FLEXSIM软件在生产物流系统仿真实验报告材料
物流仿真Flexsim实验2报告

14.2 自动分拣系统仿真袁峰 0726210427 1.实验目的通过建立一个传送带系统,学习Flexsim提供的运动系统的定义;学习Flexsim提供的传送系统的建模;进一步学习模型调整与系统优化。
2.实验内容(1)仿真模型截图自动分拣系统仿真模型的正投视图的截图如图2-1所示。
图2-1 自动分拣系统仿真模型的正投视图(2)仿真模型各对象参数设置说明仿真模型各对象参数设置说明如表2-1所示。
表2-1 各对象参数设置说明(3)仿真结束时间根据24小时(86400)工作制和8小时(28800)工作制设定模型运行,所以仿真结束时间有两个,分别为:86400和28800。
3.仿真结果分析(1)该分拣系统一天的总货物流量该分拣系统一天的总货物流量是系统末端四个Queue和一个Sink的输入量之和,5次实验结果如下:该系统的总货物流量如表2-2所示。
表2-2 总货物流量表(2)系统的最大日流量8小时(28800)工作制,该系统运行5次,最后4个Queue的实验数据如表2-3所示。
表2-3 最后4个Queue的实验数据所以,最大日流量= 59.8÷8.776%÷95%+134.8÷29.576%÷96%+93.4÷13.356%÷97%+316.2÷44.474%÷98% = 2638.460(3)8小时工作制和24小时工作制的部分数据对比四个处理器的5次实验数据分别如表2-4至2-7所示。
表2-4 Processor1的利用率表2-5 Processor2的利用率表2-6 Processor3的利用率表2-7 Processor4的利用率8小时工作制和24小时工作制的部分数据汇总如表2-8所示。
表2-8 8小时工作制和24小时工作制的部分数据对比由表2-8可知,根据24(86400)小时工作制和8(28800)小时工作制设定模型运行,是简单的约3倍的关系。
flexsim实验报告

flexsim实验报告FlexSim实验报告引言:FlexSim是一款强大的仿真软件,被广泛应用于工业、物流、医疗等领域。
本实验报告将介绍我们在使用FlexSim进行仿真实验的过程和结果,并探讨其在实际应用中的潜力。
一、实验目的我们的实验目的是通过使用FlexSim来模拟和优化一个工厂的生产流程,以提高生产效率和减少资源浪费。
通过这个实验,我们希望了解FlexSim的功能和应用,以及如何将其应用于实际生产环境中。
二、实验过程1. 建模和参数设定我们首先使用FlexSim进行建模,根据实际工厂的生产流程和设备情况,将其转化为一个三维模型。
然后,我们设置了各个设备的参数,包括生产速度、故障率、维修时间等,以便更真实地模拟生产环境。
2. 数据采集和分析在模拟运行过程中,我们收集了大量的数据,包括设备利用率、生产周期、等待时间等。
通过对这些数据的分析,我们可以评估当前生产流程的效率,并找出潜在的瓶颈和改进点。
3. 优化策略设计基于数据分析的结果,我们设计了一系列的优化策略,包括设备调度、工艺改进、资源配置等。
通过在FlexSim中实施这些策略,并进行多次仿真实验,我们可以评估其效果,并选择最佳的方案。
三、实验结果通过多次实验和优化,我们成功地提高了工厂的生产效率和资源利用率。
具体来说,我们减少了设备的闲置时间,提高了生产速度,降低了生产周期。
同时,我们还通过合理配置资源,减少了生产过程中的等待时间和浪费。
四、讨论与展望FlexSim作为一款强大的仿真软件,为我们提供了一个优化生产流程的有力工具。
通过灵活的建模和参数设定,我们可以准确地模拟和分析现实生产环境中的各种情况。
通过多次实验和优化,我们可以找到最佳的生产方案,并提高生产效率。
然而,值得注意的是,FlexSim只是一个工具,其应用结果还需要结合实际情况进行综合评估。
在实际应用中,我们还需要考虑人力资源、成本、市场需求等因素。
因此,将FlexSim与其他管理工具和方法相结合,才能更好地实现生产优化的目标。
物流仿真设计实验报告

一、实验背景随着经济全球化的发展,物流行业在企业经营中的重要性日益凸显。
