中科院博士研究生英语精读-课文翻译及原文

合集下载

博士研究生英语精读教材翻译7-10课(中科院)

博士研究生英语精读教材翻译7-10课(中科院)

第7课饮毒和摄取营养物质Drinking Hemlock and Other Nutritional Matters在一个阴冷的早晨,我早早地起来之后心想(诚然一项情愿地)应该适时打开电视与外界交流一下。

令我大吃一惊的是,电视上有位几年前著名的影星正在讲述糖的害处。

这位前好莱坞偶像强烈地谴责这种乙醣二聚体,特别是它的纯化的晶体形态。

她斥之为“非天然食品”,这种称呼极大地损坏了进行光合作用的甘蔗和甜菜的形象。

给人的感觉就像一位庄严的法官永久地宣判一种“反常行为”一样。

我马上就被这位伟大的女士的讨伐行动吸引住了,并且心里一直在嘀咕“讨厌蔗糖”,同时调好一种非天然的咖啡豆提取物并且往里面扔了一片高度合成的糖精。

过了一会儿,当睡意消去时,对原因的怀疑取代了情绪的自信,我开始纳闷,多年来我的同事们一直在生化营养物方面迷惑不解,我的电影女主角在这方面那么有把握,她的自信从何得来?或许所有这些脏乱的实验工作,如碾磨和提炼组织以及其他类似无聊的实验室里的工作,都不是获取“真理”的最便捷的途径。

