分式练习题
分式练习题及答案

分式方程练习题及答案(一)一、选择题(每小题3分,共30分)1.下列式子是分式的是( )A .2xB .x 2C .πxD .2y x +2.下列各式计算正确的是( )A .11--=b a b aB .ab b a b 2= C .()0,≠=a ma na m n D .a m a n m n ++= 3.下列各分式中,最简分式是( )A .()()y x y x +-73B .n m n m +-22C .2222ab b a ba +- D .22222y xy x y x +-- 4.化简2293m mm --的结果是( ) A.3+m m B.3+-m m C.3-m m D.m m -35.若把分式xy yx +中的x 和y 都扩大2倍,那么分式的值( )A .扩大2倍B .不变C .缩小2倍D .缩小4倍6.若分式方程x a x a x +-=+-321有增根,则a 的值是( ) A .1 B .0 C .—1 D .—27.已知432c b a ==,则c b a +的值是( )A .54 B. 47 C.1 D.458.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( )A .x x -=+306030100B .306030100-=+x xC .x x +=-306030100D .306030100+=-x x9.某学校学生进行急行训练,预计行60千米的路程在下午5时到达,后来由于把速度加快20%,结果于下午4时到达,求原计划行的速度。
设原计划行的速度为xkm/h ,,则可列方程( )A .1%206060++=x x B. 1%206060-+=x x C. 1%2016060++=)(x x D. 1%2016060-+=)(x x10.已知 k b a c c a b c b a =+=+=+,则直线2y kx k =+一定经过( )A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限二、填空题(每小题3分,共18分)11.计算2323()a b a b --÷= .12.用科学记数法表示—0.000 000 0314= .13.计算22142a a a -=-- .14.方程3470xx =-的解是 . 15.瑞士中学教师巴尔末成功地从光谱数据9162536,,,,5122132中得到巴尔末公式,从而打开了光谱奥秘的大门。
分式的运算练习题及答案

分式的运算练习题及答案分式的运算是数学中的基本内容之一,掌握好分式的运算方法对于提高数学水平具有重要的作用。
本文将为您提供一些分式的运算练习题及答案,帮助您巩固分式运算的知识。
一、基础练习题1. 计算:$\frac{1}{2} + \frac{3}{4}$答案:$\frac{5}{4}$2. 计算:$\frac{2}{3} \times \frac{3}{5}$答案:$\frac{2}{5}$3. 计算:$\frac{5}{6} \div \frac{1}{2}$答案:$\frac{5}{3}$4. 计算:$\frac{3}{4} + \frac{2}{9} - \frac{1}{3}$答案:$\frac{1}{36}$5. 计算:$(\frac{2}{3} + \frac{1}{4}) \times \frac{3}{5}$答案:$\frac{13}{30}$二、复杂练习题1. 计算:$\frac{3}{4} \div \frac{2}{5} \times \frac{1}{3}$答案:$\frac{15}{8}$2. 计算:$(\frac{7}{8} - \frac{3}{4}) \div (\frac{2}{3} \times\frac{5}{6})$答案:$\frac{7}{20}$3. 计算:$\frac{1}{2} + \frac{1}{3} - \frac{1}{4} \times \frac{1}{5}$答案:$\frac{2}{15}$4. 计算:$\frac{2}{3} \div \frac{3}{4} + \frac{4}{5} - \frac{5}{6}$答案:$\frac{7}{6}$5. 计算:$(\frac{3}{4} + \frac{1}{5}) \div \frac{2}{3} - \frac{5}{6}$答案:$-\frac{17}{36}$三、应用题1. 甲、乙两人一起做数学题,甲做的时间是乙的$\frac{2}{3}$,若乙做完题所需时间为1小时,问甲需要多长时间做完这些题?答案:$\frac{4}{3}$小时解析:设甲需要x小时做完这些题,则根据题意可得$\frac{x}{1}=\frac{2}{3}$,解得x=$\frac{4}{3}$。
《分式》典型练习题

