心理统计-录音笔记
心理统计学学习笔记数据整理

即#~N(μ, σ2 /n)
Z=(#-μ)σ/n1/2
Eg:一次测验,μ=100 σ=5
从该总体中抽样一个容量为25的简单随机样本,求这一样本均值间于99到101的概率?
解:已知X~N(100,52)
n=25.
则#~N(100,12)
Z=(#-100)/1~N(0,1)
4.定各组限
5.求组值 X=(上限+下限)/2上限——指最高值加或取10的倍数等)
6.归类划记
7.登记次数
例题:99 96 92 90 90(I) R=99-57+1=43
87 86 84 83 83
8282 80 79 78 (II)K=1.87(50-1)。。。≈9
7878 78 77 77
7776 76 76 76
简单平均数:(70+80)/2
三.中(位)数。(Md)
1.原始数据计算法
分:奇、偶。
2.频数分布表计算法(不要求)
3.优点,缺点,适用情况(p42)
四.众数(Mo)
1.理论众数
粗略众数
2.计算方法:Mo=3Md-2#
Mo=Lmo+fa/(fa+fb)*I
计算不要求
3.优缺点
平均数,中位数,众数三者关系。
W(A)=m/n (频率/相对频数)
后验概率:
P(A)=lim m/n
先验概率:不用做试验的
二.概率的性质和运算
1.性质:o≤P≤1
p=1必然可能事件
p=0不可能事件
2.加法。
P(a+b)=P(a)+P(b)
“或”:两互不相克事件和。
推广:“有限个” P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An)
教育与心理统计学 第五章 假设检验考研笔记-精品

假设检验中的小概率原理[一级][16J]
假设检验的基本思想是概率性质的反证法,即其基本思想是基于〃小概率事件在一次实验中不可能发生”这一原理。首先假定虚无假设为
真,在虚无假设为真的前提下,如果小概率事件在一次试验中出现,则表明〃虚无假设为真"的假定是不止确的,因为假定小概率事件在
一次试验中是不可能出现的,所以也就不能接受虚无假设,应当拒绝零假设。若没有导致小概率事件出现,那就认为"虚无假设为真”的
假定是正确的,也就是说要接受虚无假设。假设推断的依据:小概率事件是否出现,这是对假设作出决断的依据。
检验的假设
Ho为真
真实情况
检验的事件发生的概率在99%或95%的范围内
检验的事件发生的概率在5%或1%以内
错误的概率,其前提是“Ho为假
②它们都是在做假设检验的统计决策时可能犯的错误,决策者同时面临犯两种错误的风险,因此都极力想避免或者减少它们,但由于在忠
体间真实差异不变情况下,它们之间是一种此消彼长的关系,即a大时,0小;c(和B不能同时减少。
③在其他条件不变的情况下,不可能同时减小或增大两种错误的发生可能,常用的办法是固定a的情况下尽可能减小B,比如通过增大样本
若进行假设检验时总体的分布形态已知,需要对总体的未知参数进行假设检验,称其为参数假设检验。
(三)非参数检验[一级]
若对总体分布形式所知甚少,需要对未知分布函数的形式及其他特征进行假设检验,通常称为非参数假设检验。
(四)小概率事件和显著性水平
(1)假设推断的依据就是小概率原理
小概率事件:通常情况下,将概率不超过0.05(即5%)的事件当作“小概率事件",有时也定为概率不超过0.01(即1%)或0.001(0.1%\
甘怡群《心理与行为科学统计》笔记和习题详解(多元方差分析(MANOVA))【圣才出品】

第20章多元方差分析(MANOVA)20.1 复习笔记一、多元方差分析简介(一)多元方差分析的概念多元方差分析是用于考查类目型变量在多个等距因变量上的主效应和交互作用的统计方法。
(二)MANOVA与ANOVA的比较1.相似之处(1)均可以有一个或几个类目型自变量作为预测源。
(2)计算性质和逻辑相同。
MANOVA可以看成是ANOVA在多个因变量情境下的延伸。