也许我们这群穿着白大褂的人忽略了一条通往真理的神秘通道,在这里一些人靠令人无法理解的洞察力来发现有关营养学的“真正的”知识,这些知识改变了其信奉者的生活。

所有这一切都使唤起了生物医学家们一次次频繁痛苦的经历,这种经历就像反复出现的噩梦一样时刻萦绕在心头。

某一回是在鸡尾酒会或者别的社交聚会上,有人出现在人群中,然后就对“好营养”问题开始慷慨陈词。

所阐述的“事实”与众所周知的代谢途径、细胞组织生理学、酶学和常识经常不一致。

如果有听众斗胆提出疑问,“你是怎么知道的?”迎接他或她的眼神就像当年哥伦布问“你怎么知道,世界是平的”时所受的那样。

营养学似乎很像政治,对此人人都是专家。

于是,百姓大众就以为,一个人不管他熟知一门复杂学科的多少事实和理论,他多年受到的教育,与不费吹灰之力就可获取的知识相比,仍显得苍白而无用。

所描述的情况绝非仅限于食物的选择,当然我觉得还没有准备好要去介入蔗糖辩论。

中科院博士研究生英语精读教材课文原文及翻译

中科院博士研究生英语精读教材课文原文及翻译

第1课知识的悖论The Paradox of KnowledgeThe greatest achievement of humankind in its long evolution from ancient hominoid ancestors to its present status is the acquisition and accumulation of a vast body of knowledge about itself, the world, and the universe. The products of this knowledge are all those things that, in the aggregate, we call "civilization," including language, science, literature, art, all the physical mechanisms, instruments, and structures we use, and the physical infrastructures on which society relies. Most of us assume that in modern society knowledge of all kinds is continually increasing and the aggregation of new information into the corpus of our social or collective knowledge is steadily reducing the area of ignorance about ourselves, the world, and the universe. But continuing reminders of the numerous areas of our present ignorance invite a critical analysis of this assumption.In the popular view, intellectual evolution is similar to, although much more rapid than, somatic evolution. Biological evolution is often described by the statement that "ontogeny recapitulates phylogeny"--meaning that the individual embryo, in its development from a fertilized ovum into a human baby, passes through successive stages in which it resembles ancestral forms of the human species. The popular view is that humankind has progressed from a state of innocent ignorance, comparable to that of an infant, and gradually has acquired more and more knowledge, much as a child learns in passing through the several grades of the educational system. Implicit in this view is an assumption that phylogeny resembles ontogeny, so that there will ultimately be a stage in which the accumulation of knowledge is essentially complete, at least in specific fields, as if society had graduated with all the advanced degrees that signify mastery of important subjects.Such views have, in fact, been expressed by some eminent scientists. In 1894 the great American physicist Albert Michelson said in a talk at the University of Chicago:While it is never safe to affirm that the future of Physical Science has no marvels in store even more astonishing than those of the past, it seems probable that most of the grand underlying principles have been firmly established and that further advances are to be sought chiefly in the rigorous application of these principles to all the phenomena which come under our notice .... The future truths of Physical Science ate to be looked for in the sixth place of decimals.In the century since Michelson's talk, scientists have discovered much more than the refinement of measurements in the sixth decimal place, and none is willing to make a similar statement today. However, many still cling to the notion that such a state of knowledge remains a possibility to be attained sooner or later. Stephen Hawking, thegreat English scientist, in his immensely popular book A Brief History of Time (1988), concludes with the speculation that we may "discover a complete theory" that "would be the ultimate triumph of human reason--for then we would know the mind of God." Paul Davies, an Australian physicist, echoes that view by suggesting that the human mind may be able to grasp some of the secrets encompassed by the title of his book The Mind of God (1992). Other contemporary scientists write of "theories of everything," meaning theories that explain all observable physical phenomena, and Nobel Laureate Steven Weinberg, one of the founders of the current standard model of physical theory, writes of his Dreams of a Final Theory (1992).Despite the eminence and obvious yearning of these and many other contemporary scientists, there is nothing in the history of science to suggest that any addition of data or theories to the body of scientific knowledge will ever provide answers to all questions in any field. On the contrary, the history of science indicates that increasing knowledge brings awareness of new areas of ignorance and of new questions to be answered.Astronomy is the most ancient of the sciences, and its development is a model of other fields of knowledge. People have been observing the stars and other celestial bodies since the dawn of recorded history. As early as 3000 B.C. the Babylonians recognized a number of the constellations. In the sixth century B.C., Pythagoras proposed the notion of a spherical Earth and of a universe with objects in it chat moved in accordance with natural laws. Later Greek philosophers taught that the sky was a hollow globe surrounding the Earth, that it was supported on an axis running through the Earth, and chat stars were inlaid on its inner surface, which rotated westward daily. In the second century A.D., Ptolemy propounded a theory of a geocentric (Earth-centered) universe in which the sun, planets, and stars moved in circular orbits of cycles and epicycles around the Earth, although the Earth was not at the precise center of these orbits. While somewhat awkward, the Ptolemaic system could produce reasonably reliable predictions of planetary positions, which were, however, good for only a few years and which developed substantial discrepancies from actual observations over a long period of time. Nevertheless, since there was no evidence then apparent to astronomers that the Earth itself moves, the Ptolemaic system remained unchallenged for more than 13 centuries.In the sixteenth century Nocolaus Copernicus, who is said to have mastered all the knowledge of his day in mathematics, astronomy, medicine, and theology, became dissatisfied with the Ptolemaic system. He found that a heliocentric system was both mathematically possible and aesthetically more pleasing, and wrote a full exposition of his hypothesis, which was not published until 1543, shortly after his death. Early inthe seventeenth century, Johannes Kepler became imperial mathematician of the Holy Roman Empire upon the death of Tycho Brahe, and he acquired a collection of meticulous naked-eye observations of the positions of celestial bodies chat had been made by Brahe. On the basis of these data, Kepler calculated that both Ptolemy and Copernicus were in error in assuming chat planets traveled in circular orbits, and in 1609 he published a book demonstrating mathematically chat the planets travel around the sun in elliptical orbits. Kepler's laws of planetary motion are still regarded as basically valid.In the first decade of the seventeenth century Galileo Galilei learned of the invention of the telescope and began to build such instruments, becoming the first person to use a telescope for astronomical observations, and thus discovering craters on the moon, phases of Venus, and the satellites of Jupiter. His observations convinced him of the validity of the Copernican system and resulted in the well-known conflict between Galileo and church authorities. In January 1642 Galileo died, and in December of chat year Isaac Newton was born. Modern science derives largely from the work of these two men.Newton's contributions to science are numerous. He laid the foundations for modem physical optics, formulated the basic laws of motion and the law of universal gravitation, and devised the infinitesimal calculus. Newton's laws of motion and gravitation are still used for calculations of such matters as trajectories of spacecraft and satellites and orbits of planets. In 1846, relying on such calculations as a guide to observation, astronomers discovered the planet Neptune.While calculations based on Newton's laws are accurate, they are dismayingly complex when three or more bodies are involved. In 1915, Einstein announced his theory of general relativity, which led to a set of differential equations for planetary orbits identical to those based on Newtonian calculations, except for those relating to the planet Mercury. The elliptical orbit of Mercury rotates through the years, but so slowly that the change of position is less than one minute of arc each century. The equations of general relativity precisely accounted for this precession; Newtonian equations did not.Einstein's equations also explained the red shift in the light from distant stars and the deflection of starlight as it passed near the sun. However, Einstein assumed chat the universe was static, and, in order to permit a meaningful solution to the equations of relativity, in 1917 he added another term, called