人教版初中数学平行线的判定
《5.2.2 平行线的判定》作业设计方案-初中数学人教版12七年级下册

《平行线的判定》作业设计方案(第一课时)一、作业目标本作业设计旨在通过《平行线的判定》这一课题的学习,使学生能够:1. 掌握平行线的基本概念和性质;2. 学会运用平行线的判定定理进行实际问题的解决;3. 培养学生的空间想象能力和逻辑推理能力。
二、作业内容本课时的作业内容主要包括以下几个方面:1. 基础知识巩固:要求学生复习平行线的基本概念,如平行线的定义、性质及表示方法等,并完成相关的基础练习题。
2. 判定定理学习:学习平行线的判定定理,包括同位角、内错角、同旁内角等与平行线相关的角度关系,理解并记忆这些定理。
3. 实例应用:通过几个具体的实例,让学生运用平行线的判定定理,判断两条直线是否平行,并说明理由。
4. 拓展提升:设计一些稍具难度的题目,引导学生运用所学知识进行思考和解答,提升其解决问题的能力。
三、作业要求为保证作业的有效性和学生的参与度,特提出以下要求:1. 按时完成:学生需在规定时间内完成作业,培养时间管理能力和自律性。
2. 独立思考:作业过程中,要求学生独立思考,自主完成,培养其自主学习的能力。
3. 规范答题:要求学生书写规范,答案清晰,步骤完整,以培养其良好的学习习惯。
4. 错题订正:对于错题,学生需进行订正,并分析错误原因,防止类似错误再次发生。
5. 互动交流:鼓励学生之间进行交流和讨论,互相帮助,共同进步。
四、作业评价作业评价将从以下几个方面进行:1. 正确性:答案是否正确,是否符合平行线的判定定理。
2. 规范性:书写是否规范,步骤是否完整。
3. 创新性:是否有独特的解题思路和方法,表现出创新精神和能力。
4. 态度与努力:学生的作业态度是否认真,是否努力完成了作业。
五、作业反馈作业反馈是本作业设计的重要环节,将通过以下方式进行:1. 教师批改:教师将对每一份作业进行认真批改,给出评分和评语。
2. 课堂讲解:挑选典型题目进行课堂讲解,分析学生的错误原因和解题思路。
3. 个别辅导:对于存在问题较多的学生,教师将进行个别辅导,帮助其解决问题。
七上数学平行线的判定

有关数学“平行线”的判定
有关数学“平行线”的判定方法如下:
1.同位角相等:如果两直线的同位角相等,那么这两直线平行。
2.内错角相等:如果两直线的内错角相等,那么这两直线平行。
3.同旁内角互补:如果两直线的同旁内角互补,即两个同旁内角的和为180度,那么这
两直线平行。
4.平行公理:在同一平面内,经过直线外一点,有且只有一条直线与已知直线平行。
5.垂直于同一直线的两条直线平行:如果两条直线都垂直于同一直线,那么这两条直线
平行。
6.平行于同一直线的两条直线平行:如果两条直线都平行于同一直线,那么这两条直线
也平行。
7.如果两条直线被第三条直线所截,那么同位角相等或内错角相等或同旁内角互补,则
这两条直线平行。
平行线的判定(试讲案例)

平行线的判定(试讲案例)一、教学内容本节课的教学内容选自人教版初中数学八年级上册第四章“平行线的判定”部分。
具体包括:1. 了解平行线的概念,掌握平行线的性质;2. 学习判定两条直线平行的方法;3. 能够运用平行线的性质和判定方法解决实际问题。