ANOVA是在一个因变量上进行检验,检测组间的差异是否是随机出现的;MANOVA 是在因变量的组合上进行检验,检测组间的差异是否是随机出现的。
2.不同之处MANOVA与ANOVA根本的不同在于因变量的个数。
MANOVA中因变量的个数多于一个,而ANOVA中只有一个因变量。
而且,MANOVA所测量的因变量彼此之间是有相关的。
(三)不能用多个ANOVA的分析来代替MANOVA的分析1.MANOVA的优点(1)首先,通过测量多个因变量而不是一个因变量,MANOVA减少了忽略某个会被自变量和自变量的交互作用影响的因变量的机率;(2)其次,对多个相关的因变量进行多个ANOVA检验,会造成I类错误的膨胀,使用MANOVA能够同时检验多个因变量,而又避免I类错误的膨胀;(3)第三,在特定的情况下,MANOVA能够检验出单独ANOVA分析无法检验出的差异。
2.MANOVA的局限(1)首先,在MANOVA中,有几个非常重要的前提假设需要考虑。
(2)其次,MANOVA在解释自变量对于某个因变量的效果时存在着一些模糊不清。
(3)MANOVA的统计效力高于ANOVA的情境并不是很多。
(四)多元协方差分析MANCOVA与MANOVA类似,因变量个数大于或者等于2,以等距自变量作为“协变量”。
多元协方差分析是协方差分析(ANCOVA)的扩展,应用多元协方差分析。
要回答的问题是:如果控制了一个或者多个协变量对新创建的因变量的影响之后,各组之间是否存在着统计上可靠的均值差异。
心理统计学《现代心理与教育统计学》考研真题与笔记

心理统计学张厚粲《现代心理与教育统计学》考研真题与笔记第一部分考研真题精选一、单项选择题1已知某小学一年级学生的体重平均数21kg,标准差3.2kg,身高平均数120cm,标准差6.0cm,则下列关于体重和身高离散程度的说法正确的是()。
[统考2019研]A.体重离散程度更大B.身高离散程度更大C.两者离散程度一样D.两者无法比较【答案】A查看答案【解析】计算体重和身高的变异系数,CV体重=(3.2/21)×100%=15.2%,CV身高=(6/120)×100%=5%。
由此可知体重离散程度更大。
2已知某正态总体的标准差为16,现从中随机抽取一个n=100的样本,样本标准差为16,则样本平均数分布的标准误为()。
[统考2019研] A.0.16B.1.6C.4D.25【答案】B查看答案【解析】总体正态,且方差已知,则样本平均数的分布为正态分布,标准误SE=σ/sqr(n)=16/10=1.6。
3如果学生参加压力量表测试的分数服从正态分布,平均数为5,标准差为2,那么分数处在5和9之间的学生百分比约为()。
[统考2019研] A.34%B.48%C.50%D.68%【答案】B查看答案【解析】计算原始分数为5的标准分数Z1=0,原始分数为9的标准分数Z2=2,已知±1.96包含95%的个体,则可估计p(0<Z<2)=0.48。
4对样本平均数进行双尾假设检验,在α=0.10水平上拒绝了虚无假设。
如果用相同数据计算总体均值的置信区间,下列描述正确的是()。
[统考2019研]A.置信区间不能覆盖总体均值B.置信区间覆盖总体均值为10%C.置信区间覆盖总体均值为90%D.置信区间覆盖总体均值为0.9%【答案】C查看答案【解析】置信度即置信区间覆盖总体均值的概率,题干说明置信度为1-α=0.90。
5一元线性回归分析中对回归方程是否有效进行检验,H0∶β=0,t=7.20,b =1.80,则斜率抽样分布的标准误SE b为()。
教育与心理统计学 第二章 常用统计参数考研笔记-精品

第二章常用统计参数第二章常用统计参数用参数来描述一组变量的分布特征,便于我们对数据分布状况进行更好的代表性的描述,也有利于我们更好地了解数据的特点。
常见的统计参数包括三类:集中量数、差异量数、地位量数(相对量数X相关量数。
描述统计的指标通常有五类。