a "cosmological constant," to the equations. Although the existence and significance of a cosmological constant is still being debated, Einstein later declared chat this was a major mistake, as Edwin Hubble established in the 1920s chat the universe is expanding and galaxies are receding fromone another at a speed proportionate to their distance.Another important development in astronomy grew out of Newton's experimentation in optics, beginning with his demonstration chat sunlight could be broken up by a prism into a spectrum of different colors, which led to the science of spectroscopy. In the twentieth century, spectroscopy was applied to astronomy to gun information about the chemical and physical condition of celestial bodies chat was not disclosed by visual observation. In the 1920s, precise photographic photometry was introduced to astronomy and quantitative spectrochemical analysis became common. Also during the 1920s, scientists like Heisenberg, de Broglie, Schrodinger, and Dirac developed quantum mechanics, a branch of physics dealing with subatomic particles of matter and quanta of energy. Astronomers began to recognize that the properties of celestial bodies, including planets, could be well understood only in terms of physics, and the field began to be referred to as "astrophysics."These developments created an explosive expansion in our knowledge of astronomy. During the first five thousand years or more of observing the heavens, observation was confined to the narrow band of visible light. In the last half of this century astronomical observations have been made across the spectrum of electromagnetic radiation, including radio waves, infrared, ultraviolet, X-rays, and gamma rays, and from satellites beyond the atmosphere. It is no exaggeration to say chat since the end of World War II more astronomical data have been gathered than during all of the thousands of years of preceding human history.However, despite all improvements in instrumentation, increasing sophistication of analysis and calculation augmented by the massive power of computers, and the huge aggregation of data, or knowledge, we still cannot predict future movements of planets and other elements of even the solar system with a high degree of certainty. Ivars Peterson, a highly trained science writer and an editor of Science News, writes in his book Newton's Clock (1993) that a surprisingly subtle chaos pervades the solar system. He states:In one way or another the problem of the solar system's stability has fascinated and tormented asrtonomers and mathematicians for more than 200 years. Somewhat to the embarrassment of contemporary experts, it remains one of the most perplexing, unsolved issues in celestial mechanics. Each step toward resolving this and related questions has only exposed additional uncertainties and even deeper mysteries.Similar problems pervade astronomy. The two major theories of cosmology, general relativity and quantum mechanics, cannot be stated in the same mathematical language, and thus are inconsistent with one another, as the Ptolemaic and Copernicantheories were in the sixteenth century, although both contemporary theories continue to be used, but for different calculations. Oxford mathematician Roger Penrose, in The Emperors New Mind (1989), contends that this inconsistency requires a change in quantum theory to provide a new theory he calls "correct quantum gravity."Furthermore, the observations astronomers make with new technologies disclose a total mass in the universe that is less than about 10 percent of the total mass that mathematical calculations require the universe to contain on the basis of its observed rate of expansion. If the universe contains no more mass than we have been able to observe directly, then according to all current theories it should have expanded in the past, and be expanding now, much more rapidly than the rate actually observed. It is therefore believed that 90 percent or more of the mass in the universe is some sort of "dark matter" that has not yet been observed and the nature of which is unknown. Current theories favor either WIMPs (weakly interacting massive particles) or MACHOs (massive compact halo objects). Other similar mysteries abound and increase in number as our ability to observe improves.The progress of biological and life sciences has been similar to that of the physical sciences, except that it has occurred several centuries later. The theory of biological evolution first came to the attention of scientists with the publication of Darwin's Origin of Species in 1859. But Darwin lacked any explanation of the causes of variation and inheritance of characteristics. These were provided by Gregor Mendel, who laid the mathematical foundation of genetics with the publication of papers in 1865 and 1866.Medicine, according to Lewis Thomas, is the youngest science, having become truly scientific only in the 1930s. Recent and ongoing research has created uncertainty about even such basic concepts as when and how life begins and when death occurs, and we are spending billions in an attempt to learn how much it may be possible to know about human genetics. Modern medicine has demonstrably improved both our life expectancies and our health, and further improvements continue to be made as research progresses. But new questions arise even more rapidly than our research resources grow, as the host of problems related to the Human Genome Project illustrates.From even such an abbreviated and incomplete survey of science as this, it appears that increasing knowledge does not result in a commensurate decrease in ignorance, but, on the contrary, exposes new lacunae in our comprehension and confronts us with unforeseen questions disclosing areas of ignorance of which we were not previously aware.Thus the concept of science as an expanding body of knowledge that will eventually encompass or dispel all significant areas of ignorance is an illusion. Scientists and philosophers are now observing that it is naive to regard science as a process that begins with observations that are organized into theories and are then subsequently tested by experiments. The late Karl Popper, a leading philosopher of science, wrote in The Growth of Scientific Knowledge (1960) chat science starts from problems, not from observations, and chat every worthwhile new theory raises new problems. Thus there is no danger that science will come to an end because it has completed its task, clanks to the "infinity of our ignorance."At least since Thomas Kuhn published The Structure of Scientific Revolutions (1962), it has been generally recognized that observations are the result of theories (called paradigms by Kuhn and other philosophers), for without theories of relevance and irrelevance there would be no basis for determining what observations to make. Since no one can know everything, to be fully informed on any subject (a claim sometimes made by those in authority) is simply to reach a judgment that additional data are not important enough to be worth the trouble of securing or considering.To carry the analysis another step, it must be recognized that theories are the result of questions and questions are the product of perceived ignorance. Thus it is chat ignorance gives rise to inquiry chat produces knowledge, which, in turn, discloses new areas of ignorance. This is the paradox of knowledge: As knowledge increases so does ignorance, and ignorance may increase more than its related knowledge.My own metaphor to illustrate the relationship of knowledge and ignorance is based on a line from Matthew Arnold: "For we are here as on a darkling plain...." The dark chat surrounds us, chat, indeed, envelops our world, is ignorance. Knowledge is the illumination shed by whatever candles (or more technologically advanced light sources) we can provide. As we light more and more figurative candles, the area of illumination enlarges; but the area beyond illumination increases geometrically. We know chat there is much we don't know; but we cannot know how much there is chat we don't know. Thus knowledge is finite, but ignorance is infinite, and the finite cannot ever encompass the infinite.This is a revised version of an article originally published in COSMOS 1994. Copyright 1995 by Lee Loevinger.Lee Loevinger is a Washington lawyer and former assistant attorney general of the United States who writes frequently for scientific c publications. He has participated for many years as a member, co-chair, or liaison with the National Conference of Lawyers and Scientists, and he is a founder and former chair of the Science andTechnology Section of the American Bar Association. Office address: Hogan and Hartson, 555 Thirteenth St. NW, Washington, DC 20004.人类从古类人猿进化到当前的状态这个长久的进化过程中的最大成就是有关于人类自身、世界以及宇宙众多知识的获得和积聚。

