高三物理课时作业(35)

合集下载

高考物理总复习 课时作业40 新人教版选修35

高考物理总复习 课时作业40 新人教版选修35

课时作业(四十)(分钟:45分钟满分:100分)一、选择题(每小题7分,共63分)1.氦原子核由两个质子与两个中子组成,这两个质子之间存在着万有引力、库仑力和核力,则这3种力从大到小的排列顺序是( )A.核力、万有引力、库仑力B.万有引力、库仑力、核力C.库仑力、核力、万有引力D.核力、库仑力、万有引力[解析] 核力是强相互作用(强力),氦原子核内的2个质子是靠核力结合在一起的,可见核力远大于库仑力;微观粒子的质量非常小,万有引力小于库仑力.故D正确.[答案] D2.下列说法正确的是( )A.α射线与γ射线都是电磁波B.β射线为原子的核外电子电离后形成的电子流C.用加温、加压或改变其化学状态的方法都不能改变原子核衰变的半衰期D.原子核经过衰变生成新核,则新核的质量总等于原核的质量[解析] α射线为粒子流,γ射线为电磁波,故A错.β射线来自原子核内部,不是核外电子电离产生的,故B错.据放射性元素的衰变规律可知C项正确,D错误.[答案] C3.(2011·浙江三校联考)居室装修中经常用到的花岗岩都不同程度地含有放射性元素(含铀、钍等),会释放出α、β、γ射线,这些射线会导致细胞发生癌变及呼吸道疾病.根据有关放射性知识判断下列说法中正确的是( )A.α射线是发生α衰变时产生的,生成核与原来的原子核相比,中子数减少了4个B.β射线是发生β衰变时产生的,生成核与原来的原子核相比,质量数减少了1个C.γ射线是发生γ衰变时产生的,生成核与原来的原子核相比,中子数减少了1个D.在α、β、γ三种射线中,γ射线的穿透能力最强、电离能力最弱[解析] α射线是发生α衰变时产生的,生成核与原来的原子核相比,中子数减少了2个;β射线是发生β衰变时产生的,生成核与原来的原子核相比,质量数不变,中子数减少了1个;γ射线是发生γ衰变时产生的,生成核与原来的原子核相比,中子数不变,故ABC错误,D正确.[答案] D4.放射性同位素被用做示踪原子,主要是因为( )A.放射性同位素不改变其化学性质B.放射性同位素的半衰期比天然放射性元素的半衰期短得多C.其半衰期与元素所处的物理、化学状态无关D.放射性同位素容易制造[解析] 放射性同位素用做示踪原子,主要是用放射性同位素替代没有放射性的同位素参与正常的物理、化学、生物过程,既要利用化学性质相同,也要利用衰变规律不受物理、化学变化的影响,同时还要考虑放射性废料容易处理等,因此,选项A、B、C正确,D不正确.[答案] ABC5.(2011·温州五校联考)2010年7月25日早7时,美国“乔治·华盛顿”号核航母驶离韩南部釜山港赴东部海域参加军演,标志此次代号为“不屈的意志”的美韩联合军演正式开始.在现代兵器体系中,潜艇和航母几乎算得上是一对天生的冤家对头,整个二战期间,潜艇共击沉航母17艘,占全部沉没航母数量的40.5%.中国有亚洲最大的潜艇部队,拥有自行开发的宋级柴电动力潜艇和汉级核动力潜艇,核动力潜艇中核反应堆释放的核能被转化成动能和电能.核反应堆的工作原理是利用中子轰击重核发生裂变反应,释放出大量的核能.核反应方程23592U+n→14156Ba+9236Kr+a X是反应堆中发生的众多核反应中的一种,n为中子,X为待求粒子,a为X的个数,则( )A.X为质子a=3 B.X为质子a=2C.X为中子a=2 D.X为中子a=3[解析] 由重核裂变方程以及核反应方程中电荷数守恒可得出X电荷数为0,即X应为中子,又由质量数守恒可得a=3,D正确.