第一类集中量数:用于表示数据的集中趋势,是评定一组数据是否有代表性的综合指标,比如平均数、中数、众数等。
概述[不背]第二类差异量数:用于表示数据的离散趋势,是说明一组数据分散程度的指标,比如方差、标准差、差异系数等。
第三类地位量数:是反映个体观测数据在团体中所处位置的量数,比如百分位数、百分等级和标准分数等。
第四类相关量数:用于表示数据间的相互关系,是说明数据间关联程度的指标,比如积差相关、肯德尔和谐系数、①相关等。
第五类:是反映数据的分布形状,比如偏态量和峰度等(不作介绍I第一节集中量数(一)集中量数的定义(种类、作用)[湖南12名]描述数据集中趋势的统计量数称为集中量数。
集中量数能反映大量数据向某一点集中的情况。
常用的集中量数包括算术平均数、加权平均数、几何平均数、中数、众数等等,它们的作用都是用于度量次数分布的集中趋势。
(二)算术平均数(平均数、均数)(一级)简述算术平均数的定义和优缺点。
(1)平均数的含义算术平均数可简称为平均数或均数,符号可记为M。
算术平均数即数据总和除以数据个数,即所有观察值的总和与总频数之比。
只有在为了与其他几种集中.数洞区别时,如几何平均数、调和平均数、加权平均数,才全称为算术平均数。
如果平均数是由变量计算的,就用相应的变量表示,如又匕算术平均数是用以度量连续变量次数分布集中趋势及位置的最常用的集中量数,在一组数据中如果没有极端值, 平均数就是集中趋势中最有代表性的数字指标,是真值的最佳估计值。
(2)平均数的优缺点简述算术平均数的使用特点[含优缺点]算术平均数优点①反应灵敏。
观测数据中任1可一个数值或大或小的变化,甚至细微的变化,在计算平均数时,都能反映出来。
《心理统计学》重要知识点

《心理统计学》重要知识点第二章 统计图表简单次数分布表的编制:Excel 数据透视表列联表(交叉表):两个类别变量或等级变量的交叉次数分布,Excel 数据透视表直方图(histogram ):直观描述连续变量分组次数分布情况,可用Excel 图表向导的柱形图来绘制 散点图(Scatter plot ):主要用于直观描述两个连续性变量的关系状况和变化趋向。
条形图(Bar chart ):用于直观描述称名数据、类别数据、等级数据的次数分布情况。
简单条形图:用于描述一个样组的类别(或等级)数据变量次数分布。
复式条形图:用于描述和比较两个或多个样组的类别(或等级)数据的次数分布。
圆形图(circle graph )、饼图(pie graph ):用于直观描述类别数据或等级数据的分布情况。
线形图(line graph ):用于直观描述不同时期的发展成就的变化趋势;第三章 集中量数● 集中趋势和离中趋势是数据分布的两个基本特征。
● 集中趋势:就是数据分布中大量数据向某个数据点集中的趋势。
● 集中量数:描述数据分布集中趋势的统计量数。
● 离中趋势:是指数据分布中数据分散的程度。
● 差异量数:描述数据分布离中趋势(离散程度)的统计量数 ● 常用的集中量数有:算术平均数、众数(M O )、中位数(M d ) 1.算术平均数(简称平均数,M 、X 、Y ):nx X i∑= Excel 统计函数AVERAGE算术平均数的重要特性:(1)一组数据的离均差(离差)总和为0,即0)(=-∑x x i(2)如果变量X 的平均数为X ,将变量X 按照公式bx a y +=转换为Y 变量后,那么,变量Y 2.中位数(median ,M d ):在一组有序排列的数据中,处于中间位置的数值。
中位数上下的数据出现次数各占50%。
3.众数(mode ,M O ):一组数据中出现次数最多的数据。
4.算术平均数、中数、众数之间的关系。
邓铸《心理统计学与SPSS应用》笔记和课后习题详解-第1~4章【圣才出品】

第1章引论1.1 复习笔记一、学习统计学的原因(一)统计学是研究随机现象的方法论统计学研究的是随机现象,是帮助人们发现随机现象运动规律的科学。