研究生英语精读教程课文原文+翻译+短文unit3

研究生英语精读教程课文原文+翻译+短文unit3

Rats and Men"Insoluble" ProblemsProfessor N. R. F. Maier of the University of Michigan performed a series of experiments several years ago in which "neurosis" is induced in rats. The rats are first trained to jump off the edge of a platform at one of two doors.If the rat jumps to the right, the door holds fast, and it bumps its nose and falls into a net; if it jumps to the left, the door opens, and the rat finds a dish of food. When the rats are well trained to this reaction, the situation is changed. The food is put behind the other door, so that in order to get their reward they now have to jump to the right instead of to the left. (Other changes, such as marking the two doors in different ways, may also be introduced by the experimenter.)If the rat fails to figure out the new system, so that each time it jumps it never knows whether it is going to get food or bump its nose, it finally gives up and refuses to jump at all. At this stage, Dr. Maier says, "Many rats prefer to starve rather than make a choice."密執安大學のN.R.F. 麥耶教授幾年前做過一系列可以誘導鼠產生“神經官能症”の實驗。

研究生英语精读教程课文原文+翻译+短文unit5

研究生英语精读教程课文原文+翻译+短文unit5

The End Is Not at HandThe environmental rhetoric overblown.The planet will surviveRobert J. SamuelsonWhoever coined the phrase "save the planet" is a public relation genius. It conveys the sense of impending catastrophe and high purpose that has wrapped environmentalism in an aura of moral urgency.It also typifies environmentalism's rhetorical excesses, which, in any other context, would be seen as wild exaggeration or simple dishonesty.无论是谁杜撰了“拯救地球”这一说法,他都是一位公共关系方面的天才。

这一说法既表达了对即将来临的灭顶之灾的意识,也满怀着使环境保护论带有道义紧迫感这一大的目标。

同时这种说法也表明环境保护论言过其实,这种夸大在其他任何场合都会被视为是在危言耸听或愚蠢的欺骗。

Up to a point, our environmental awareness has checked a mindless enthusiasm for unrestrained economic growth.We have sensibly curbed some of growth's harmful side effects. But environmentalism increasingly resembles a holy crusade addicted to hypeand ignorant of history.Every environmental ill is depicted as an onrushing calamity that—if not stopped will end life as we know it.就某种程度而言,我们的环境意识遏制了对自由经济增长所表现出的盲目热情。

研究生英语精读课文翻译

研究生英语精读课文翻译

Unit1 从能力到责任1当代的大学生对他们在社会中所扮演的角色的认识模糊不清。

他们致力于寻求在他们看来似乎是最现实的东西:追求安全保障,追逐物质财富的积累。

年轻人努力想使自己成人成才、有所作为,但他们对未来的认识还是很模糊的。

处于像他们这样前程未定的年龄阶段,他们该信仰什么?大学生一直在寻找真我的所在,寻找生活的意义。

一如芸芸众生的我们,他们也陷入了两难的境地。

一方面,他们崇尚奉献于人的理想主义,而另一方面,他们又经不住自身利益的诱惑,陷入利己主义的世界里欲罢不能。

2最终而言,大学教育素质的衡量取决于毕业生是否愿意为他们所处的社会和赖以生存的城市作出贡献。

尼布尔曾经写道:“一个人只有意识到对社会所负有的责任,他才能够认识到自身的潜力。

一个人如果一味地以自我为中心,他将会失去自我。

”本科教育必须对这种带有理想主义色彩的观念进行自我深省,使学生超越以自我为中心的观念,以诚相待,服务社会。

在这一个竞争激烈\残酷的社会,人们期望大学生能报以正直、文明,,甚至富有同情心的人格品质去与人竞争,这是否已是一种奢望?人们期望大学的人文教育会有助于培养学生的人际交往能力,如今是否仍然适合?3毫无疑问,大学生应该履行公民的义务。

