中科大固体物理课程作业解答
固体物理答案-第二章

N0=6.0221023,与N0对应的质量应为
M=23+35.5=58.5(g)
Na原子量
Cl原子量
阿伏加德罗常数
面心立方,最近邻原子有12个, 由N个惰性气体原子构成的分子晶体,其总互作用势能可表示为
(2)计及最近邻和次近邻,次近邻有6个。
2.14 KCl晶体的体积弹性模量为 相邻离子间距缩小0.5%,需要施加多大的压力。 ,若要使晶体中 解:根据体积弹性模量K的定义, 得 ,因而 设R为相邻离子间的距离。KCL具有NaCL结构,平均每体 才有一个离子,若晶体中共含N个离子,则晶体体积 积
式中,V为晶体体积,N为晶体包含的原子数,v为每个原子平 均占据的体积。若以
表示晶体包含的晶胞数,
中每个晶胞的体积,n表示晶胞中所含的粒子数,则(1)式完全 等效于
解:题给
表示晶体
(1)
于是得
(2)
R为离子间的最短距离。题给的各种晶格均为立方格子,如令
证明:
选取负离子O为参考离子,相邻两离子间的距离用R表示。
第j个离子与参考离子的距离可表示为
对于参考
离子O,它与其它离子的互作用势能为
马德隆常数
2.3 设两原子间的互作用能可由 表述。 式中第一项为吸引能,第二项为排斥能; 均为正的常数。证明,要使这两原子系统处于平衡状态,必须n>m。 且 即当 时, 证明:相互作用着的两原子系统要处于稳定平衡状态,相应 于平衡距离 处的能量应为能量的极小值,
为常数,试求
(1)平衡时原子间的最短距离;
(2)平衡时晶体体积;
(3)平衡时体积弹性模量;
(4)抗张强度。
解:
(1)
由
得
01
固体物理基础课后1到10题答案

一.本章习题P272习题1.试证理想六方密堆结构中c/a=.一. 说明:C 是上下底面距离,a 是六边形边长。
二. 分析:首先看是怎样密堆的。
如图(书图(a),P8),六方密堆结构每个格点有12个近邻。
(同一面上有6个,上下各有3个)上下底面中间各有一个球,共有六个球与之相切,每个球直径为a 。
中间层的三个球相切,又分别与上下底面的各七个球相切。
球心之间距离为a 。
所以球心之间即格点之间距离均为a (不管是同层还是上下层之间)。
三. 证明:如图OA=a ,OO ’=C/2(中间层是上下面层的一半),AB=a O ’是ΔABC 的三垂线交点33'a AB AO ==∴(由余弦定理)330cos 2,30cos 230cos 2222a a x x a ax x a x ===-+=οοο633.1322384132)2()2()3()2(2222222222''≈===∴+=+=+=a c c a ac a ac OA AO OO2.若晶胞基矢c b a ρρρ,,互相垂直,试求晶面族(hkl )的面间距。
一、分析:我们想到倒格矢与面间距的关系G d ρπ2=。
倒格矢与晶面族 (hkl )的关系321b l b k b h G ρρρρ++=写出)(321b b b ρρρ与正格子基矢 )(c b a ρρρ的关系。
即可得与晶面族(hkl ) 垂直的倒格矢G ρ。
进而求得此面间距d 。
二、解:c b a ρρρΘ,,互相垂直,可令k c c j b b i a a ρρρρρρ===,,晶胞体积abc c b a v =⨯⋅=)(ρρρ倒格子基矢:kcj b i a abc b a v b j b i a k c abc a c v b ia k c jb abc c b v b ρρρρρρρρρρρρρρρρρρπππππππππ2)(2)(22)(2)(22)(2)(2321=⨯=⨯==⨯=⨯==⨯=⨯=而与 (hkl )晶面族垂直的倒格矢 222321)()()(2)(2cl b k a h G k cl j b k i a h b l b k b h G ++=∴++=++=ππρρρρρρρρ故(hkl ) 晶面族的面间距222222)()()(1)()()(222cl b k a h cl b k a h G d ++=++==πππρ3.若在体心立方晶胞的每个面中心处加一个同类原子,试说明这种晶体的原胞应如何选择?每个原胞含有几个原子?1.分析:考虑选取原胞的条件:(即布拉菲晶格的最小单元)(1)体积最小的重复结构单元(2)只包含一个格点(3)能反映晶格的周期性应将几个原子组合成一个格点,然后构成原胞。