其基本技术就是分析随机现象的各种表现,认识随机事件发生的概率及分布规律。
(二)统计学是心理学研究设计的技术1.心理统计学的概念心理统计学是应用统计学的一个分支,它既是对已有数据资料进行分析的技术,也是根据研究目的和研究对象的特点,确定搜集何种资料、如何搜集、整理、分析以及如何根据这些数字资料所传递的信息,进行科学推论,找出客观规律的一门科学。
2.心理统计学的意义(1)心理统计学是心理学研究设计的基本方法学基础;(2)心理统计学是对心理学研究的全程进行管理的科学;(3)心理统计学是心理学研究不可缺少的科学工具。
(三)统计学是心理学研究资料分析的技术心理学的实验研究和调查研究要解决的问题主要有三类:1.特征描述(1)含义是指对研究对象进行多方面的测量,此类测量一般不是为了描述个体或少数人,而是为了描述一个大的群体,即“总体”。
(2)重要性描述性统计分析是统计学中数据分析的最基础的部分。
2.进行差异比较(1)目的考察不同人群之间的某些差异,以及实验干预是否造成了某种心理品质或心理状态的明显改变。
(2)常用方法主要是依赖于心理统计学中的t检验和F检验方法。
3.相关性分析相关性研究是指尽量在较为自然的情况下,搜集研究对象的一系列心理体验、行为倾向或行动指标,利用统计学方法来考察各方面变量对应的数据资料之间是否具有某种共变关系。
(四)统计学为心理学研究提供了有效的表达语言1.意义统计学的语言已经在相当程度上成为心理学研究报告撰写的“行话”,。
2.要求(1)要借助统计学的知识阅读心理学的研究报告;(2)在撰写研究报告的时候,要使用统计学的概念与符号说“内行”话。
(五)统计学成为心理学专业的应用技术1.学习心理统计学,可以借助于各种测评工具对各个不同实践领域中的人群进行心理测评与支持;2.可以将一个理论的假设转变为一项实证研究的方案;3.可以帮助企事业单位进行人力资源的开发与管理等。
现代心理与教育统计学-笔记

概念(1)随机变量:在统计学上把取值之前,不能准确预料取到什么值的变量,称为随机变量。
(2)总体:总体(population)又称为母全体或全域,是具有某种特征的一类事物的总体,是研究对象的全体。
(3)样本:样本是从总体中抽取的一部分个体。
(4)个体:构成总体的每个基本单元.(5)次数:是指某一事件在某一类别中出现的数目,又称作频数,用f表示。
(6)频率:又称相对次数,即某一事件发生的次数除以总的事件数目,通常用比例或百分数来表示。
(7)概率:概率论术语,指随机事件发生的可能性大小度量指标。
其描述性定义。
随机事件A在所有试验中发生的可能性大小的量值,称为事件A的概率,记为P(A)。
(8)统计量:样本的特征值叫做统计量,又称作特征值。
(9)参数:又称总体参数,是描述一个总体情况的统计指标.(10)观测值:随机变量的取值,一个随机变量可以有多个观测值。
2何谓心理与教育统计学?学习它有何意义?答:(1)心理与教育统计学是专门研究如何运用统计学原理和方法,搜集、整理、分析心理与教育科学研究中获得的随机性数据资料,并根据这些数据资料传递的信息,进行科学推论找出心理与教育统计活动规律的一门学科。
具体讲,就是在心理与教育研究中,通过调查、实验、测量等手段有意地获取一些数据,并将得到的数据按统计学原理和步骤加以整理、计算、绘制图表、分析、判断、推理,最后得出结论的一种研究方法.(2)学习心理与教育统计学有重要的意义。
①统计学为科学研究提供了一种科学方法。
科学是一种知识体系.它的研究对象存在于现实世界各个领域的客观事实之中。
它的主要任务是对客观事实进行预测和分类,从而揭示蕴藏于其中的种种因果关系。
要提高对客观事实观测及分析研究的能力,就必须运用科学的方法。
统计学正是提供了这样一种科学方法。
统计方法是从事科学研究的一种必不可少的工具。
②心理与教育统计学是心理与教育科研定量分析的重要工具。