为了提高物流系统的运行效率,降低成本,优化资源配置,物流仿真设计成为了物流管理的重要工具。
本实验旨在通过Flexsim仿真软件,对某一物流系统进行建模、仿真和分析,从而为物流系统的优化提供参考依据。
二、实验目的1. 熟练掌握Flexsim仿真软件的操作方法。
2. 建立合理的物流系统模型,并进行仿真分析。
3. 分析物流系统存在的问题,提出优化方案。
三、实验内容1. 系统描述本实验以某企业物流系统为研究对象。
该系统包括原材料采购、生产加工、仓储、配送和客户服务等环节。
实验的主要任务是优化物流系统的运行效率,降低物流成本。
2. 模型建立(1)数据收集:通过查阅相关资料和实地调研,收集了原材料采购、生产加工、仓储、配送和客户服务等方面的数据。
(2)模型构建:根据收集到的数据,在Flexsim软件中建立了物流系统模型。
模型包括以下主要模块:- 原材料采购模块:模拟原材料供应商的供货过程,包括原材料到达、检验和入库等环节。
- 生产加工模块:模拟生产线的生产过程,包括生产节拍、产品检验和入库等环节。
- 仓储模块:模拟仓库的存储和管理过程,包括原材料和成品的入库、出库和库存管理等环节。
- 配送模块:模拟配送中心的配送过程,包括订单处理、货物装载、运输和配送等环节。
- 客户服务模块:模拟客户服务过程,包括订单处理、产品交付和售后服务等环节。
3. 仿真分析(1)运行仿真:在Flexsim软件中运行仿真模型,观察系统运行情况,包括生产节拍、库存水平、配送时间等指标。
(2)数据分析:对仿真结果进行分析,找出系统存在的问题,如库存积压、配送延迟等。
四、实验结果与分析1. 库存积压问题仿真结果显示,原材料和成品的库存积压现象较为严重。
通过分析,发现主要原因如下:- 生产计划不合理,导致原材料采购过多。
- 生产节拍与市场需求不匹配,导致成品库存积压。
2. 配送延迟问题仿真结果显示,配送延迟现象较为明显。
flexsim仿真实验报告

flexsim仿真实验报告FlexSim仿真实验报告一、引言FlexSim是一种基于离散事件仿真(DES)的软件工具,广泛应用于各个领域的仿真实验中。
本文将以FlexSim为工具,通过一个具体的实验案例,探讨仿真在生产流程优化中的应用。
二、实验背景某电子产品制造公司为了提高生产效率和减少生产成本,决定对其生产流程进行优化。
在优化前,该公司的生产流程存在一些问题,如生产线上的瓶颈、物料运输不畅等。
为了解决这些问题,该公司决定采用FlexSim进行仿真实验。
三、实验目标本次实验的目标是通过对生产流程的仿真模拟,找出瓶颈环节,并提出相应的优化方案。
通过优化,提高生产效率,减少生产成本。
四、实验步骤1. 数据收集:收集相关的生产数据,包括生产线上的各个环节的生产速度、运输时间、物料需求量等。
2. 建立模型:根据收集到的数据,利用FlexSim建立生产流程的仿真模型。
模型中包括各个生产环节、物料运输通道等。
3. 参数设置:根据实际情况,对模型中的各个参数进行设置,如生产速度、运输时间等。
4. 运行仿真:运行模型,观察生产流程的运行情况,并记录相关数据。
5. 数据分析:根据仿真结果,分析生产流程中的瓶颈环节,并找出问题所在。
6. 优化方案提出:根据瓶颈环节的分析结果,提出相应的优化方案,如增加设备数量、调整生产速度等。
7. 优化效果验证:对提出的优化方案进行仿真验证,观察优化后的生产流程运行情况,并比较优化前后的数据。
五、实验结果与分析通过对实验数据的分析,发现生产流程中存在一个瓶颈环节,即某一设备的生产速度过慢,导致整个生产线的运行效率下降。
通过调整该设备的生产速度,可以显著提高生产效率。
同时,通过增加运输通道的数量,减少物料运输时间,也可以进一步优化生产流程。
六、优化方案与实施基于实验结果的分析,提出以下优化方案:1. 增加设备数量:通过增加设备数量,可以提高生产线的生产速度,减少生产时间。
2. 调整生产速度:根据实际情况,对各个设备的生产速度进行调整,使其能够更好地适应整个生产流程的需求。
Flexsim仿真实验-报告