二、教学目标1. 学生能够理解平行线的概念,掌握平行线的性质;2. 学生能够掌握判定两条直线平行的方法,并能够运用到实际问题中;3. 学生能够通过小组合作、探究学习,提高自己的合作能力和解决问题的能力。
三、教学难点与重点1. 教学难点:理解并掌握平行线的判定方法,能够灵活运用到实际问题中;2. 教学重点:平行线的性质和判定方法的运用。
四、教具与学具准备1. 教具:黑板、粉笔、直尺、三角板;2. 学具:每人一本教材、一份课堂练习册、一支笔、一把尺子。
五、教学过程1. 实践情景引入:让学生观察教室里的直线和线段,引导学生发现并描述出平行线的现象;2. 概念讲解:通过示例和讲解,让学生理解平行线的概念,掌握平行线的性质;4. 例题讲解:讲解几个判定平行线的例题,让学生通过随堂练习巩固所学知识;5. 课堂练习:让学生独立完成课堂练习册上的练习题,教师进行个别辅导;6. 板书设计:将判定平行线的方法和性质进行板书,方便学生理解和记忆;7. 作业设计:布置一道运用平行线性质和判定方法的课后作业题,要求学生独立完成并提交;8. 课后反思及拓展延伸:让学生在课后反思本节课的学习内容,对所学知识进行拓展延伸。
六、板书设计板书设计如下:平行线的性质:1. 同一平面内,不相交的两条直线叫做平行线;2. 平行线之间的距离相等;3. 平行线上的对应角相等。
平行线的判定方法:1. 同一平面内,两条直线都与第三条直线平行,则这两条直线平行;2. 同一平面内,一条直线与另外两条直线都相交,且交角相等,则这两条直线平行;3. 同一平面内,一条直线与另外两条直线都垂直,则这两条直线平行。
七、作业设计作业题目:1. 判断题:(1) 如果两条直线在同一平面内不相交,那么它们一定是平行线。
初中数学教学课例《平行线的判定方法(一)》课程思政核心素养教学设计及总结反思

(设计意图:通过学生自己回忆可避免传统教学一
问一答的方式,同时也可以活跃学生的思维,为新课的
课例研究综 学习做准备。)
述
3、如图,在加工木料时,木工师傅总是利用角尺
在木块上画平行线,你知道其中的道理吗?
(设计意图:通过创设情景,激发学生的学习兴趣,
同时也让学生体会到数学与现实生活有着密切的联 系。)
(一)学习目标的确定
知识与技能
掌握判定两条直线平行的方法 1,能运用判定方法
1 对两直线的位置关系进行判定。
过程与方法
在学习直线位置关系的判定过程中,感受逻辑推
教学目标 理,逐步学习证明的方法。
情感、态度与价值观
在学习过程中,通过师生的互动交流,促使学生在
学习活动中培养良好的情感和合作交流,主动参与的意
择与设计
教学流程:创设情境、复习引入—画一画,说一说
——想一想,议一议——总结归纳得出结论——做一
做,练一练——谈一谈,叙一叙——布置作业
一)创设情境、复习引入
1、怎样的两条直线叫做平行线?
教学过程
2、根据平行线的概念判断:
(1)、如图(1)直线 a、b 是否平行?
(2)、如图(2)直线 a、b 是否平行?
(二)画一画,说一说 问题 1、我们以前学过平行线的画法,怎样用一个 三角板和一把直尺()画平行线呢?动手画一画.大家 观察画平行线的过程,思考无论三角尺怎样摆放,在这 一过程中,三角尺都起着什么作用?