固体物理习题参考答案

固体物理第一次习题参考答案1.如果将等体积球分别排成下列结构,设x 表示刚球所占体积与总体积之比,证明结构 x简单立方 0.526x π=≈体心立方 30.688x π=≈ 面心立方 20.746x π=≈ 六角密排 20.746x π=≈ 金刚石 30.3416x π=≈解:设钢球半径为r ,立方晶系晶格常数为a ,六角密排晶格常数为a,c 钢球体积为V 1,总体积为V 2(1)简单立方单胞含一个原子,a r =2 52.06343321≈==ππa r V V(2)体心立方取惯用单胞,含两个原子,r a 43= 68.0833423321≈=⋅=ππar V V (3)面心立方取惯用单胞,含4个原子,r a =2 74.0623443321≈=⋅=ππar V V (4)六角密排与面心立方同为密堆积结构,可预期二者具有相同的空间占有率 取图示单胞,含两个原子,a r =2 单胞高度a c 38=(见第2题) 74.062233422321≈=⋅⋅=ππc a r V V (5)金刚石取惯用单胞,含8个原子,r a 2341= 34.01633483321≈=⋅=ππar V V2.试证六方密排密堆积结构中128() 1.6333c a =≈解: 六角密排,如图示,4个原子构成正四面体222)2332(2a a c =⋅+⎪⎭⎫⎝⎛ ⇒ a c 38=3.证明:体心立方晶格的倒格子是面心立方,面心立方的倒格子是体心立方。
证:体心立方基矢取为⎪⎪⎪⎩⎪⎪⎪⎨⎧+-=++-=-+=)(2)(2)(2321k j i a a k j i a a k j i a a其中a 为晶格常数其倒格子基矢,按定义)(2)(21111114212)(223321j i b j i a kj ia a a a b+=+=--⋅=⨯Ω=πππ)(2)(2132k j b a a b +=⨯Ω=π)(2)(2213k i b a a b +=⨯Ω=π可见,体心立方的倒格子是晶格常数为a b π4=的面心立方。
固体物理答案陆栋.pdf

《固体物理学》习题解答( 仅供参考 )参加编辑学生柯宏伟(第一章),李琴(第二章),王雯(第三章),陈志心(第四章),朱燕(第五章),肖骁(第六章),秦丽丽(第七章)指导教师黄新堂华中师范大学物理科学与技术学院2003级2006 年 6 月第一章晶体结构1.氯化钠与金刚石型结构是复式格子还是布拉维格子,各自的基元为何?写出这两种结构的原胞与晶胞基矢,设晶格常数为 a。
解:氯化钠与金刚石型结构都是复式格子。
氯化钠的基元为一个 Na+和一个 Cl-组成的正负离子对。
金刚石的基元是一个面心立方上的C原子和一个体对角线上的C原子组成的C原子对。
由于 NaCl 和金刚石都由面心立方结构套构而成,所以,其元胞基矢都为:⎧⎪a1=a2( j + k)⎪⎪⎨a 2=a2( k + i)⎪⎪⎪a 3=a ( i +j)⎩ 2相应的晶胞基矢都为:⎧a =a i,⎪⎨b =a j,⎪⎩c =a k.2.六角密集结构可取四个原胞基矢a1, a 2,a 3与 a4,如图所示。
试写出O'A1A3、A1 A3 B3 B1、 A2 B2 B5 A5、 A1 A2 A3 A4 A5 A6这四个晶面所属晶面族的晶面指数(h k l m)。
解:(1).对于O'A1A3面,其在四个原胞基矢上的截矩分别为:1,1,- 1 ,1。
所以,其晶面2( )指数为。
(2).对于A1A3B3B1面,其在四个原胞基矢上的截矩分别为:1,1,-12,∞。
所以,其晶面指数为(1120)。
(3).对于A2B2B5A5面,其在四个原胞基矢上的截矩分别为:1,-1,∞,∞。
1所以,其晶面指数为 (1 100)。
(4).对于 A 1 A 2 A 3 A 4 A 5 A 6 面,其在四个原胞基矢上的截矩分别为:∞ ,∞ ,∞ ,1。
所以, 其晶面指数为 (0001) 。
3. 如将等体积的硬球堆成下列结构,求证球体可能占据的最大体积与总体积的比为:简立方: π6 ;体心立方: 83π;面心立方: 62π ;六角密集: 62π ;金刚石:3π 。
固体物理习题解答