Flexsim仿真实验-报告Introduction本次报告主要通过Flexsim仿真实验来模拟一个物流仓库的运营情况。
在实验中,我们将会探究在不同情况下,物流仓库的运营效率会如何受到影响,并通过结果来提出一些改进建议,以进一步提高物流仓库的运营效率。
实验场景描述在我们的物流仓库,我们需要处理两个不同来源的货物:进口和国产。
这两种货物有不同的来源和运输方式。
进口货物需要通过集装箱船从港口运输到我们的仓库,而国产货物则可以由卡车或火车运输。
物流仓库内有3个主要区域:进口货物区、国产货物区以及出口货物区。
我们需要将进口货物和国产货物分别存储在对应的区域内,并在后续的运输过程中将它们分别转移到出口货物区。
实验目的通过对实验场景中不同方案的模拟,探究如何优化物流仓库运营效率。
实验目的包括以下几个方面:1. 比较卡车运输模式和火车运输模式之间的效率差异2. 探究不同储存、运输设施数量对物流效率的影响3. 探究两种货物进出库数量对物流效率的影响4. 给出改进方案并提高仓库运营效率实验流程1. 构建实验模型首先,我们需要在Flexsim中构建仓库的模型。
我们需要创建进口货物区、国产货物区和出口货物区,并添加合适数量的储存货架以存储货物。
我们需要在储存节点上添加一个储存规则来确保货物被正确存入。
我们还需要添加合适数量的卸货站、存货站、装货站,以及使用不同方式运输货物的工具(卡车或火车)。
2. 进行实验我们将运行多个不同的实验,以探究不同方案对运营效率的影响。
在每个实验中,我们将记录以下数据:货物进出库数量、货物运输时间、工作人员和工具空闲时间。
3. 分析和提取结果我们将比较实验结果并从中提取结论。
我们将分析不同方案的效果,并提出改进建议以进一步提升运营效率。
实验结果分析我们进行了以下三个实验,并分别分析了它们的结果。
1. 比较卡车运输模式和火车运输模式之间的效率差异在这个实验中,我们比较了使用卡车与火车运输货物的效率。
仿真物流实训报告

一、实训背景随着我国经济的快速发展,物流行业在国民经济中的地位日益重要。
为了提高我国物流行业的整体水平,培养具备实际操作能力的物流专业人才,我校经济管理学院特开设了仿真物流实训课程。
通过仿真物流实训,学生可以了解物流行业的运作流程,掌握物流系统的基本原理,提高解决实际问题的能力。
二、实训目的1. 帮助学生了解物流行业的基本运作流程,掌握物流系统的基本原理。
2. 培养学生运用仿真软件进行物流系统分析、设计和优化的能力。
3. 提高学生团队协作、沟通和创新能力。
三、实训内容本次仿真物流实训主要采用FlexSim仿真软件进行,以某大型超市配送中心为案例,进行以下内容的学习和实践:1. 配送中心概况:了解配送中心的规模、功能、作业流程等。
2. 仿真建模:根据配送中心实际情况,运用FlexSim软件建立仿真模型。
3. 模型验证:对仿真模型进行验证,确保模型准确反映实际配送中心作业流程。
4. 参数优化:对仿真模型进行参数优化,提高配送中心作业效率。
5. 模型分析:分析仿真结果,为实际物流系统改进提供依据。
四、实训过程1. 配送中心概况学习:通过查阅资料、实地考察等方式,了解配送中心的规模、功能、作业流程等。
2. 仿真建模:运用FlexSim软件,根据配送中心实际情况,建立仿真模型。
主要包括以下步骤:a. 建立模型框架:定义模型范围、系统边界等。
b. 添加模型元素:根据配送中心作业流程,添加相关元素,如仓库、货架、输送带、分拣设备等。
c. 设置模型参数:根据实际情况,设置各元素参数,如输送速度、货架容量等。
d. 添加物流信息流:设置订单生成、订单处理、货物搬运等物流信息流。
3. 模型验证:对仿真模型进行验证,确保模型准确反映实际配送中心作业流程。
主要方法包括:a. 与实际数据进行对比:将仿真结果与实际数据进行对比,验证模型准确性。
b. 专家评审:邀请物流行业专家对仿真模型进行评审,提出改进意见。
4. 参数优化:对仿真模型进行参数优化,提高配送中心作业效率。
物流仿真实训报告

FLEXSIM软件在生产物流系统仿真实验报告专业:物流管理学号:201554188 姓名:王二狗实验平台ﻫFlexsim系统仿真软件。