美国的教育必须立刻采取行动,使教育理所当然地承担起弥合公共政策与公众的理解程度之间的极具危险性且在日益加深的沟壑这一职责。

那些要求人们积极思考政府的议程并提供富于创意的意见的信息似乎越来越让我们感到事不关己。

所以很多人认为想通过公众的参与来解决复杂的公共问题已不再可能行得通。

设想,怎么可能让一些非专业人士去讨论必然带来相应后果的政府决策的问题,而他们甚至连语言的使用都存在困难?4核能的使用应该扩大还是削弱?水资源能保证充足的供应吗?怎样控制军备竞赛?大气污染的安全标准是多少?甚至连人类的起源与灭绝这样近乎玄乎的问题也会被列入政治议事日程。

5类似的一头雾水的感觉,公众曾经尝试过。

当他们试图弄懂有关“星球大战”的辩论的问题时,那些关于“威慑”与“反威慑”等高科技的专业术语,曾让公众一筹莫展。

中科院博士研究生英语精读-课文翻译及原文

中科院博士研究生英语精读-课文翻译及原文

中科院博士研究生英语精读-课文翻译及原文第1课知识的悖论The Paradox of KnowledgeThe greatest achievement of humankind in its long evolution from ancient hominoid ancestors to its present status is the acquisition and accumulation of a vast body of knowledge about itself, the world, and the universe. The products of this knowledge are all those things that, in the aggregate, we call "civilization," including language, science, literature, art, all the physical mechanisms, instruments, and structures we use, and the physical infrastructures on which society relies. Most of us assume that in modern society knowledge of all kinds is continually increasing and the aggregation of new information into the corpus of our social or collective knowledge is steadily reducing the area of ignorance about ourselves, the world, and the universe. But continuing reminders of the numerous areas of our present ignorance invite a critical analysis of this assumption.In the popular view, intellectual evolution is similar to, although much more rapid than, somatic evolution. Biological evolution is often described by the statement that "ontogeny recapitulates phylogeny"--meaning that the individual embryo, in its development from a fertilized ovum into a human baby, passes through successive stages in which it resembles ancestral forms of the human species. The popular view is that humankind has progressed from a state of innocent ignorance, comparable to that of an infant, and gradually has acquired more and more knowledge, much as a child learns in passing through the several grades of the educational system. Implicit in this view is an assumption that phylogeny resembles ontogeny, so that there will ultimately be a stage in which the accumulation ofknowledge is essentially complete, at least in specific fields, as if society had graduated with all the advanced degrees that signify mastery of important subjects.Such views have, in fact, been expressed by some eminent scientists. In 1894 the great American physicist Albert Michelson said in a talk at the University of Chicago:While it is never safe to affirm that the future of Physical Science has no marvels in store even more astonishing than those of the past, it seems probable that most of the grand underlying principles have been firmly established and that further advances are to be sought chiefly in the rigorous application of these principles to all the phenomena which come under our notice .... The future truths of Physical Science ate to be looked for in the sixth place of decimals.In the century since Michelson's talk, scientists have discovered much more than the refinement of measurements in the sixth decimal place, and none is willing to make a similar statement today. However, many still cling to the notion that such astate of knowledge remains a possibility to be attained sooner or later. Stephen Hawking, the great English scientist, in his immensely popular book A Brief History of Time (1988), concludes with the speculation that we may "discover a complete theory" that "would be the ultimate triumph of human reason--for then we would know the mind of God." Paul Davies, an Australian physicist, echoes that view by suggesting that the human mind may be able to grasp some of the secrets encompassed by the title of his book The Mind of God (1992). Other contemporary scientists write of "theories of everything," meaning theories that explain all observable physicalphenomena, and Nobel Laureate Steven Weinberg, one of the founders of the current standard model of physical theory, writes of his Dreams of a Final Theory (1992).Despite the eminence and obvious yearning of these and many other contemporary scientists, there is nothing in the history of science to suggest that any addition of data or theories to the body of scientific knowledge will ever provide answers to all questions in any field. On the contrary, the history of science indicates that increasing knowledge brings awareness of new areas of ignorance and of new questions to be answered.Astronomy is the most ancient of the sciences, and its development is a model of other fields of knowledge. People have been observing the stars and other celestial bodies since the dawn of recorded history. As early as 3000 B.C. the Babylonians recognized a number of the constellations. In the sixth century B.C., Pythagoras proposed the notion of a spherical Earth and of a universe with objects in it chat moved in accordance with natural laws. Later Greek philosophers taught that the sky was a hollow globe surrounding the Earth, that it was supported on an axis running through the Earth, and chat stars were inlaid on its inner surface, which rotated westward daily. In the second century A.D., Ptolemy propounded a theory of a geocentric (Earth-centered) universe in which the sun, planets, and stars moved in circular orbits of cycles and epicycles around the Earth, although the Earth was not at the precise center of these orbits. While somewhat awkward, the Ptolemaic system could produce reasonably reliable predictions of planetary positions, which were, however, good for only a few years and which developed substantial discrepancies from actual observations over a long period of time. Nevertheless, sincethere was no evidence then apparent to astronomers that the Earth itself moves, the Ptolemaic system remained unchallenged for more than 13 centuries.In the sixteenth century Nocolaus Copernicus, who is said to have mastered all the knowledge of his day in mathematics, astronomy, medicine, and theology, became dissatisfied with the Ptolemaic system. He found that a heliocentric system was both mathematically possible and aesthetically more pleasing, and wrote a full exposition of his hypothesis, which was not published until 1543, shortly after his death. Early in the seventeenth century, Johannes Kepler became imperial mathematician of the Holy Roman Empire upon the death of Tycho Brahe, and he acquired a collection of meticulous naked-eye observations of the positions of celestial bodies chat had been made by Brahe. On the basis of these data, Kepler calculated that both Ptolemy and Copernicus were in error in assuming chat planets traveled in circular orbits, and in 1609 he published a book demonstrating mathematically chat the planets travel around the sun in elliptical orbits. Kepler's laws of planetary motion are still regarded as basically valid.In the first decade of the seventeenth century Galileo Galilei learned of the invention of the telescope and began to build such instruments, becoming the first person to use a telescope for astronomical observations, and thus discovering craters on the moon, phases of Venus, and the satellites of Jupiter. His observations convinced him of the validity of the Copernican system and resulted in the well-known conflict between Galileo and church authorities. In January 1642 Galileo died, and in December of chat year Isaac Newton was born. Modern science derives largely from the work of these two men.Newton's contributions to science are numerous. He laid the foundations for modem physical optics, formulated the basic laws of motion and the law of universal gravitation, and devised the infinitesimal calculus. Newton's laws of motion and gravitation are still used for calculations of such matters as trajectories of spacecraft and satellites and orbits of planets. In 1846, relying on such calculations as a guide to observation, astronomers discovered the planet Neptune.While calculations based on Newton's laws are accurate, they are dismayingly complex when three or more bodies are involved. In 1915, Einstein announced his theory of general relativity, which led to a set of differential equations for planetary orbits identical to those based on Newtonian calculations, except for those relating to the planet Mercury. The elliptical orbit of Mercury rotates through the years, but so slowly that the change of position is less than one minute of arc each century. The equations of general relativity precisely accounted for this precession; Newtonian equations did not.Einstein's equations also explained the red shift in the light from distant stars and the deflection of starlight as it passed near the sun. However, Einstein assumed chat the universe was static, and, in order to permit a meaningful solution to the equations of relativity, in 1917 he added another term, called a "cosmological