凡是客观存在事物,都有数量的表现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、黄底的是听录音自己加上去的(因看不到,无法知道所加是否正确)。
第一章绪论
心理统计:心理统计是研究心理学科的科学方法和工具,是统计学的原理和数学方法在心理学领域中的应用。
心理统计分为描述统计和推论统计两大部分。
描述统计:是把实验中所得到的数据进行概括的整理,得出实验者可利用的信息,用表和图将实验数据形象地表示出来,描述统计的指标有三类,即集中量数、离中量数和数据间的相关。
集中量数,是指一组数据具有代表性的指标,如,平均数、中数、众数。
离中量数,表示一组数据分散程度的指标,如,四分差,标准差,方差。
数据间的相关,是表示成对的两组数据之间的关系的指标。
进行心理实验是为了发现心理现象的客观规律。
心理统计将研究对象的全部称为总体,从总体中抽出的参与实验的部分称为样本。
推论统计就是从样本的数量特征去推论总体的数量特征。
它包括一系列的统计程序:推论的假设、推论的方法步骤和检验推论的可靠性的各种方法等。
描述统计和推论统计是相辅相成,描述统计是推论统计的基础,只有描述统计准确无误,推论统计才具有意义。
第二章数据的初步整理
实验数据的类型:
计数数据:是准确数,它是一个一个数出来的。
数据形式为计数数据的变量称为离散型变量。
推翻虚无假设,备择假设就成立,就说明样本与总体存在显著性差异,即总体与样本有真实的差异;接受虚无假设,就意味着备择假设不成立,就可以推论样本与总体不存在显著差异,样本与总体的差异仅仅是随机误差。
显著水平(ɑ或P):是人为选择的推翻虚无假设的概率,在统计检验中用P来表示,常用的有.05和.01显著水平,如果.01<P≤.05,该差异就在.05水平上显著,如果p≤.01,该差异就在.01水平上显著。
第一类错误:是指当虚无假设不应被推翻时而被推翻了,即将随机误差当成了真正的差异。
第二类错误:指当应该推翻虚无假设时而没有推翻,即将存在的真实差异当成了随机误差。
第九章平均数差异的显著性检验
两个总体没有差异:当比较不同总体是否存在差异时,需要分别从不同总体中抽取样本,计算出各自的样本平均数,两个总体的样本平均数之间总会存在差别,这个差别里如果仅包含抽样误差,说明两个总体没有差异,是相同的总体或者是同一总体。
两个总体存在差异:当比较不同总体是否存在差异时,需要分别从不同总体中抽取样本,计算出各自的样本平均数,两个总体的样本平均数之间总会存在差别,这个差别里如果不仅包含抽样误差,还包含来自自变量不同水平的影响,就说明两个总体存在差异,两个样本来自不同总体。
被试间实验设计:每个被试只参加自变量一个水平的实验,两个实验条件各自独立,所得的数据是不相关的,所得的样本称为独立样本。
被试内实验设计:每个被试参加自变量所有水平的实验,每个被试被多次测量,两个实验条件之间不独立,因此所得的数据是相关的。
方差一致性检验:检验的目的是判定两个样本是否来自方差一致的总体。
如果两个样本不是来自方差一致的总体,一个总体的数据比较分散,一个总体的数据相对集中,它们的总体平均数的代表性就不一致,分散的数据平均数代表性就小,集中的数据平均数代表性就大。
是单侧还是用双侧是事先确定的
双侧检验:当研究的问题仅仅是回答某一随机样本是否属于某一总体,或需要检验的两个总体谁强谁弱没有方向性,就会用到双侧检验。
双侧检验的大样本查正态分布表,临界值.05水平为
1.96;.01水平为
2.58,小样本则根据不同的df查t表。
单侧检验:如果研究的是某一样本平均数比总体平均数大还是小,这类研究的问题存在方向性,需要使用单侧检验。
单侧检验的特点是带有方向性的,它的.05、.01的临界值比双侧检验的小,大样本查正态分布表临界值为:.05水平为1.65;.01水平2.33。
小样本根据df查t表,单侧检验比双侧检验容易达到显著性差异。