初中数学教学课例《平行线的判定方法(一)》教学设计及 总结反思
学科
初中数学
教学课例名
《平行线的判定方法(一)》
称
平行线的判定方法(一)系七年级下册第五章第二
《5.2.2平行线的判定》作业设计方案-初中数学人教版12七年级下册

《平行线的判定》作业设计方案(第一课时)一、作业目标本作业设计旨在通过《平行线的判定》的学习,使学生能够:1. 理解平行线的概念及其基本性质;2. 掌握平行线的基本判定定理及推导过程;3. 能够运用所学知识解决实际问题,提升空间想象力和逻辑思维能力。
二、作业内容《平行线的判定》的作业内容主要包括以下几个部分:1. 理论学习:学生需仔细阅读教材,理解平行线的定义、性质及判定定理。
如“同位角相等,两直线平行”、“内错角相等,两直线平行”等。
2. 练习题:针对所学的平行线判定定理,布置适量的练习题。
题目类型包括选择题、填空题和解答题,涵盖不同难度的题目,从基础知识的巩固到拓展延伸的题目均有涉及。
3. 实例分析:选择几个典型的平行线问题,要求学生进行详细的分析和解答,强化对平行线判定定理的理解和运用。
4. 思维导图:鼓励学生在完成作业的过程中,使用思维导图整理所学知识,将各个知识点联系起来,形成完整的知识体系。
三、作业要求为保证作业的完成质量和效果,提出以下要求:1. 认真阅读教材,理解并掌握平行线的相关概念和性质;2. 独立完成练习题,不抄袭他人答案;3. 对每个问题都要有清晰的思路和解答过程;4. 实例分析要详细,思路清晰,步骤完整;5. 完成思维导图,将所学知识进行整理和归纳;6. 按时提交作业,不拖延。
四、作业评价作业评价将从以下几个方面进行:1. 知识的理解和掌握程度;2. 解题思路的清晰度和正确性;3. 解答过程的完整性和规范性;4. 实例分析的深入程度和准确性;5. 作业的提交时间和质量。
五、作业反馈作业反馈是提高学生学习效果的重要环节,具体包括:1. 对学生的作业进行批改,指出错误和不足之处;2. 针对共性问题,进行课堂讲解和答疑;3. 对优秀作业进行展示和表扬,激励学生;4. 根据作业反馈,调整教学计划和策略,提高教学质量。
通过以上作业设计,旨在让学生在掌握平行线基本概念和性质的基础上,通过理论学习、练习题、实例分析和思维导图等方式,全面理解和掌握平行线的判定定理,并能够灵活运用所学知识解决实际问题。
人教版初中数学七年级下 相交线和平行线知识点总结

人教版初中数学七年级下相交线和平行线知识点总结本章介绍了平面内两条直线相交与平行的关系,重点探讨了两条直线相交时形成角的特征、两条直线互相垂直的特性、两条直线平行的条件和特征,以及有关图形平移变换的性质。
本文将对其中的重点知识点进行总结。
5.1 相交线1.邻补角与对顶角当两条直线相交时,所形成的四个角具有不同的关系。
其中,对顶角是具有特殊位置关系的两个角,它们的大小相等;邻补角则是互为反向延长线的两个角,它们的和为180度。
2.垂线垂线是指当两条直线相交时,其中一个角为直角的情况。
垂线具有两个性质:一是过一点只有一条直线与已知直线垂直;二是连接直线外一点与直线上各点的垂线段最短。
3.垂线的画法画垂线的方法有两种:一是过直线上一点画已知直线的垂线;二是过直线外一点画已知直线的垂线。
画法可采用“一靠二移三画”的方法。
4.点到直线的距离点到直线的距离是指直线外一点到这条直线的垂线段的长度。
记忆时应结合图形进行理解。
本章内容的重点是垂线和其性质、平行线的判定方法和性质、平移和其性质,以及这些知识点的组织运用。
在研究这些知识点时,需要注意记忆其定义和性质,掌握其画法和应用方法。
垂线是指从一个点垂直于一条直线或平面的线段,而垂线段则是垂线的长度。
它们都具有垂直的性质,可以用来计算点到直线的距离或两点间的距离。
点到直线的距离是特殊的两点(即已知点与垂足)间距离,而两点间的距离是点与点之间的长度。
线段和距离都是长度的概念,但线段是一种图形,不能等同于距离。
平行线是指在同一平面内不相交的两条直线,它们的位置关系只有两种:相交和平行。