分式知识点和典型习题(一)、分式定义及有关题型题型一:考查分式的定义1、下列代数式中:y x yx y x y x ba b a y x x -++-+--1,,,21,22π,是分式的有: .2、下列分式中,最简分式有( )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b-++-++---- A .2个 B .3个 C .4个 D .5个 3、下列各式:2b a -,x x 3+,πy +5,()1432+x ,b a b a -+,)(1y x m-中,是分式的共有( )A.1个B.2个C.3个D.4个题型二:考查分式有意义的条件 1、当x 有何值时,下列分式有意义(1)44+-x x (2)232+x x (3)122-x (4)3||6--x x(5)xx 11-题型三:考查分式的值为0的条件 1、当x 取何值时,下列分式的值为0.(1)31+-x x (2)42||2--x x (3)653222----x x x x题型四:考查分式的值为正、负的条件 1、(1)当x 为何值时,分式x-84为正;(2)当x 为何值时,分式2)1(35-+-x x 为负;(3)当x 为何值时,分式32+-x x 为非负数.(二)分式的基本性质及有关题型1.分式的基本性质:MB M A M B M A B A ÷÷=⨯⨯=2.分式的变号法则:bab a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数1、不改变分式的值,把分子、分母的系数化为整数.(1)y x yx 41313221+- (2)ba ba +-04.003.02.0(3)b a ba 10141534.0-+题型二:分数的系数变号2、不改变分式的值,把下列分式的分子、分母的首项的符号变为正号.(1)yx yx --+- (2)ba a ---(3)ba ---题型三:考查分式的性质 1、若分式xyx +中x 、y 的值都增加到原来的3倍,则分式的值( ) A 、不变 B 、是原来的3倍 C 、是原来的31 D 、是原来的912、若分式xyy x 22+中x 、y 的值都增加到原来的3倍,则分式的值( )A 、不变B 、是原来的3倍C 、是原来的31D 、是原来的91题型三:化简求值题 1、已知:511=+y x ,求yxy x yxy x +++-2232的值. 2、已知:311=-b a ,求a ab b b ab a ---+232的值.3、已知:21=-xx ,求221xx +的值. 4、若0)32(|1|2=-++-x y x ,求yx 241-的值.5、已知与互为相反数,代数式的值。
分式化简练习题精选及答案

分式化简练习题精选及答案分式是数学中的基本概念,它在数学中起到了非常重要的作用。
在分式化简练习中,我们需要掌握基本的分式化简原理,并且需要广泛练习各种类型的分式化简题目。
下面是一些常见的分式化简练习题目以及解答方法,希望对大家的学习有所帮助。
一、简单的分式化简题目1. 将 $\frac{2x+4}{x+2}$ 化简为最简分式。
解:这个分式可以化简为 $\frac{2(x+2)}{x+2}$,然后可以简化为 $2$。
2. 将 $\frac{x^2-4}{x+2}$ 化简为最简分式。
解:这个分式可以化简为 $\frac{(x-2)(x+2)}{x+2}$,然后可以简化为 $x-2$。
3. 将 $\frac{x^2+4x+4}{x^2-4x+3}$ 化简为最简分式。
解:这个分式可以化简为 $\frac{(x+2)^2}{(x-1)(x-3)}$,然后可以简化为 $\frac{(x+2)^2}{(x-1)(x-3)}$。
二、含有多项式的分式化简题目1. 将 $\frac{x^3+8}{x^2-2x-24}$ 化简为最简分式。
解:这个分式可以化简为$\frac{(x+2)(x^2-2x+4)}{(x-6)(x+4)}$,然后可以简化为 $\frac{x^2-2x+4}{x-6}$。
2. 将 $\frac{x^3-4x^2-7x+10}{x^2+4x+4}$ 化简为最简分式。
解:这个分式可以化简为 $\frac{(x-2)(x+1)^2}{(x+2)^2}$,然后可以简化为 $\frac{x-2}{x+2}$。
三、复杂的分式化简题目1. 将$\frac{1}{x^2+4x+3}+\frac{1}{x^2+2x}$ 化简为最简分式。
解:首先找到这两个分式的公共分母,它是$(x+1)(x+3)x(x+2)$。
然后将每个分式乘以合适的因数得到通分式,最后将通分式加起来得到最简分式。
2. 将 $\frac{x+1}{x^3-1}-\frac{1}{x^2-x}$ 化简为最简分式。
分式的化简求值经典练习题(带答案)

精心整理精心整理分式的化简乘方:()n n n nn a a aa a aa ab b bb b bb b ⋅=⋅=⋅个个n 个=(n 为正整数)整数指数幂运算性质: ⑴m n m n a a a +⋅=(m 、n 为整数) ⑵()m n mn a a =(m 、n 为整数) ⑶()n n n ab a b =(n 为整数)⑷m n m n a a a -÷=(0a ≠,m 、n 为整数)中考要求精心整理精心整理负整指数幂:一般地,当n 是正整数时,1n na a -=(0a ≠),即n a -(0a ≠)是n a 的倒数分式的加减法法则:同分母分式相加减,分母不变,把分子相加减,a b a b ccc+±=异分母分式相加减,先通分,变为同分母的分式再加减,a c ad bc ad bc bdbdbdbd±±=±=分式的混合运算的运算顺序:先算乘方,再算乘除,后算加减,如有括号,括号内先算.【例1【例2【题型】解答 【关键词】【解析】222221(1)()4111(1)a a a a a a a a a ---+÷⋅=-=--++-【答案】4-【例3】 先化简,再求值:22144(1)1a a a a a-+-÷--,其中1a =-..【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,安徽省中考【解析】()()2221144211122a a a a a a a a a a a a --+-⎛⎫-÷=⋅= ⎪----⎝⎭-当1a =-时,原式112123a a -===---【答案】13【例4】 先化简,再求值:2291333x x x x x⎛⎫-⋅ ⎪--+⎝⎭其中13x =.【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,湖南省长沙市中考试题 【解析】原式()()()33133x x x x x +-=⋅-+ 当13x =时,原式3=【答案】3【例5】 先化简,再求值:211(1)(2)11x x x -÷+-+-,其中x =. 【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,湖北省十堰市中考试题 【解析】原式()()()111121x x x x x +-=⋅+-+-+当x时,原式224=-=.【答案】4精心整理精心整理【例6】 先化简,后求值:22121(1)24x x x x -++÷--,其中5x =-. 【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,广东省肇庆市中考试题【解析】22121(1)24x x x x -++÷--=221(1)2(2)(2)x x x x x -+-÷-+-【例7。
分式练习计算练习题(超全)