constant," to the equations. Although the existence and significance of a cosmological constant is stillbeing debated, Einstein later declared chat this was a major mistake, as Edwin Hubble established in the 1920s chat the universe is expanding and galaxies are receding from one another at a speed proportionate to their distance.Another important development in astronomy grew out ofNewton's experimentation in optics, beginning with his demonstration chat sunlight could be broken up by a prism into a spectrum of different colors, which led to the science of spectroscopy. In the twentieth century, spectroscopy was applied to astronomy to gun information about the chemical and physical condition of celestial bodies chat was not disclosed by visual observation. In the 1920s, precise photographic photometry was introduced to astronomy and quantitative spectrochemical analysis became common. Also during the 1920s, scientists like Heisenberg, de Broglie, Schrodinger, and Dirac developed quantum mechanics, a branch of physics dealing with subatomic particles of matter and quanta of energy. Astronomers began to recognize that the properties of celestial bodies, including planets, could be well understood only in terms of physics, and the field began to be referred to as "astrophysics."These developments created an explosive expansion in our knowledge of astronomy. During the first five thousand years or more of observing the heavens, observation was confined to the narrow band of visible light. In the last half of this century astronomical observations have been made across the spectrum of electromagnetic radiation, including radio waves, infrared, ultraviolet, X-rays, and gamma rays, and from satellites beyond the atmosphere. It is no exaggeration to say chat since the end of World War II more astronomical data have been gathered than during all of the thousands of years of preceding human history.However, despite all improvements in instrumentation, increasing sophistication of analysis and calculation augmented by the massive power of computers, and the huge aggregation of data, or knowledge, we still cannot predict future movements of planets and other elements of even the solar system with ahigh degree of certainty. Ivars Peterson, a highly trained science writer and an editor of Science News, writes in his book Newton's Clock (1993) that a surprisingly subtle chaos pervades the solar system. He states:In one way or another the problem of the solar system's stability has fascinated and tormented asrtonomers and mathematicians for more than 200 years. Somewhat to the embarrassment of contemporary experts, it remains one of the most perplexing, unsolved issues in celestial mechanics. Each step toward resolving this and related questions has only exposed additional uncertainties and even deeper mysteries.Similar problems pervade astronomy. The two major theories of cosmology,general relativity and quantum mechanics, cannot be stated in the same mathematical language, and thus are inconsistent with one another, as the Ptolemaic and Copernican theories were in the sixteenth century, although both contemporary theories continue to be used, but for different calculations. Oxford mathematician Roger Penrose, in The Emperors New Mind (1989), contends that this inconsistency requires a change in quantum theory to provide a new theory he calls "correct quantum gravity."Furthermore, the observations astronomers make with new technologies disclose a total mass in the universe that is less than about 10 percent of the total mass that mathematical calculations require the universe to contain on the basis of its observed rate of expansion. If the universe contains no more mass than we have been able to observe directly, then according to all current theories it should have expanded in the past, and be expanding now, much more rapidly than the rate actually observed. It istherefore believed that 90 percent or more of the mass in the universe is some sort of "dark matter" that has not yet been observed and the nature of which is unknown. Current theories favor either WIMPs (weakly interacting massive particles) or MACHOs (massive compact halo objects). Other similar mysteries abound and increase in number as our ability to observe improves.The progress of biological and life sciences has been similar to that of the physical sciences, except that it has occurred several centuries later. The theory of biological evolution first came to the attention of scientists with the publication of Darwin's Origin of Species in 1859. But Darwin lacked any explanation of the causes of variation and inheritance of characteristics. These were provided by Gregor Mendel, who laid the mathematical foundation of genetics with the publication of papers in 1865 and 1866.Medicine, according to Lewis Thomas, is the youngest science, having become truly scientific only in the 1930s. Recent and ongoing research has created uncertainty about even such basic concepts as when and how life begins and when death occurs, and we are spending billions in an attempt to learn how much it may be possible to know about human genetics. Modern medicine has demonstrably improved both our life expectancies and our health, and further improvements continue to be made as research progresses. But new questions arise even more rapidly than our research resources grow, as the host of problems related to the Human Genome Project illustrates.From even such an abbreviated and incomplete survey of science as this, it appears that increasing knowledge does not result in a commensurate decrease in ignorance, but, on thecontrary, exposes new lacunae in our comprehension and confronts us with unforeseen questions disclosing areas of ignorance of which wewere not previously aware.Thus the concept of science as an expanding body of knowledge that will eventually encompass or dispel all significant areas of ignorance is an illusion. Scientists and philosophers are now observing that it is naive to regard science as a process that begins with observations that are organized into theories and are then subsequently tested by experiments. The late Karl Popper, a leading philosopher of science, wrote in The Growth of Scientific Knowledge (1960) chat science starts from problems, not from observations, and chat every worthwhile new theory raises new problems. Thus there is no danger that science will come to an end because it has completed its task, clanks to the "infinity of our ignorance."At least since Thomas Kuhn published The Structure of Scientific Revolutions (1962), it has been generally recognized that observations are the result of theories (called paradigms by Kuhn and other philosophers), for without theories of relevance and irrelevance there would be no basis for determining what observations to make. Since no one can know everything, to be fully informed on any subject (a claim sometimes made by those in authority) is simply to reach a judgment that additional data are not important enough to be worth the trouble of securing or considering.To carry the analysis another step, it must be recognized that theories are the result of questions and questions are the product of perceived ignorance. Thus it is chat ignorance gives rise to inquiry chat produces knowledge, which, in turn, discloses newareas of ignorance. This is the paradox of knowledge: As knowledge increases so does ignorance, and ignorance may increase more than its related knowledge.My own metaphor to illustrate the relationship of knowledge and ignorance is based on a line from Matthew Arnold: "For we are here as on a darkling plain...." The dark chat surrounds us, chat, indeed, envelops our world, is ignorance. Knowledge is the illumination shed by whatever candles (or more technologically advanced light sources) we can provide. As we light more and more figurative candles, the area of illumination enlarges; but the area beyond illumination increases geometrically. We know chat there is much we don't know; but we cannot know how much there is chat we don't know. Thus knowledge is finite, but ignorance is infinite, and the finite cannot ever encompass the infinite.This is a revised version of an article originally published in COSMOS 1994. Copyright 1995 by Lee Loevinger.Lee Loevinger is a Washington lawyer and former assistant attorney general of the United States who writes frequently for scientific c publications. He hasparticipated for many years as a member, co-chair, or liaison with the National Conference of Lawyers and Scientists, and he is a founder and former chair of the Science and Technology Section of the American Bar Association. Office address: Hogan and Hartson, 555 Thirteenth St. NW, Washington, DC 20004.人类从古类人猿进化到当前的状态这个长久的进化过程中的最大成就是有关于人类自身、世界以及宇宙众多知识的获得和积聚。