判断两条直线的位置关系可以根据它们的公共点个数来确定,有且只有一个公共点时两直线相交,无公共点时两直线平行,两个或两个以上公共点时两直线重合。
平行公理指出,经过直线外一点,有且只有一条直线与这条直线平行。
同时,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
三线八角是指两条直线被第三条直线所截形成的八个角,包括同位角、内错角和同旁内角。
初一数学:平行线(含解析)

平行线知识互联网板块一 平行线的定义、性质及判定知识导航【例1】 ⑴ 如下左图,AB CD ∥,AD AC ⊥,32ADC ∠=°,则CAB ∠的度数是________. ⑵ 如下中图,直线l 与直线a ,b 相交.若a b ∥,170∠=°,则2∠的度数是________. ⑶ 如下右图,已知a b ∥,170∠=°,240∠=°,则3∠=________. 图DCBA21ba lb a321CBA 【解析】⑴ 122°;⑵ 110°;⑶ 70°【例2】 ⑴ 根据图在()内填注理由:① ∵B CEF ∠ =∠(已知)∴AB CD ∥( )② ∵B BED ∠= ∠(已知)∴AB CD ∥( ) ③ ∵180B CEB ∠+∠=°(已知) ∴AB CD ∥( )⑵ 下列说法中,不正确的是( )A .如果两条直线都和第三条直线平行,那么这两条直线也互相平行B .过直线外一点,有且只有一条直线和已知直线相交C .同一平面内的两条不相交直线平行D .过直线外一点,有且只有一条直线与已知直线平行【解析】⑴ ① 同位角相等,两直线平行;② 内错角相等,两直线平行;③ 同旁内角互补,两直线平行.⑵ 本题主要考察两直线平行的识别.根据平行公理及其推论可知A 、D 正确;同一平面内的两条直线的位置关系只有相交和平行两种,C 正确;过直线外一点,有且只有一条直经典例题FC EB D A线与这条直线平行,而有无数条直线与这条直线相交,B 不正确.【例3】 请你分析下面的题目,从中总结规律,填写在空格上,并选择一道题目具体书写证明.⑴ 如图⑴,已知:AB CD ∥,直线EF 分别交AB ,CD 于M ,N ,MG ,NH 分别平分AME ∠,CNE ∠.求证:MG NH ∥.从本题我能得到的结论是:____________________________________.⑵ 如图⑵,已知:AB CD ∥,直线EF 分别交AB ,CD 于M ,N ,MG ,NH 分别平分BMF ∠,CNE ∠.求证:MG NH ∥.从本题我能得到的结论是:____________________________________.⑶ 如图⑶,已知:AB CD ∥,直线EF 分别交AB ,CD 于M ,N ,MG ,NH 分别平分AMF ∠,CNE ∠,相交于点O .求证:MG NH ⊥.从本题我能得到的结论是:____________________________________.(1)A B C DE FG H M N(2)NMFEDC B A GH (3)NM FEDC B A G H O 【解析】⑴ 两直线平行,同位角的角平分线平行.⑵ 证明:∵AB ∥CD ,∴BMFCNE ∠ 又∵MG ,NH 分别平分BMF从本题我能得到的结论是:两直线平行,内错角的角平分线平行.⑶ 证明:∵AB ∥CD ,∴180AMF CNE ∠+∠=又∵MG ,NH 分别平分AMF ∠,CNE ∠ ∴∴18090MON GMF HNE ∠= ,∴MG ⊥NH从本题我能得到的结论是:两直线平行,同旁内角的角平分线垂直.【例4】 证明:三角形三个内角的和等于180°.【解析】平角为180°,若能用平行线的性质,将三角形三个内角集中到同一个顶点,并得到一个平角,问题即可解决.证法1 : 如图所示,过ABC △的顶点A 作直线l BC ∥,则1BBAC所以180B BAC C ∠+∠+∠=°量代换).即三角形三个内角的和等于180°. 证法2 : 如图所示,延长BC ,过C 作CE AB ∥,则1A ∠=∠ (两直线平行,内错角相等),2B ∠= ∠ (两直线平行,同位角12180BCA ∠+∠+∠=°, 所以180BCA A B ∠+∠+∠=°,即三角形三个内角的和等于180°.