[答案] D6.(2011·湖北孝感中学月考)μ子与氢原子核(质子)构成的原子称为μ氢原子(hydrogenmuon atom),它在原子核物理的研究中有重要作用.图为μ氢原子的能级示意图.假定光子能量为E的一束光照射容器中大量处于n=2能级的μ氢原子吸收光子后,发出频率为ν1、ν2、ν3、ν4、ν5和ν6的光,且频率依次增大,则E等于( )A.h(ν3-ν1) B.h(ν5+ν6)C.hν3D.hν4[解析] 处于n=2能级的μ氢原子受到光的照射后辐射出6种光,则应从2能级跃迁到4能级,由能量和频率的关系E=hν知,E4-E3=hν1,E3-E2=hν2,E4-E2=hν3,E2-E1=hν4,E3-E1=hν5和E4-E1=hν6,所以选项C正确.[答案] C7.(2011·佛山联考)铀裂变的产物之一氪90(9036Kr)是不稳定的,它经过一系列衰变最终成为稳定的锆90(9040Zr),这些衰变是( )A .1次α衰变,6次β衰变B .4次β衰变C .2次α衰变D .2次α衰变,2次β衰变[解析] 氪90(9036Kr)衰变成为锆90(9040Zr),质量数不发生变化,说明只发生β衰变,且发生4次,选项B 正确.[答案] B8.近代物理学研究表明,质子是由2个上夸克和1个下夸克组成,中子是由1个上夸克和2个下夸克组成,质子与中子间发生的转变实质就是上、下夸克发生了转变.已知上夸克电荷量为+2e /3,下夸克电荷量为-e /3,e 为元电荷.当发生β衰变时( )A .原子核内的一个中子转变为一个质子,同时放出一个电子B .原子核内的一个质子转变为一个中子,同时放出一个电子C .从夸克模型看,使质子内的一个上夸克转变为一个下夸克D .从夸克模型看,使中子内的一个下夸克转变为一个上夸克[答案] AD9.利用氦-3(32He)和氘进行的聚变安全无污染,容易控制.月球上有大量的氦-3,每个航天大国都将获取氦-3作为开发月球的重要目标之一.“嫦娥一号”探月卫星执行的一项重要任务就是评估月壤中氦-3的分布和储量.已知两个氘核聚变生成一个氦-3和一个中子的核反应方程是221H→32He +10n +3.26 MeV ,若有2 g 氘全部发生聚变,则释放的能量是(N A 为阿伏加德罗常数)( )A .0.5×3.26 MeVB .3.26 MeVC .0.5N A ×3.26 MeVD .N A ×3.26 MeV[解析] 2 g 氘含有1 mol 氘分子,则由聚变核反应221H→32He +10n +3.26 MeV 知2个氘核聚变释放能量3.26 MeV ,则2 g 氘聚变释放的能量是0.5N A ×3.26 MeV,选项C 正确.[答案] C二、非选择题(共37分)10.(10分)(1)放射性物质210 84Po 和6027Co 的核衰变方程分别为:21084Po→206 82Pb +X 1 6027Co→6028Ni +X 2 方程中的X 1代表的是________,X 2代表的是________.(2)如下图所示,铅盒内装有能释放α、β和γ射线的放射性物质,在靠近铅盒的顶部加上电场E 或磁场B ,在图(a)、(b)中分别画出射线运动轨迹的示意图.(在所画轨迹上须标明是α、β和γ中的哪种射线)[解析] (1)由质量数守恒可知X1、X2的质量数分别为4、0,由电荷数守恒可知X1、X2的电荷数分别为2、-1,故X1是42He,X2是0-1e.(2)α粒子带正电,在图(a)电场中向右偏,在图(b)的磁场受到指向左侧的洛伦兹力向左偏,β粒子带负电,故在图(a)中向左偏而在图(b)中向右偏,γ粒子不带电,故不发生偏转,如图所示(曲率半径不作要求,每种射线可只画一条轨迹).