《固体物理学》部分习题解答补充:证明“晶体的对称性定律”。
证明:晶体中对称轴的轴次n并不是任意的,而是仅限于 n=1,2,3,4,6这一原理称为“晶体的对称性定律”。
现证明如下:设晶体中有一旋转轴n 通过某点O,根据前一条原理必有一平面点阵与你n 垂直,而在其中必可找出与 n垂直的属于平移群的素向量a,将a作用于O得到A 点将-a作用于O点得到A’点:若a= ,则L( )及L(- )必能使点阵复原,这样就可得点阵点B,B’,可得向量BB’,显然BB与a平行,因为空间点阵中任意互相平行的两个直线点阵的素向量一定相等,因而向量BB’的长度必为素向量a的整数倍即:BB’= ma由图形关系可得:=即m=0,±1,±2m n-2 -1 p 2-1 - 30 0 41 62 1 2p 1所以 n=1,2,3,4,6综上所述可得结论:在晶体结构中,任何对称轴或轴性对称元素的轴次只有一重,二种,三重,四重或六重等五种,而不可能存在五重和七重及更高的其它轴次,这就是晶体对称性定律。
晶体的对称性定律证明:1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方 。
解 由倒格子定义2311232a a b a a a π⨯=⋅⨯ 3121232a a b a a a π⨯=⋅⨯ 1231232a a b a a a π⨯=⋅⨯体心立方格子原胞基矢123(),(),()222a a a a i j k a i j k a i j k =-++=-+=-+倒格子基矢231123022()()22a a a ab i j k i j k a a a v ππ⨯==⋅-+⨯+-⋅⨯202()()4a i j k i j k v π=⋅-+⨯+-2()j k a π=+ 同理31212322()a a b i k a a a aππ⨯==+⋅⨯32()b i j a π=+ 可见由123,,b b b为基矢构成的格子为面心立方格子 面心立方格子原胞基矢123()/2()/2()/2a a j k a a k i a a i j =+=+=+倒格子基矢2311232a a b a a a π⨯=⋅⨯ 12()b i j k a π=-++同理22()b i j k a π=-+ 32()b i j k a π=-+可见由123,,b b b为基矢构成的格子为体心立方格子1.4 证明倒格子原胞的体积为03(2)v π,其中0v 为正格子原胞体积证 倒格子基矢2311232a a b a a a π⨯=⋅⨯3121232a a b a a a π⨯=⋅⨯1231232a a b a a a π⨯=⋅⨯倒格子体积*0123()v b b b =⋅⨯3*23311230(2)()()()v a a a a a a v π=⨯⋅⨯⨯⨯ 3*00(2)v v π=1.5 证明:倒格子矢量112233G hb h b h b =++垂直于密勒指数为123()hh h 的晶面系。
《固体物理学》答案[1]
![《固体物理学》答案[1]](https://img.taocdn.com/s3/m/f8d34b12866fb84ae45c8da9.png)
* v0 =
(2π )3 v0
1.5 证明:倒格子矢量 G = h1b1 + h2 b2 + h3b3 垂直于密勒指数为 ( h1h2 h3 ) 的晶面系。 证:
v v v uuu v uuu r a r a a a CA = 1 − 3 , CB = 2 − 3 h1 h3 h2 h3 uuu r v Gh1h2h3 ⋅ CA = 0 容易证明 v uuu r Gh1h2h3 ⋅ CB = 0 v v v v G = h1b1 + h2b2 + h3b3 与晶面系 (h1h2 h3 ) 正交。 v v v h k l ( ) 2 + ( )2 + ( )2 ;说明面 a b c
图 1.3 体心立方晶胞
(2)对体心立方晶体,任一个原子有 8 个最近邻,若原子刚性球堆积,如图 1.3 所示,体心位置 O 的原 子 8 个角顶位置的原子球相切, 因为晶胞空间对角线的长度为 3a = 4r , V = a 3 , 晶胞内包含 2 个原子, 所
2* 4 3π( 以ρ = a3
3a 3 4
−
3 ε 23 2 1 − ε 23 2 ε 33