【教师备案】利用平行线证明三角形内角和为180°的方法有很l21C BA 21D C EB A多,老师可以带着学生多练几个【例5】 如图,ABC △中CD AB ⊥于D ,DE BC ∥,交AC 于点E .过BC 上任意一点F ,作FG AB ⊥于G ,求证:12∠=∠.GFE 21D CBA【解析】∵FG AB CD AB ⊥⊥,, ∴GF CD ∥ ∴∠∵DE BC ∥, ∴2BCD ∠=∠, ∴12∠=∠【例6】 我们知道,光线从空气射入水中会发生折射现象.光线从水射入空气中,同样也会发生折射现象.如图,为光线从空气射入水中,再从水射入空气中的示意图.由于折射率相同,因此有14∠=∠,23∠=∠.请你用所学的知识来判断光线c 与d 是否平行?并说明理由.ba465dcba321【解析】c d ∥如图:∵25180∠+∠=°,36180∠+∠=°,23∠= ∠ ∴56∠= ∠(等角的补角相等)又∵14∠=∠∴1564∠+∠=∠+∠∴c d ∥(内错角相等,两直线平行)【例7】 (成都市初中数学竞赛)如图,已知AE 平分BAC ∠,BE AE ⊥,垂足为E ,ED AC ∥,36BAE ∠ = ° 求BED ∠ 的度数.EDCBA【解析】126°【例8】 ⑴ 如图所示AB CD ∥.求证:360B E D ∠+∠+∠=°EDCBA⑵ 已知,如图,AEC A C ∠=∠+∠,证明AB CD ∥ED CBA【解析】⑴ 如图,过E 点作EF AB ∥,则180B BEF ∠+∠=°因为AB CD ∥,所以EF CD ∥,180FED D ∠+∠=°所以360B BEF FED D ∠+∠+∠+∠=°又BEF FED BED ∠+∠=∠,∴360B BED D ∠+∠+∠=°即360B E D ∠+∠+∠=°F EDCBA ⑵ 解法一:过点E 作AEF A ∠=∠,则AB EF ∥, 又AEC A C AEF CEF ∠=∠+∠=∠+∠,∴C CEF ∠=∠,∴EF CD ∥,∴AB CD ∥. F ED CBA解法二:作180AEF A ∠+∠=°, 则AB EF ∥,∵360AEC AEF CEF ∠+∠+∠=°, ∴360A C AEF CEF ∠+∠+∠+∠=°, 经典例题板块二 平行线的构造∴180C CEF ∠+∠=°, ∴CD EF ∥, ∴AB CD ∥FE DCB A 【教师备案】这两个模型非常重要,建议各位老师分别从已知角度关系证明平行和已知平行证明角度关系两个方面讲解这两个小题,重点强调书写过程 【例9】 ⑴ 如图⑴,已知14MA NA ∥,探索1A ∠、2A ∠、3A ∠、4A ∠,1B ∠、2B ∠之间的关系.⑵ 如图⑵,已知1n MA NA ∥,探索1A ∠、2A ∠、…、n A ∠之间的关系.⑶ 如图⑶,已知1n MA NA ∥,探索1A ∠、2A ∠、…、n A ∠,1B ∠、2B ∠、…、1n B −∠之间的关系.MNA 4B 2A 2A 3B 1A 1MNA nA 4A 3A 2A 1B n -1B 2B 1A nA n -1A 2A 1NM图⑴ 图⑵ 图⑶【解析】⑴ 123412180A A A A B B ∠+∠+∠+∠=∠+∠+°;⑵ 123(1)180n A A A A n ∠+∠+∠++∠=−×° . ⑶ 12121n n A A A B B B −∠+∠++∠=∠+∠++∠ ;【例10】如图,已知,CD EF ∥,C F ABC +=∠∠∠,求证AB GF ∥G FDECBAQPABCEDFG【解析】如图,过点B 作PQ CD ∥交GF 的延长线于点Q 则PQ EF ∥,【拓1】 如图所示,已知CB OA ∥,100C OAB∠ =∠ ,E ,F 在CB 上,且满足FOB AOB ∠= ∠,OE 平分COF ∠.思维拓展⑴ 求EOB ∠的度数;⑵ 若平行移动AB ,那么OBC ∠:OFC ∠的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值;⑶ 在平行移动AB 的过程中,是否存在某种情况,使OECOBA ∠=∠?