博士研究生英语精读教案资料翻译4-6课(中科院)

博士研究生英语精读教案资料翻译4-6课(中科院)

第四课科学的事实:如何与基督徒的信仰协调?Scientific Facts: Compatible with Christian Faith?有人会认为,科学与基督教之间不必要的争斗已在很久之前完满结束。

然而,科学家及神学家近年的言论显示他们并不认同这看法。

例如, Richard Dawkins ——一位敢言的无神论者——认为「达尔文使成为知性上完满的无神论者变得可能」。

在神学界方面,一个基要派的基督徒组织 Institute of Creation Research (ICR) 不断出版反进化论的刊物,其中提及「……爬虫类动物进化成哺乳类动物,是科学上不能接纳的主张」。

有趣的是,正如 ICR 过去的出版物都有瑕疵一样,这些言论在科学界比起反基督教的科学家在神学界更广为人知。

科学与基督教争斗的原因可追溯至三个错误。

首先,双方的支持者都无法介定「进化」一词。

此外,双方都不能接受科学是基督徒世界观的一种产物。

最后,双方对科学与神学的限制都产生混淆。

甚么是进化?The American Scientific Affiliation 出版了一本超卓的著作,名为Teaching Science in a Climate of Controversy ,对象是任教高中科学的老师。

书中对「进化」有五个解释。

微观进化 ( 即在繁殖项目中产生杂交品种,或因适应环境而产生轻微变化的品种 ) 经常发生。

宏观进化 ( 即假设人类从单细胞或无机混合物进化而来 ) 的学说并不明显,争议性亦较高。

最后,「进化」有时被视为自然主义者的富宗教色彩的信念,认为「人类是无目的及自然过程中的产物」。

只有少数人 ( 如果有的话 ) 会否认,随着时间的过去,植物界及动物界会有轻微的变化。

相反地,只有少数人会认为人类 ( 以及宇宙中其余的生物 ) 只是随机而来的产物。

当一些生物学家把宏观进化论的假设指为「事实」时,他们会歪曲证据或掩饰事情的真相。

(整理)中科院博士研究生英语精读教材翻译4-6课.

(整理)中科院博士研究生英语精读教材翻译4-6课.

第四课科学的事实:如何与基督徒的信仰协调?Scientific Facts: Compatible with Christian Faith?有人会认为,科学与基督教之间不必要的争斗已在很久之前完满结束。

然而,科学家及神学家近年的言论显示他们并不认同这看法。

例如, Richard Dawkins ——一位敢言的无神论者——认为「达尔文使成为知性上完满的无神论者变得可能」。

在神学界方面,一个基要派的基督徒组织 Institute of Creation Research (ICR) 不断出版反进化论的刊物,其中提及「……爬虫类动物进化成哺乳类动物,是科学上不能接纳的主张」。

有趣的是,正如 ICR 过去的出版物都有瑕疵一样,这些言论在科学界比起反基督教的科学家在神学界更广为人知。

科学与基督教争斗的原因可追溯至三个错误。

首先,双方的支持者都无法介定「进化」一词。

此外,双方都不能接受科学是基督徒世界观的一种产物。

最后,双方对科学与神学的限制都产生混淆。

甚么是进化?The American Scientific Affiliation 出版了一本超卓的著作,名为Teaching Science in a Climate of Controversy ,对象是任教高中科学的老师。