[答案] (1)42He 0-1e (2)见解析图11.(13分)(1)近期媒体报道,叛逃到英国的俄罗斯前特工利特维年科在伦敦离奇身亡.英国警方调查认为,毒杀利特维年科的是超级毒药——放射性元素钋(Po).Po的半衰期为138 d,经衰变生成稳定的铅(Pb),那么经过276 d,100 g Po已衰变的质量为__________g.(2)一个氘核(21H)和一个氚核(31H)结合成一个氦核并放出一个中子时,质量亏损为Δm,已知阿伏加德罗常数为N A,真空中的光速为c,若1 mol氘和1 mol氚完全发生上述核反应,则在核反应中释放的能量为__________.A.N AΔmc2B.2N AΔmc2C.12N A Δmc 2 D .5N A Δmc 2 (3)用速度为v 0、质量为m 1的42He 核轰击质量为m 2的静止的14 7N 核,发生核反应,最终产生两种新粒子A 和B.其中A 为17 8O 核,质量为m 3,速度为v 3;B 的质量为m 4.①计算粒子B 的速度v B .②粒子A 的速度符合什么条件时,粒子B 的速度方向与He 核的运动方向相反.[解析] (1)根据半衰期的定义,经过276 d(两个半衰期),100 g Po 已衰变的质量为1002+502=75 g. (2)根据爱因斯坦的质能方程,一个氘核(21H)和一个氚核(31H)结合成一个氦核并放出一个中子释放的能量为Δmc 2,1 mol 氘和1 mol 氚完全发生上述核反应,释放的能量为上述反应的N A 倍,即N A Δmc 2.(3)①由动量守恒定律有:m 1v 0=m 3v 3+m 4v B ,解得:v B =m 1v 0-m 3v 3m 4. ②B 的速度与He 核的速度方向相反,即:m 1v 0-m 3v 3<0,解得:v 3>m 1v 0m 3. [答案] (1)75 (2)A(3)①m 1v 0-m 3v 3m 4 ②v 3>m 1v 0m 312.(14分)(1)一个氡核222 86Rn 衰变成钋核21884Po 并放出一个粒子,其半衰期为3.8天.1 g 氡经过7.6天衰变掉的氡的质量以及222 86Rn 衰变成218 84Po 时放出的粒子是( )A .0.25 g ,α粒子B .0.75 g ,α粒子C .0.25 g ,β粒子D .0.75 g ,β粒子(2)在核反应堆里,中子的速度不能太快,否则会与铀235原子核“擦肩而过”,铀核不能“捉”住它,不能发生核裂变.科学家常用石墨作减速剂,使铀核裂变所产生的快中子通过与碳核不断的碰撞而被减速.假设中子与碳核发生的是没有机械能损失的弹性正碰,且碰撞前碳核是静止的.已知碳核的质量近似为中子质量的12倍,中子原来的动能为E 0,试求:经过一次碰撞后中子的能量变为多少?[解析] (1)经过一个半衰期,一半原子核发生衰变,1 g 氡经两个半衰期将有0.75 g 氡衰变掉;要据质量数守恒和电荷数守恒,可写出氡核衰变的核反应方程为222 86Rn→218 84Po +42He ,B 选项正确.(2)弹性正碰遵循动量守恒和能量守恒两个规律.设中子的质量m ,碳核的质量M .有:mv 0=mv 1+Mv 2,12mv 20=12Mv 21+12Mv 22 由上述两式整理得v 1=m -M m +M v 0=m -12m m +12m v 0=-1113v 0 则经过一次碰撞后中子的动能E 1=12mv 21=12m ⎝ ⎛⎭⎪⎫-1113v 02=121169E 0.[答案] (1)B (2)121169E 0。