若存在,求出其度数;若不存在,请说明理由.ABC E FO 【解析】⑴40°;⑵1:2;⑶存在,60OECOBA ∠=【拓2】 在同一平面内有1a ,2a ,3a ,…,97a 共97条直线,如果12a a ∥,23a a ⊥,34a a ∥,45a a ⊥,56a a ∥,67a a ⊥,…,那么1a 与97a 的位置关系是________.【解析】寻找规律,12a a ∥,13a a ⊥,14a a ⊥;15a a ∥,16a a ∥,17a a ⊥,18a a ⊥…,4个一循环,974241÷= ,所以971a a ∥【拓3】 在同一平面内有7条直线,证明:必有两条直线的夹角小于26°.【解析】由平行线的性质可知,平移某条直线不影响该直线与其它直线的夹角,故可将7条直线平移使其交于同一点(如下图),A 7A 6A 5A 4A 3A 2A 1O点O 把7条直线分成14条射线,记为1OA ,2OA ,…,14OA ,相邻两射线组成14个角,记为1α,2α,…,14α,其和为一个周角:1214360ααα+++=° , 若结论不成立,则26i α°≥,()1214i = ,,,, 相加,得360这一矛盾说明,在1α,2α,…,14α中,必有一个角小于26°,即必有两条直线的夹角小于26°.【拓4】 如图,已知ABCDFED BC A FEDBC A【解析】如右图所示,分别过点E ,F 做AB 和CD 的平行线,易得:AEC EAB ECD∠=∠+∠x 90°50°30°30°ABCD E FG HMNPR Qx 90°50°30°30°AB CDE FG HMNOP【解析】过点G ,H 作AB ,CD 的平行线,那么AB OG HQ CD ∥∥∥∵AB OG ∥,HQ CD ∥∵OG HQ ∥,∴60GHQ OGH HGE EGO ∠=∠=∠−∠=° ∵在MHQ ∆中,180MHQ HMQ MQH ∠+∠+∠=°又∵180MQR MQH ∠+∠=°,∴MHQ HMQ MQR ∠+∠=∠ ,∴40GHM GHQ MHQ ∠=∠−∠=°习题1. 如图:已知12∠=∠,A C ∠= ∠,求证:①ABDC ∥证明:∵12∠=∠( )∴______∥______( ). ∴C CBE ∠= ∠( )又∵C A ∠=∠( )∴A ∠=________( ) ∴______∥______( ).EDCBA21【解析】已知:AB ,CD ;内错角相等,两直线平行;两直线平行,内错角相等;已知;CBE ∠; 等量代换;AD ,BC ;同位角相等,两直线平行. 习题2. 如图所示,复习巩固⑴ 已知:AB CD ∥,12∠=∠,求证:BE CF ∥; ⑵ 已知:AB CD ∥,BE CF ∥,求证:12∠=∠.F 21E B DA C【解析】⑴ ∵AB CD ∥(已知),∴ABC BCD ∠= ∠(两直线平行,内错角相等) ∵12∠=∠(已知),∴EBC BCF ∠= ∠(等量减等量差相等) ∴BE CF ∥(内错角相等,两直线平行)⑵ ∵AB CD ∥(已知),∴ABC BCD ∠= ∠(两直线平行,内错角相等) 又BE CF ∥(已知),∴EBCBCF ∠= ∠(两直线平行,内错角相等) ∴12∠=∠(等量减等量差相等)习题3. 如图,A B C ,,和D E F ,,分别在同一直线上,AF 分别交CE ,BD 于点G ,H .已知H BCG FE D A习题4. 如图,在折线ABCDEFG 中,已知∠1=∠2=∠3=∠4=∠5,延长AB GF 、交于点M .试探索AMG ∠与3∠的关系,并说明理由.M5G4321DCFEBA【解析】3AMG ∠= ∠.理由:∵12∠=∠,∴AB CD ∥(内错角相等,两直线平行). ∵34∠= ∠,∴CD EF ∥(内错角相等,两直线平行). ∴AB EF又53习题5. (十二届希望杯)如图所示,AB ED ∥,A E α=∠+∠,B C D β=∠+∠+∠,证明:2βα=.DCEBA21D CFEBA21DCFEBA【解析】证法l :因为AB ED ∥,所以180A E α=∠+∠=°.