由上式可得
ε 23 = 0, ε 32 = 0, ε 11 = ε 22 . ε 11 ε = 0 0 0 ε 11 0 0 0 . ε 33
于是得到六角晶系的介电常数
附:证明不存在 5 度旋转对称轴。 证:如下面所示,A,B 是同一晶列上 O 格点的两个最近邻格点,如果绕通过 O 点并垂直于纸面的转轴顺时 针旋转θ 角,则 A 格点转到 A 点,若此时晶格自身重合,点处原来必定有一格点,如果再绕通过 O 点的
3a = 8r , 晶胞体积 V = a 3
固体物理参考答案(前七章)

固体物理习题参考答案(部分)第一章 晶体结构1.氯化钠:复式格子,基元为Na +,Cl -金刚石:复式格子,基元为两个不等价的碳原子 氯化钠与金刚石的原胞基矢与晶胞基矢如下:原胞基矢)ˆˆ()ˆˆ()ˆˆ(213212211j i a a i k a a k j a a +=+=+= , 晶胞基矢 ka a j a a ia a ˆˆˆ321===2. 解:31A A O ':h:k;l;m==-11:211:11:111:1:-2:1 所以(1 1 2 1) 同样可得1331B B A A :(1 1 2 0); 5522A B B A :(1 1 0 0);654321A A A A A A :(0 0 0 1)3.简立方: 2r=a ,Z=1,()63434r 2r a r 3333πππ===F体心立方:()πππ833r4r 342a r 3422a 3r 4a r 4a 33333=⨯=⨯=∴===F Z ,,则面心立方:()πππ622r 4r 34434442r 4a r 4a 233ar 33=⨯=⨯=∴===F Z ,,则 六角密集:2r=a, 60sin 2c a V C = a c 362=,πππ622336234260sin 34223232=⨯⨯⨯=⨯=⎪⎭⎫ ⎝⎛a a c a r F a金刚石:()πππ163r 38r 348a r 3488Z r 8a 33333=⨯=⨯===F ,, 4. 解:'28109)31arccos(312323)ˆˆˆ()ˆˆˆ(cos )ˆˆˆ()ˆˆˆ(021*******12211=-=-=++-⋅+-=⋅=++-=+-=θθa a k j i a k j i a a a a a kj i a a kj i a a 5.解:对于(110)面:2a 2a a 2S =⋅=所包含的原子个数为2,所以面密度为22a2a22=对于(111)面:2a 2323a 22a 2S =⨯⨯= 所包含的原子个数为2,所以面密度为223a34a 232=8.证明:ABCD 是六角密堆积结构初基晶胞的菱形底面,AD=AB=a 。
固体物理试题解答

一.简答题(20)1、玻恩-卡门边界条件及其重要意义。
玻恩-卡门边界条件:设想在一长为Na 的有限晶体边界之外,仍然有无穷多个相同的晶体,并且各块晶体内相对应的原子的运动情况一样,即第j 个原子和第tN +j个原子的运动情况一样,其中t=1,2,3…。
书P109其重要意义:P992、说明淬火后的金属材料变硬的原因。
P143我们已经知道晶体的一部分相对于另一部分的滑移,实际是位错线的滑移,位错线的移动是逐步进行的,使得滑移的切应力最小。
这就是金属一般较软的原因之一。
显然,要提高金属的强度和硬度,似乎可以通过消除位错的办法来实现。
但事实上位错是很难消除的。
相反,要提高金属的强度和硬度,通常采用增加位错的办法来实现。
金属淬火就是增加位错的有效办法。
将金属加热到一定高温,原子振动的幅度比常温时的幅度大得多,原子脱离正常格点的几率比常温时大得多,晶体中产生大量的空穴、填隙缺陷。
这些点缺陷容易形成位错。
也就是说,在高温时,晶体内的位错缺陷比常温时多得多。
高温的晶体在适宜的液体中急冷,高温时新产生的位错来不及恢复和消退,大部分被保留了下来。
数目众多的位错相互交织在一起,某一方向的位错的滑移,会受到其他方向位错的牵制,使位错滑移的阻力大大增加,使得金属变硬。
3、杂化轨道理论。
P61为了解释金刚石中碳原子具有4个等同的共价键,1931年泡林(Pauling )和斯莱特(Slater )提出了杂化轨道理论。