分式练习题一 填空题1.下列有理式中是分式的有 (1)-3x ;(2)y x ;(3)22732xy y x -;(4)-x 81;(5) 35+y ; (6)112--x x ;(7)-π-12m ; (8)5.023+m ; 2.(1)当a 时,分式321+-a a 有意义;(2)当_____时,分式4312-+x x 无意义; (3)当______时,分式68-x x 有意义;(4)当_______时,分式534-+x x 的值为1; (5)当______时,分式51+-x 的值为正;(6)当______时分式142+-x 的值为负. (7)分式36122--x x 有意义,则x (8)当x = 3时,分式b x a x +-无意义,则b ______ 3.(1)若分式0)1x )(3x (1|x |=-+-,则x 的值为_________________; (2)若分式33x x --的值为零,则x = ; (3)如果75)13(7)13(5=++a a 成立,则a 的取值范围是__________; (4)若)0(54≠=y y x ,则222y y x -的值等于________; (5)分式392--x x 当x __________时分式的值为零; (6)当x __________时分式xx 2121-+有意义; (7)当x=___时,分式22943x x x --+的值为0; (8)当x______时,分式11x x +-有意义; (10)当a=_______时,分式2232a a a -++ 的值为零; (11)当分式44x x --=-1时,则x__________;(12)若分式11x x -+的值为零,则x 的值为 (13)当x________时,1x x x -- 有意义. 4.①())0(,10 53≠=a axy xy a ②()1422=-+a a 。
5.约分:①=ba ab 2205__________,②=+--96922x x x __________。
分式练习计算练习题(超全)

分式练习题一 填空题1.下列有理式中是分式的有 (1)-3x ;(2)y x ;(3)22732xy y x -;(4)-x 81;(5) 35+y ; (6)112--x x ;(7)-π-12m ; (8)5.023+m ; 2.(1)当a 时,分式321+-a a 有意义;(2)当_____时,分式4312-+x x 无意义; (3)当______时,分式68-x x 有意义;(4)当_______时,分式534-+x x 的值为1; (5)当______时,分式51+-x 的值为正;(6)当______时分式142+-x 的值为负. (7)分式36122--x x 有意义,则x (8)当x = 3时,分式b x a x +-无意义,则b ______ 3.(1)若分式0)1x )(3x (1|x |=-+-,则x 的值为_________________; (2)若分式33x x --的值为零,则x = ; (3)如果75)13(7)13(5=++a a 成立,则a 的取值范围是__________; (4)若)0(54≠=y y x ,则222yy x -的值等于________; (5)分式392--x x 当x __________时分式的值为零; (6)当x __________时分式xx 2121-+有意义; (7)当x=___时,分式22943x x x --+的值为0; (8)当x______时,分式11x x +-有意义; (10)当a=_______时,分式2232a a a -++ 的值为零; (11)当分式44x x --=-1时,则x__________;(12)若分式11x x -+的值为零,则x 的值为 (13)当x________时,1x x x -- 有意义. 4.①())0(,10 53≠=a axy xy a ②()1422=-+a a 。
5.约分:①=ba ab 2205__________,②=+--96922x x x __________。
(完整版)分式的约分练习题