(两直线平行,同旁内角互补)过C 作CF AB ∥.由AB ED ∥,得CF ED ∥ (平行于同一条直线的两条直线平行) 因为CF AB ∥,有1B ∠= ∠ (两直线平行,内错角相等) 又CF ED ∥,有2D ∠= ∠,(两直线平行,内错角相等)所以12360B C D BCD β=∠+∠+∠=∠+∠+∠=° (周角定义)所以2βα=(等量代换)证法2:由AB ED ∥,得180A E α=∠+∠=°.(两直线平行,同旁内角互补)过C 作CF AB ∥(如图). 由AB ED ∥,得CF ED ∥.(平行于同一条直线的两条直线平行)因为CF AB ∥,所以1180B ∠+∠=(两直线平行,同旁内角互补), 又CF ED ∥,所以2180D ∠+∠=(两直线平行,同旁内角互补) 所以(12)(1)(2)360BCD B D B D β=∠+∠+∠=∠+∠+∠+∠=∠+∠+∠+∠=°所以2βα=(等量代换). 习题6. 如图,已知:AB CD ∥,ABFDCE ∠=∠,求证:BFE FEC ∠=∠ FEDCBA4321ABC DEF 习题7. 如图,AB DE ∥,70ABC ∠=,147CDE ∠= °,求C ∠的度数. 147°70°ED CB AF147°70°E DCBA∴CF DE∥∴18018014733DCF CDE ∴703337BCD BCF DCF ∠=∠−∠=°−°=°.练习1. (2012年第23届“希望杯”初一决赛试题)下面四个命题:① 若两个角是同旁内角,则这两个角互补② 若两个角互补,则这两个角是同旁内角③ 若两个角不是同旁内角,则这两个角不互补④ 若两个角不互补,则这两个角不是同旁内角其中错误的命题个数是( )A .1B .2C .3D .4【解析】D练习2. 如图,已知AB CD ∥,CE 平分ACD ∠,且交AB 于E ,118A ∠=°,则AEC ∠=________. E BC DA 【解析】∵AB CD练习3. 如图,∵3E ∠=∠(已知),12∠=∠(已知) 又∵∠________=∠________( )∴∠________=∠________( )∴AB CE ∥( )【解析】2;3;对顶角相等;1;E ;等量代换;内错角相等,两直线平行. 练习4. 如图,AD 是ABC △的角平分线,2BAC B ∠=∠,DE BA ∥.试探究B ∠与ADE ∠有何关系?并对你的结论加以说明.补充练习12图F 3E D AAB C D E【解析】 B ADE ∠= ∠,证明略.练习5. 已知,如图所示,AB DE ∥,116D ∠=°,93DCB ∠,求B ∠的度数. E D C B A FED C BA 【解析】过点C 作直线CF AB ∥,因为AB DE ∥,所以AB DE CF ∥∥,练习6. 如图所示,两直线AB CD 、平行,则123456∠+∠+∠+∠+∠+∠=()A .630° B .720° C .800° D .900°65HG4321DC FE BA 【解析】分别过E F G H ,,,点做AB 的平行线,再求各个角度的和.选D。
人教版初中数学教案(最新6篇)

人教版初中数学教案(最新6篇)平行线的判定教案篇一一、教学目标1、了解推理、证明的格式,理解判定定理的证法。
2、掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证。
3、通过第二个判定定理的推导,培养学生分析问题、进行推理的能力。
4、使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育。
二、学法引导1、教师教法:启发式引导发现法。
2、学生学法:积极参与、主动发现、发展思维。
三、重点•难点及解决办法(一)重点判定定理的推导和例题的解答。
(二)难点使用符号语言进行推理。
(三)解决办法1、通过教师正确引导,学生积极思维,发现定理,解决重点。