3ﻫ、9、1配送中心仿真实验实验目得1ﻫ。
让学生体验物流配送中心得基本功能与作业流程.2ﻫ.通过对仿真软件Flexsim得运用与学习,体会物流仿真得建模与仿真方法。
3ﻫ。
让学生学会从系统得思想分析权衡物流系统各要素目标之间得关系。
4ﻫ.让学生熟悉Flexsim软件得功能。
ﻫ实验工具1。
一个配送中心得设计方案,设计方案要对配送中心得保管、倒装、拣选、包装与辅助加工与分拣等多个功能合理设计。
2.系统仿真软件:F1exsim软件。
3.每人一台计算机.实验内容1.系统仿真软件Flexsim得使用:设备得表示、选择、属性设置、修改、设备得连接、模拟得开始与停止等基本操作。
2.熟悉物流配送中心仿真得基本要素:设备选型与特征参数、设备布局与关联、货物入库、客户订单、货位分配原则、概率性得事件、随机变量得分布、操作人员得行为等。
3.自动化仓储模型、内部运输调度模型、拣选模型、分拣模型、人力调配模型、外部发运模型等模型在系统仿真中得运用。
实验步骤学生根据个人情况选择一个仿真物流配送中心得仿真对象。
ﻫ老师指导学生对所选择得仿真对象进行模型设计与优化。
老师从物流系统角度对仿真模型得设计进行一些扩展分析.在老师得指导下,学生分小组通过使用Flexsim软件完成所选仿真模型得仿真设计。
组织学生利用所学得知识从系统得角度分析模型中得优化同现实中具体方案优化得不同与相同之处。
1。
系统数据设定物品到达:平均每2分钟到达一个产品,到达间隔时间服从指数分布.物品分类:3类(分别以红、黄、蓝标示).2。
进入系统仿真主界面。
打开Flexsim软件,进入Flexsim系统仿真主界面。
3.生成Source实体。
按照各小组得设计方案,在模型中生成一个实体(发生器Sour ce)。
从左边得实体库中拖出一个source(发生器),放到模型视窗中。
Flexsim实验报告实验二:流水作业线的仿真讲解

Flexsinm实验报告实验目的通过此实验掌握Flexsim 软件的基本用法,了解系统仿真的基本原理,运用Flexsim 进行模型的建立和仿真分析,通过实际建立仿真模型深刻认识仿真的基本概念。
在学会运用Flexsim 进行几个模型的建立和仿真的基础之上进行自主分析,完成一定的探究过程,更好地将Flexsim 软件和现实紧密联系起来,以此为基础将更好地在物流中心的设计与运作方面进行统筹计划。
其中包括: ✓ 掌握离散系统仿真的基本原理。
✓ 掌握Flexsim 软件的基本操作和常用实体的参数设置等。
✓ 掌握分析流程,建立模型的方法.✓ 掌握模型运行的基本统计分析方法。
✓ 统计对象的选择和模型运行过程中被选择对象统计数据的输出和分析。
✓ 通过实际建立仿真模型认识仿真的基本概念、感受仿真的情境。
✓ 通过实际建立仿真模型认识仿真的基本概念、感受仿真的情境。
1、 实验内容本次实验中,我们利用flexsim4.0软件平台,来仿真一个流水加工生产线系统,不考虑其流程间的工件运输,对其各道工序流程进行建模。
建立一个如下描述的流水加工生产线系统:两种工件L_a 、L_b ,分别以正态分布(10,2)和均匀分布(20,10)min 的时间间隔进入系统,首先进入队列Q_in由操作工人进行检验,每件检验用时2min 。
不合格的废弃,离开系统,合格的送往后续加工工序,合格率为95%;L_a 送往机器M1加工,如需等待,则在Q_m1队列中等待;L_b 送往机器M2加工,如需等待,则在Q_m2队列中等待;L_a 在机器M1上加工时间为均匀分布(5,1)min ,加工后的工件为L_a2;L_b 在机器M2上的加工时间为正态分布(8,1)min ,加工后的工件叫做L_b2;一个L_a2和一个L_b2在机器Massm 上装配成L_product ,需时为正态分布(5,1)min ,然后离开系统。
如装配机器忙则L_a2在队列Q_out1中等待;L_b2在队列Q_out2中等待;并且让该系统运行一个月,直到流水线中的某个生产资料暂存区达到了其最大容量,则系统停滞加工.该系统的运行效率指标由生产线的最长加工时间和最M2 M1 Q_out2 Massm终完成加工产品的数量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FLEXSIM软件在生产物流系统仿真实验报告