碳原子有4个价电子2s ,2p x ,2p y ,2p z ,它们分别对应ϕ2s ,ϕ2px ,ϕ2py ,ϕ2pz 量子态,在构成共价键时,它们“混合”起来重新组成四个等价的轨道,其中每一个轨道包含有s 41和p 43的成分,这种轨道称为杂化轨道,分别对应4个新的量子态()z y x p p p 222s 2121ϕϕϕϕψ+++= ()z y x p p p 222s 2221ϕϕϕϕψ--+= ()z y x p p p 222s 2321ϕϕϕϕψ-+-= ()zy x p p p 222s 2421ϕϕϕϕψ+--= 4个电子分别占据ψ1,ψ2,ψ3,ψ4新轨道,在四面体顶角方向形成4个共价键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F m* dv dt
在周期场中电子的有效质量m*与k有关。
❖ 在能带底: E(k)取极小值,
❖ 在能带顶: E(k)取极大值,
d 2E dk 2
0
d 2E dk 2
0
m*>0; m*<0
• 导出k=0点上的有效质量张量,并找出主轴 方向
对非简并的半导体采用玻尔兹曼统计处理,在玻尔兹曼统计中E=3/2kBT
一位线性谐振子
Chapter 1 金属自由电子气模型
费米面上的电子能态密度
Cv
2
2
nkB
T TF
自由电子气模型
晶体结构
简单立方: 体心立方: 面心立方:
C 第一层原子ABC组成边长a=2r的正三角形,第二层原子D与之相切,组成正四面体
证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方
定义(x, y, z) (x)( y)(z),代入薛定谔方程可得:
-
h2 2m
(
(
y)
(
z)d2 ( x2x)(x)
(
z
)
d
2 ( y2
y)
(
x)
(
y)
d
2 ( z2
z)
)
E
(
x)
(
y)
(
z)
则: 1 (x)
d
2 ( x) x2
-
2m h2
1 Ex ; ( y)
d
2( y) y2
-
2m h2
Ey;
中科大固体物理(春季学期)课程答案
授课教师:朱老师
一维无限深方势阱
X<-a --a<X<a
X>a
-a
a
a=L/2
1 (a) 2 (-a)
0
a
x
a
2
(x) xdx
a 2x sin2 n x dx= a
0
0a
a2
(x- x )2 (x- a )2 x2 + a2 ax
2
4
a
(x)
1 (z)
d
2(z) z2
-
2m h2
Ez
通解:(x)=A sin kx x B cos kx x 边界条件:(0)=(L) 0
kx
nx lx
;ky
ny ly
;kz
nz lz
归一化后可得:
(x,
y,
z)
(
2
)
3 2
L
sin(kx x)
sin(ky y)
sin(kz z)
E
2h2
2mL2
nx2 ny2 nz2
晶格振动
此题的计算说明了电子只有在极低温度下才会贡献晶格热容,在室温时电子对 热容的贡献可以忽略不计
固体中的原子键合
Madelung常数
金刚石的消光条件
结构因子: Fhkl f j exp(2 i(hxj ky j lz j ))
代入得
Chapter 3 能带论
一维周期场近自由电子近似
简单六角晶体:
=V1(Gc )(1+1+exp(-i2 )+3exp(-i ))
晶体中的电子运动
对于能带宽度分别求出带顶和带底能量(两种极值情况),即可获得能带的宽度 对于半经典模型,一维情况有:
2
(x2 +
a2
ax)dx
a2
(1
0
6 2 2)
So the three-dimensional Schrödinger wave equation is
V(x, y, z) 0
(0 x, y, z L)
(x, y, z 0, x, y, z L)
x, y, z相互独立;(x),(y),(z)也相互独立
三、电子的加速度和有效质量
晶体中电子的运动方程:
{r v
1
ur E
ur
h
k
ur
dk
F h
dt
由以上两式可直接导出在外力作用下电子的加速度。
1. 一维情况
a
dv dt
d dt
1 h
dE dk
1 h
dk dt
d 2E dk 2
h2
F
d2E dk 2
引入电子的有效质量:
m*
h2
d 2E
dk 2