2、通过教师指导,学生自行完成推理过程,解决难点及疑点。
四、课时安排1课时《·》五、教具学具准备三角板、投影仪、自制胶片。
六、师生互动活动设计1、通过设计练习,复习基础,创造情境,引入新课。
2、通过教师指导,学生探索新知,练习巩固,完成新授。
3、通过学生自己总结完成小结。
七、教学步骤(一)明确目标掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力。
(二)整体感知以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知。
(三)教学过程创设情境,复习引入师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影)。
学生活动:学生口答第1、2题。
师:你能说出有什么条件,就可以判定两条直线平行呢?学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行。
教师将第3题图形画在黑板上。
学生活动:学生口答理由,同角的补角相等。
师:要求学生写出符号推理过程,并板书。
【教法说明】本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2 平行线的判定(1)
【教学目标】
1.知识与技能:(1)理解平行线的判定方法一:同位角相等,两直线平行。
(2)会用“同位角相等,两直线平行”进行简单的几何推理,培养推理能力。
2.过程与方法:经历平行线判定方法一的发现过程,体验数学语言进行推理的简洁性。
3.情感态度与价值观:让学生体会用数学实验得出几何规律的重要性与合理性。
【重点难点】
重点:利用“同位角相等,两直线平行”判定两条直线平行。
难点:用数学语言表达几何的推理过程。
【教学过程】
教学环节活动过程设计意图
创设情景引入新课1.复习:你会用直尺和三角板推画平行线吗?请画一画。
2.学生画好后,教师出示图1,并提问:在推画平行线的过程中,
有哪些量保持不变?
l 1 l1
l 2 l2
图 1
通过对平行
线画法形成过
程的复习,为学
习新课打好基
础。
合作探究获取结论1.讨论:(1)上面的画法可以看作是哪一种图形变换?
(2)在画图过程中,什么角保持不变?
(3)把图中的直线l1、l2看成被AB所截,则l1和l2的
位置有什么关系?
(4)你能用数学语言叙述上面的结论吗?
2.在学生讨论归纳的基础上,教师归纳小结出“两条直线被第三条
直线所截,如果同位角相等,那么这两条直线平行。
”简单地说就
是“同位角相等,两直线平行”。
复习旧知
识,为学习新
知识作好准
备。
培养学生合
作交流的意识,
并在合作交流
中形成对知识
的认识。
教学环节活动过程设计意图
合作探究获取结论3.练习:看图2,完成填空。
(1)如图1(1)所示,若a⊥c,b⊥c,则∠1=∠2=900,所以
∥。
(2)如图1(2)所示,若∠1=∠,则AB∥CD。
及时巩固所
学知识,加强应
用。
讲练结合放飞思维1.讲解课本例1(先引导学生进行分析,然后教师解题)。
分析:要判定l1与l2是否平行,只要考虑∠1是否与∠3相等。
由条件知∠1=450,为此只要确定∠3是否为450即可。
引申:当∠3与哪个角相等时,你也可以判定l1∥l2?
2.补充讲解例2:如图3所示,点D是CB延长线上的一点,已知
BE平分∠ABD,∠C=620,∠ABD=1240,则BE∥AC吗?请说明理
由。
3.练习:
(1)图4所示,在四边形ABCD中,已知∠B=600,∠1=1200,AB
与CD平行吗?AD与BC平行吗?为什么?
(2)完成课本中的“想一想”。
进一步深化
对“同位角相
等,两直线平
行”的理解,培
养学生的逻辑
思维能力。
加强应用,巩
固新知。
小结作业升华提高1.小结:(1)在本节课的活动中,你有哪些收获?
(2)如何判定两条直线平行?
2.作业:(1)课本中的习题2。
(2)《作业本》(2)。
加深对知识
的理解,促进学
生对学习进行
反思。
【教学反思】。