专业:学号:姓名:
1.FLEXSIM软件简介
Flexsim是一个强有力的分析工具,可帮助工程师和设计人员在系统设计和运作中做出智能决策。
采用Flexsim,可以建立一个真实系统的3D计算机模型,然后用比在真实系统上更短的时间或者更低的成本来研究系统。
Flexsim是一个通用工具,已被用来对若干不同行业中的不同系统进行建模。
Flexsim已被大小不同的企业成功地运用。
使用Flexsim可解决的3个基本问题
1)服务问题 - 要求以最高满意度和最低可能成本来处理用户及其需求。
2)制造问题- 要求以最低可能成本在适当的时间制造适当产品。
3)物流问题- 要求以最低可能成本在适当的时间,适当的地点,获得适当的产品。
2.实验内容及目的
在这一个实验中,我们将研究三种产品离开一个生产线进行检验的过程。
有三种不同类型的临时实体将按照正态分布间隔到达。
临时实体的类型在类型1、2、3三个类型之间均匀分布。
当临时实体到达时,它们将进入暂存区并等待检验。
有三个检验台用来检验。
一个用于检验类型1,另一个检验类型2,第三个检验类型3。
检验后的临时实体放到输送机上。
在输送机终端再被送到吸收器中,从而退出模型。
图1-1是流程的框图。
本实验的目的是学习以下内容:
∙如何建立一个简单布局
∙如何连接端口来安排临时实体的路径
∙如何在Flexsim实体中输入数据和细节
∙如何编译模型
∙如何操纵动画演示
∙如何查看每个Flexsim实体的简单统计数据
3.实验过程
为了检验Flexsim软件安装是否正确,在计算机桌面上双击Flexsim3.0图标打开应用程序。
软件装载后,将看到Flexsim菜单和工具按钮、库、以及正投影视图的视窗。
步骤1:从库里拖出所有实体拖到正投影视图视窗中,如图1-3所示:
图1-3 完成后,将看到这样的一个模型。
模型中有1个发生器、1个暂存区、3个处理
器、3个输送机和1个吸收器。
步骤2:连接端口
下一步是根据临时实体的路径连接端口。
连接过程是:按住“A”键,然后用鼠标左键点击发生器并拖曳到暂存区,再释放鼠标键。
拖曳时你将看到一条黄线,
释放时变为黑线。
连接每个处理器到暂存区,连接每个处理器到输送机,连接每个输送机到吸收器,这样就完成了连接过程。
完成连接后,所得到的模型布局应如图1-6所示。
图1-6 完成端口连接
接着根据对实体行为特性的要求改变不同实体的参数。
我们首先从发生器开始设置,最后到吸收器结束。
对于这一模型,我们想要有三种不同的产品类型进入系统。
为此,将应用发生器的“离开触发器”为每个临时实体指定一个1到3 之间的均匀分布的整数值,来作为实体类型。
步骤3:指定到达速率
双击发生器键打开其参数视窗。
现在,按下到达时间间隔下拉菜单中的箭头,选择“正态分布”选项(图1-8)
图1-8
选择模板按钮,将看到这一视窗(图1-9):
图1-9
步骤5:设定临时实体类型和颜色
选择发生器触发器分页(图1-10)。
在“离开触发器”框中,选择“Set Itemtype and Color(设定临时实体类型和颜色)”以改变临时实体类型和颜色。
图1-10
点击本视窗和发生器参数视窗的确定键。
步骤6:设定暂存区容量
双击暂存区打开暂存区参数视窗(图1-12)
图1-12
改变最大的容量为25。
选择按钮。
步骤7:为暂存区指定临时实体流选项
在参数视窗选择临时实体流分页来为暂存区指定流程
在“发送到端口”下拉菜单中选择“By Itemtype (direct)(按实体类型(直接))”(图1-13)。
图1-13
选定了“By Itemtype (direct)”之后,点击确定按钮关闭暂存区的参数视窗。
步骤8:为处理器指定操作时间
双击处理器1,打开处理器1的参数视窗(图1-14)。
图1-14
在“处理时间”下拉菜单中,选“Exponential Distribution(指数分布)”。
其默认的时间是10秒,因此,这里需要改变,改变的方法是选择模板按
钮(见图 1-15).
