个人定义的。
Differences Between Two Transforms
因此我们在信号后乘上一个衰减速度十分快的衰减因子 使得信号容易满足绝对可积条件,而得到的变换式也即拉普拉 斯变换式
在这种变换下,许多不存在傅里叶变换的信号,傅里叶变换式 中存在冲激函数的信号变得十分便于计算。
Differences Between Two Transforms
再对上述两个信号求其拉普拉斯变化
Differences Between Two Transforms
The End
傅里叶变换与拉普拉斯变换广泛应用于工程实际问题中,不仅仅在 数学领域有着应用,在测试技术及控制工程领域应用更为广泛, 搞清两者的应用特点,对将来会频繁使用这两种变换的我们极其 重要。希望本文指出的一些方面能给各位带来一些启发以及想法, 在未来给各位带来些许帮助。
因为现实生活中的信号多为因果信号,因此在此考虑拉普拉斯的现 实意义,引入拉普拉斯单边变换。下述讨论均基于拉普拉斯单边变 换
part two
Advantage Of Fourier Transform
• 求解线性电路时有了“通法” • 随时间变换的信号能够变换成“永恒”空间中频域信号
Advantage of Fourier transform
傅里叶变换 & 拉普拉斯变换 的区别
Points of This Lecture
• 两种变换的背景 • 两种变换给我们带来的便利 • 两种变换之间的差别
part one
Background Of Two Transform—fourier
傅立叶早在1807年就写成关于热传导的基本论文《热的传播》,向 巴黎科学院呈交,但经拉格朗日、拉普拉斯和勒让德审阅后被科学 院拒绝,1811年又提交了经修改的论文,该文获科学院大奖,却未 正式发表。傅立叶在论文中推导出著名的热传导方程 ,并在求解 该方程时发现解函数可以由三角函数构成的级数形式表示,从而提 出任一函数都可以展成三角函数的无穷级数。傅里叶级数(即三角 级数)、傅里叶分析等理论均由此创始。
Differences Between Two Transforms
• 差别二 求解微分方程的简易性差别
1 拉普拉斯变换可以将系统在时域内的微分与积分的运算转换为乘 法与除法的运算,将微分积分方程转换为代数方程,从而使计算 量大大减少。 2 时域微分性质(给出证明) 3拉普拉斯变换相比傅里叶变换可以对更多函数进行变换
(t - 1) (heaviside(t - 1) - heaviside(t)) + (t + 1) (heaviside(t + 1) - heaviside(t)) 1 0.9 0.8 0.7 0.6
以信号 0.5
0.4 0.3 0.2 0.1 0 -1 -0.8 -0.6 -0.4 -0.2 0 t 0.2 0.4 0.6 0.8 1
谢谢
• 拉氏变换将线性常系数微分方程转化为容易处理的线性多项式方 程(N阶电路中的应用)
• 拉氏变换将电路和电压变量的初始值自动引入到多项式方程中, 这样在变换处理过程中,初始条件就成为变换的一部分。
•
part three
Differences Between Two Transforms
• 差别一 对频域的直观性