分式的约分练习题 姓名一、选择题 1。
已知分式)3)(1()3)(1(-++-x x x x 有意义,则x 的取值为( )A 。
x ≠-1 B.x ≠3C.x ≠-1且x ≠3D.x ≠-1或x ≠3 2。
下列分式,对于任意的x 值总有意义的是( )A 。
152--x xB 。
112+-x xC 。
x x 812+D 。
232+x x3.若分式mm m --21||的值为零,则m 取值为( )A 。
m =±1 B.m =-1 C 。
m =1 D.m 的值不存在 4。
当x =2时,下列分式中,值为零的是( )A 。
2322+--x x xB 。
942--x xC.21-x D 。
12++x x5.每千克m 元的糖果x 千克与每千克n 元的糖果y 千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为( )A.y x mynx ++元 B 。
yx mymx ++元C 。
yx nm ++元D 。
21(nym x +)元 6。
下列约分正确的是( )A.32)(3)(2+=+++a c b a c bB.1)()(22-=--a b b a C 。
b a ba b a +=++222D 。
xy y x xy y x -=---12228.等式)1)(1()1(1+++=+b a b a a a 成立的条件是( ) A.a ≠0且b ≠0 B 。
a ≠1且b ≠1C 。
a ≠-1且b ≠-1D.a 、b 为任意数9.如果把分式yx yx ++2中的x 和y 都扩大10倍,那么分式的值( )A 。
扩大10倍B.缩小10倍C 。
是原来的23D 。
不变10.不改变分式的值,使33212-+--x x x的分子、分母中最高次项的系数都是正数,则此分式可化为( ) A 。
33122-+-x x xB 。
33122+++x x xC 。
33122+-+x x xD 。
33122+--x x x11、分式ax y 434+,1142--x x ,y x y xy x ++-22,2222b ab ab a -+中,最简分式有( ) A .1个 B .2个 C .3个 D .4个 12、下列分式运算,结果正确的是( )A .4453m n m n m n =B .a c ad b d bc =C .222242b a a b a a -=⎪⎭⎫⎝⎛- D .3334343y x y x =⎪⎪⎭⎫ ⎝⎛ 二.完成下列习题1.根据分数的约分,把下列分式化为最简分式:a a 1282 =_____;c ab bc a 23245125=_______()()b a b a ++13262=__________221326b a b a -+=________ 基础训练:1、分式434y x a +,2411x x --,22x xy y x y -++,2222a ab ab b +-中是最简分式的有( )A .1个B .2个C .3个D .4个2、21?11x x x -=+-,111?2+-=-x x x 则?处应填上_________,其中条件是__________. 3、下列约分正确的是( ) A1-=-+-y x y x B 022=--y x y x C b a b x a x =++ D 33=+mm4、约分⑴233123ac c b a ⑵ ()2xy y y x + ⑶ ()22y x xy x ++ ⑷()222y x y x --三. 当x 取何值时,下列分式的值为零?① 5332++x x ② 242+-x x ③ 3212-+-x x x四. 不改变下列分式的值,使分式的分子、分母首相字母都不含负号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式
一、选择题
1.在下列各式中,分式的个数是 ( )
22a,1ab,1ax,2
x
x
,2m,xyx,
A.3 B.4 C.5 D.2
2.下列各式中不是分式的是( )
A3x. B.xx C. abxy D. 11x
3.已知分式2133xx的值等于零,x的值( )
A.1 B.1 C. 1 D. 12
4.有理数a、b 在数轴上的对应点如图:
代数式abab的值( )A.大于0 B.小于0 C.等于0 D.不能确定
5.如果分式13xx有意义,那么x的取值范围是 ( )A.0x B.1x
C.3x D.3x
6.下列式子正确的是( )A.22bbaa B.0abab C.1abab
D.0.10.330.22abababab
7.61x表示一个整数,则整数x的可能取值的个数是( )
A.8 B.6 C.5 D.4
8.汽车从甲地开往乙地,每小时行驶1v千米,t小时后可以到达,如果每小时多行驶2v千
米,那么可以提前到达的小时数是 ( )A.212vtvv B.112vtvv C.1212vvvv
D.1221vtvtvv
二、填空题(每空3分,共30分)
1.若分式abab中的a和b都扩大到10a和10b,则分式的值扩大__________倍.
2.分式1x,224xx,32yx的最简公分母是___________.
3.当4m时,方程4mxnx的解是___________.
4.计算11rrsrs__________.
5.已知2420bkkak,用含有b、k的代数式表示a,则a_________.
6.如果11322xxx有增根,那么增根是_________.
7.如果 213xyx,那xy_________.
8.(08年宁夏回族自治区)某市对一段全长1500米的道路进行改造.原计划每天修x米,
为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的2倍还多
35米,那么修这条路实际用了 天。
三、计算题(每题5分,共20分)
1.2222233824217abacccdbda
2.352242mmmm
3.2226242xyyxyxxy
4.当3x时,求下列式子的值
2
321111211xxxxx
四、解分式方程(每题8分,共24分)
1.11322xxx
2.20xbxaabab
3.0xaccdbxd求x.
五、列分式方程,解应用题(每题8分,共16分)
1.轮船在顺水中航行30千米的时间与在逆水中航行20千米所用的时间相等,已知水流速
度为2千米/小时,求船在静水中的速度.
2.某车间加工1200个零件后,采用了新工艺,工效是原来的1.5倍,这样加工零件就少用
10小时,采用新工艺前、后每小时分别加工多少个零件?