图1-15
将形状参数(scale value)改为30。
这里指数分布的形状参数恰好是均值。
按确定按钮关闭视窗。
按确定按钮关闭处理器参数视窗。
对其它的处理器重复上述过程。
因为输送机的默认速度已经设为每时间单位为1,所以这次不需要修改输送机的速度。
步骤9:编译
图1-16 主视窗上的运行控制按钮
按主视窗的按钮。
完成编译过程后就可以运行模型了。
步骤10:重置模型
为了在运行模型前设置系统和模型参数的初始状态,总是要先点击主视窗底部
的键。
步骤11:运行模型
按按钮使模型运行起来。
可以看到临时实体进入暂存区,并且移动到处理器。
从处理器出来,实体将移动到输送机,然后进入吸收器。
你可以通过主视窗的速度滑动条改变模型运行的速度。
步骤12:模型导航
当前,我们是从正投影视图视窗中观察模型的。
选择工具条上
的按钮打开透视视图(图1-17)。
图1-17
步骤13:查看简单统计数据
图1-18
为了观察每个实体的简单统计数据,选择视窗上的设置菜单,取消对“隐藏名称”选项的选择。
正投影视图的默认状态是显示名称的,而透视视图在默认状态下是隐藏名称的。
步骤14:保存模型
可使用“文件 >模型另存为...”来保存模型。
4.实验心得
通过对FLEXSIM软件的学习,我有以下几点体会:
第一,了解了FLEXSIM软件使用的一般方法,知道了它在制造系统中的具体应用。
制造系统按其物料流、信息流及其相互作用可分为三个部分:生产过程系统、生产管理系统和生产价值系统。
Flexsim在生产系统中的应用,主要有以下几个方面:生产过程系统中的工艺过程规划,设备布置,工件加工轨迹的可视化仿真寻优等;生产管理系统中的生产计划,库存管理,生产控制和产品市场的预测和分析等;生产价值系统中的生产系统的经济性、风险性进行分析,改进生产,降低成本或辅助企业投资决策等。
可视化仿真是先进制造模式(如:精益生产、敏捷制造、并行工程等)研究的关键技术之一,对各种先进制造模式的可视化仿真成为目前应用研究领域的“热门”,如:企业流程再造(Business Process
Re-engineering)可视化仿真优化,虚拟组织(Virtual Organization)的建立与管理可视化仿真决策,敏捷供应链(Agile Supply Chain)管理的可视化仿真决策等。
第二,深切体会到了FLEXSIM软件在具体使用时优点.。
首先,FLEXSIM软件特别容易使用。
建立Flexsim模型无需花费太多时间。
只需将已经做好的模块对象从对象库中拖放到三维的建模空间。
通过很方便的标准Windows界面,配合便捷的弹出菜单,选项框,下拉菜单等等,设置或者修改对象的特征,比如输入/输出,处理时间,速度,尺寸,外观,过程控制逻辑,空闲时间及其他;下一步,通过用鼠标从一个部件到下一个部件进行连线在部件间建立连接。
接着通过同样方便的界面设置它们之间交互的相关参数,像是处理时间,处理优先权,延迟及其他;现在模型已经建立好了,你可以运行仿真了,通过Flexsim极具艺术效果的三维动画可以观察过程中的每个动作。
对系统的改变——包括添加和去除部件——可以在仿真运行的过程中进行。
Flexsim表现出色,因为它不仅可以按照标准的压缩时间(这个压缩比是完全可控的变量)方式来运行仿真,也可以采用实时方式,这使得它的模型可以监测甚至控制已经投入运行的真实世界的系统。
每次仿真运行过程中或是结束后可以观测或者打印出性能统计的报告,包括各种色彩鲜明的统计表格,状态图和曲线图。
其次,FLEXSIM软件可以把一个完整的自动化生产线搬到计算机上进行:所有的生产设备、各种生产加工对象、不同生产条件、不同生产方法、还有任何现实中可能发生的生产情况,都可以在计算机上进行模拟仿真。
通过自动化生产过程计算机仿真,可以把一年或一天的生产情况在短短几分钟或几秒钟内全部仿真分析出来,而且是可以用3D动画、表格、文字、AVI视频等各种方式来表达。
不但可以使得实验的数据更充分更完整、更节省时间,而且还可以节省庞大的校外工厂的实习经费、科研经费,这样便可以使得教师和同学们有更多的时间、精力、财力去做更好的创新学习和工作。