书中对「进化」有五个解释。

微观进化 ( 即在繁殖项目中产生杂交品种,或因适应环境而产生轻微变化的品种 ) 经常发生。

宏观进化 ( 即假设人类从单细胞或无机混合物进化而来 ) 的学说并不明显,争议性亦较高。

最后,「进化」有时被视为自然主义者的富宗教色彩的信念,认为「人类是无目的及自然过程中的产物」。

只有少数人 ( 如果有的话 ) 会否认,随着时间的过去,植物界及动物界会有轻微的变化。

相反地,只有少数人会认为人类 ( 以及宇宙中其余的生物 ) 只是随机而来的产物。

当一些生物学家把宏观进化论的假设指为「事实」时,他们会歪曲证据或掩饰事情的真相。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1课知识的悖论The Paradox of KnowledgeThe greatest achievement of humankind in its long evolution from ancient hominoid ancestors to its present status is the acquisition and accumulation of a vast body of knowledge about itself, the world, and the universe. The products of this knowledge are all those things that, in the aggregate, we call "civilization," including language, science, literature, art, all the physical mechanisms, instruments, and structures we use, and the physical infrastructures on which society relies. Most of us assume that in modern society knowledge of all kinds is continually increasing and the aggregation of new information into the corpus of our social or collective knowledge is steadily reducing the area of ignorance about ourselves, the world, and the universe. But continuing reminders of the numerous areas of our present ignorance invite a critical analysis of this assumption.In the popular view, intellectual evolution is similar to, although much more rapid than, somatic evolution. Biological evolution is often described by the statement that "ontogeny recapitulates phylogeny"--meaning that the individual embryo, in its development from a fertilized ovum into a human baby, passes through successive stages in which it resembles ancestral forms of the human species. The popular view is that humankind has progressed from a state of innocent ignorance, comparable to that of an infant, and gradually has acquired more and more knowledge, much as a child learns in passing through the several grades of the educational system. Implicit in this view is an assumption that phylogeny resembles ontogeny, so that there will ultimately be a stage in which the accumulation of knowledge is essentially complete, at least in specific fields, as if society had graduated with all the advanced degrees that signify mastery of important subjects.Such views have, in fact, been expressed by some eminent scientists. In 1894 the great American physicist Albert Michelson said in a talk at the University of Chicago:While it is never safe to affirm that the future of Physical Science has no marvels in store even more astonishing than those of the past, it seems probable that most of the grand underlying principles have been firmly established and that further advances are to be sought chiefly in the rigorous application of these principles to all the phenomena which come under our notice .... The future truths of Physical Science ate to be looked for in the sixth place of decimals.In the century since Michelson's talk, scientists have discovered much more than the refinement of measurements in the sixth decimal place, and none is willing to make a similar statement today. However, many still cling to the notion that such astate of knowledge remains a possibility to be attained sooner or later. Stephen Hawking, the great English scientist, in his immensely popular book A Brief History of Time (1988), concludes with the speculation that we may "discover a complete theory" that "would be the ultimate triumph of human reason--for then we would know the mind of God." Paul Davies, an Australian physicist, echoes that view by suggesting that the human mind may be able to grasp some of the secrets encompassed by the title of his book The Mind of God (1992). Other contemporary scientists write of "theories of everything," meaning theories that explain all observable physical phenomena, and Nobel Laureate Steven Weinberg, one of the founders of the current standard model of physical theory, writes of his Dreams of a Final Theory (1992).Despite the eminence and obvious yearning of these and many other contemporary scientists, there is nothing in the history of science to suggest that any addition of data or theories to the body of scientific knowledge will ever provide answers to all questions in any field. On the contrary, the history of science indicates that increasing knowledge brings awareness of new areas of ignorance and of new questions to be answered.Astronomy is the most ancient of the sciences, and its development is a model of other fields of knowledge. People have been observing the stars and other celestial bodies since the dawn of recorded history. As early as 3000 B.C. the Babylonians recognized a number of the constellations. In the sixth century B.C., Pythagoras proposed the notion of a spherical Earth and of a universe with objects in it chat moved in accordance with natural laws. Later Greek philosophers taught that the sky was a hollow globe surrounding the Earth, that it was supported on an axis running through the Earth, and chat stars were inlaid on its inner surface, which rotated westward daily. In the second century A.D., Ptolemy propounded a theory of a geocentric (Earth-centered) universe in which the sun, planets, and stars moved in circular orbits of cycles and epicycles around the Earth, although the Earth was not at the precise center of these orbits. While somewhat awkward, the Ptolemaic system could produce reasonably reliable predictions of planetary positions, which were, however, good for only a few years and which developed substantial discrepancies from actual observations over a long period of time. Nevertheless, since there was no evidence then apparent to astronomers that the Earth itself moves, the Ptolemaic system remained unchallenged for more than 13 centuries.In the sixteenth century Nocolaus Copernicus, who is said to have mastered all the knowledge of his day in mathematics, astronomy, medicine, and theology, became dissatisfied with the Ptolemaic system. He found that a heliocentric system was bothmathematically possible and aesthetically more pleasing, and wrote a full exposition of his hypothesis, which was not published until 1543, shortly after his death. Early in the seventeenth century, Johannes Kepler became imperial mathematician of the Holy Roman Empire upon the death of Tycho Brahe, and he acquired a collection of meticulous naked-eye observations of the positions of celestial bodies chat had been made by Brahe. On the basis of these data, Kepler calculated that both Ptolemy and Copernicus were in error in assuming chat planets traveled in circular orbits, and in 1609 he published a book demonstrating mathematically chat the planets travel around the sun in elliptical orbits. Kepler's laws of planetary motion are still regarded as basically valid.In the first decade of the seventeenth century Galileo Galilei learned of the invention of the telescope and began to build such instruments, becoming the first person to use a telescope for astronomical observations, and thus discovering craters on the moon, phases of Venus, and the satellites of Jupiter. His observations convinced him of the validity of the Copernican system and resulted in the well-known conflict between Galileo and church authorities. In January 1642 Galileo died, and in December of chat year Isaac Newton was born. Modern science derives largely from the work of these two men.Newton's contributions to science are numerous. He laid the foundations for modem physical optics, formulated the basic laws of motion and the law of universal gravitation, and devised the infinitesimal calculus. Newton's laws of motion and gravitation are still used for calculations of such matters as trajectories of spacecraft and satellites and orbits of planets. In 1846, relying on such calculations as a guide to observation, astronomers discovered the planet Neptune.While calculations based on Newton's laws are accurate, they are dismayingly complex when three or more bodies are involved. In 1915, Einstein announced his theory of general relativity, which led to a set of differential equations for planetary orbits identical to those based on Newtonian calculations, except for those relating to the planet Mercury. The elliptical orbit of Mercury rotates through the years, but so slowly that the change of position is less than one minute of arc each century. The equations of general relativity precisely accounted for this precession; Newtonian equations did not.Einstein's equations also explained the red shift in the light from distant stars and the deflection of starlight as it passed near the sun. However, Einstein assumed chat the universe was static, and, in order to permit a meaningful solution to the equations of relativity, in 1917 he added another term, called a "cosmological constant," to the equations. Although the existence and significance of a cosmological constant is stillbeing debated, Einstein later declared chat this was a major mistake, as Edwin Hubble established in the 1920s chat the universe is expanding and galaxies are receding from one another at a speed proportionate to their distance.Another important development in astronomy grew out of Newton's experimentation in optics, beginning with his demonstration chat sunlight could be broken up by a prism into a spectrum of different colors, which led to the science of spectroscopy. In the twentieth century, spectroscopy was applied to astronomy to gun information about the chemical and physical condition of celestial bodies chat was not disclosed by visual observation. In the 1920s, precise photographic photometry was introduced to astronomy and quantitative spectrochemical analysis became common. Also during the 1920s, scientists like Heisenberg, de Broglie, Schrodinger, and Dirac developed quantum mechanics, a branch of physics dealing with subatomic particles of matter and quanta of energy. Astronomers began to recognize that the properties of celestial bodies, including planets, could be well understood only in terms of physics, and the field began to be referred to as "astrophysics."These developments created an explosive expansion in our knowledge of astronomy. During the first five thousand years or more of observing the heavens, observation was confined to the narrow band of visible light. In the last half of this century astronomical observations have been made across the spectrum of electromagnetic radiation, including radio waves, infrared, ultraviolet, X-rays, and gamma rays, and from satellites beyond the atmosphere. It is no exaggeration to say chat since the end of World War II more astronomical data have been gathered than during all of the thousands of years of preceding human history.However, despite all improvements in instrumentation, increasing sophistication of analysis and calculation augmented by the massive power of computers, and the huge aggregation of data, or knowledge, we still cannot predict future movements of planets and other elements of even the solar system with a high degree of certainty. Ivars Peterson, a highly trained science writer and an editor of Science News, writes in his book Newton's Clock (1993) that a surprisingly subtle chaos pervades the solar system. He states:In one way or another the problem of the solar system's stability has fascinated and tormented asrtonomers and mathematicians for more than 200 years. Somewhat to the embarrassment of contemporary experts, it remains one of the most perplexing, unsolved issues in celestial mechanics. Each step toward resolving this and related questions has only exposed additional uncertainties and even deeper mysteries.Similar problems pervade astronomy. The two major theories of cosmology,general relativity and quantum mechanics, cannot be stated in the same mathematical language, and thus are inconsistent with one another, as the Ptolemaic and Copernican theories were in the sixteenth century, although both contemporary theories continue to be used, but for different calculations. Oxford mathematician Roger Penrose, in The Emperors New Mind (1989), contends that this inconsistency requires a change in quantum theory to provide a new theory he calls "correct quantum gravity."Furthermore, the observations astronomers make with new technologies disclose a total mass in the universe that is less than about 10 percent of the total mass that mathematical calculations require the universe to contain on the basis of its observed rate of expansion. If the universe contains no more mass than we have been able to observe directly, then according to all current theories it should have expanded in the past, and be expanding now, much more rapidly than the rate actually observed. It is therefore believed that 90 percent or more of the mass in the universe is some sort of "dark matter" that has not yet been observed and the nature of which is unknown. Current theories favor either WIMPs (weakly interacting massive particles) or MACHOs (massive compact halo objects). Other similar mysteries abound and increase in number as our ability to observe improves.The progress of biological and life sciences has been similar to that of the physical sciences, except that it has occurred several centuries later. The theory of biological evolution first came to the attention of scientists with the publication of Darwin's Origin of Species in 1859. But Darwin lacked any explanation of the causes of variation and inheritance of characteristics. These were provided by Gregor Mendel, who laid the mathematical foundation of genetics with the publication of papers in 1865 and 1866.Medicine, according to Lewis Thomas, is the youngest science, having become truly scientific only in the 1930s. Recent and ongoing research has created uncertainty about even such basic concepts as when and how life begins and when death occurs, and we are spending billions in an attempt to learn how much it may be possible to know about human genetics. Modern medicine has demonstrably improved both our life expectancies and our health, and further improvements continue to be made as research progresses. But new questions arise even more rapidly than our research resources grow, as the host of problems related to the Human Genome Project illustrates.From even such an abbreviated and incomplete survey of science as this, it appears that increasing knowledge does not result in a commensurate decrease in ignorance, but, on the contrary, exposes new lacunae in our comprehension and confronts us with unforeseen questions disclosing areas of ignorance of which wewere not previously aware.Thus the concept of science as an expanding body of knowledge that will eventually encompass or dispel all significant areas of ignorance is an illusion. Scientists and philosophers are now observing that it is naive to regard science as a process that begins with observations that are organized into theories and are then subsequently tested by experiments. The late Karl Popper, a leading philosopher of science, wrote in The Growth of Scientific Knowledge (1960) chat science starts from problems, not from observations, and chat every worthwhile new theory raises new problems. Thus there is no danger that science will come to an end because it has completed its task, clanks to the "infinity of our ignorance."At least since Thomas Kuhn published The Structure of Scientific Revolutions (1962), it has been generally recognized that observations are the result of theories (called paradigms by Kuhn and other philosophers), for without theories of relevance and irrelevance there would be no basis for determining what observations to make. Since no one can know everything, to be fully informed on any subject (a claim sometimes made by those in authority) is simply to reach a judgment that additional data are not important enough to be worth the trouble of securing or considering.To carry the analysis another step, it must be recognized that theories are the result of questions and questions are the product of perceived ignorance. Thus it is chat ignorance gives rise to inquiry chat produces knowledge, which, in turn, discloses new areas of ignorance. This is the paradox of knowledge: As knowledge increases so does ignorance, and ignorance may increase more than its related knowledge.My own metaphor to illustrate the relationship of knowledge and ignorance is based on a line from Matthew Arnold: "For we are here as on a darkling plain...." The dark chat surrounds us, chat, indeed, envelops our world, is ignorance. Knowledge is the illumination shed by whatever candles (or more technologically advanced light sources) we can provide. As we light more and more figurative candles, the area of illumination enlarges; but the area beyond illumination increases geometrically. We know chat there is much we don't know; but we cannot know how much there is chat we don't know. Thus knowledge is finite, but ignorance is infinite, and the finite cannot ever encompass the infinite.This is a revised version of an article originally published in COSMOS 1994. Copyright 1995 by Lee Loevinger.Lee Loevinger is a Washington lawyer and former assistant attorney general of the United States who writes frequently for scientific c publications. He hasparticipated for many years as a member, co-chair, or liaison with the National Conference of Lawyers and Scientists, and he is a founder and former chair of the Science and Technology Section of the American Bar Association. Office address: Hogan and Hartson, 555 Thirteenth St. NW, Washington, DC 20004.人类从古类人猿进化到当前的状态这个长久的进化过程中的最大成就是有关于人类自身、世界以及宇宙众多知识的获得和积聚。

相关文档
最新文档