高中物理选修3-1课时作业3:3.5 运动电荷在磁场中受到的力

高中物理选修3-1课时作业3:3.5 运动电荷在磁场中受到的力

题组一对洛伦兹力方向的判定1.在以下几幅图中,对洛伦兹力的方向判断正确的是()[答案]ABD2.一束混合粒子流从一发射源射出后,进入如图1所示的磁场,分离为1、2、3三束,则下列判断正确的是()图1A.1带正电B.1带负电C.2不带电D.3带负电[答案]ACD[解析]根据左手定则,带正电的粒子左偏,即1;不偏转说明不带电,即2;带负电的粒子向右偏,说明是3,因此[答案]为A、C、D.3.在学校操场的上空停着一个热气球,从它底部脱落一个塑料小部件,下落过程中由于和空气摩擦而带负电,如果没有风,那么它的着地点会落在热气球正下方地面位置的() A.偏东B.偏西C.偏南D.偏北[答案] B[解析]在北半球,地磁场在水平方向上的分量方向是水平向北,塑料小部件带负电,根据左手定则可得塑料小部件受到向西的洛伦兹力,故向西偏转,B正确.4.显像管原理的示意图如图2所示,当没有磁场时,电子束将打在荧光屏正中的O点,安装在管径上的偏转线圈可以产生磁场,使电子束发生偏转.设垂直纸面向里的磁场方向为正方向,若使电子打在荧光屏上的位置由a点逐渐移动到b点,下列变化的磁场能够使电子发生上述偏转的是()图2[答案] A[解析]电子偏转到a点时,根据左手定则可知,磁场方向垂直纸面向外,对应的B-t图的图线就在t轴下方;电子偏转到b点时,根据左手定则可知,磁场方向垂直纸面向里,对应的B-t图的图线应在t轴上方,A正确.题组二洛伦兹力的特点5.一个运动电荷在某个空间里没有受到洛伦兹力的作用,那么()A.这个空间一定没有磁场B.这个空间不一定没有磁场C.这个空间可能有方向与电荷运动方向平行的磁场D.这个空间可能有方向与电荷运动方向垂直的磁场[答案]BC[解析]由题意,运动电荷在某个空间里没有受到洛伦兹力,可能空间没有磁场,也可能存在磁场,磁场方向与电荷运动方向平行.故A错误,B、C正确.若磁场方向与电荷运动方向垂直,电荷一定受到洛伦兹力,不符合题意,故D错误.故选B、C.6.如图3所示,一束电子流沿管的轴线进入螺线管,忽略重力,电子在管内的运动应该是()图3A.当从a端通入电流时,电子做匀加速直线运动B.当从b端通入电流时,电子做匀加速直线运动C.不管从哪端通入电流,电子都做匀速直线运动D.不管从哪端通入电流,电子都做匀速圆周运动[答案] C[解析]电子的速度v∥B,F洛=0,电子做匀速直线运动.7.关于带电粒子在匀强电场和匀强磁场中的运动,下列说法中正确的是()A.带电粒子沿电场线方向射入,则电场力对带电粒子做正功,粒子动能一定增加B.带电粒子垂直于电场线方向射入,则电场力对带电粒子不做功,粒子动能不变C.带电粒子沿磁感线方向射入,洛伦兹力对带电粒子做正功,粒子动能一定增加D.不管带电粒子怎样射入磁场,洛伦兹力对带电粒子都不做功,粒子动能不变[答案] D[解析]带电粒子在电场中受到的电场力F=qE,只与电场有关,与粒子的运动状态无关,做功的正负由θ角(力与位移方向的夹角)决定.对选项A,只有粒子带正电时才成立;垂直射入匀强电场的带电粒子,不管带电性质如何,电场力都会做正功,动能增加.带电粒子在磁场中的受力——洛伦兹力F′=q v B sinθ,其大小除与运动状态有关,还与θ角(磁场方向与速度方向之间夹角)有关,带电粒子沿平行磁感线方向射入,不受洛伦兹力作用,粒子做匀速直线运动.在其他方向上由于洛伦兹力方向始终与速度方向垂直,故洛伦兹力对带电粒子始终不做功.综上所述,正确选项为D.8.长直导线AB附近,有一带正电的小球,用绝缘细线悬挂在M点,当导线AB通以如图4所示的恒定电流时,下列说法正确的是()图4A.小球受磁场力作用,方向与导线AB垂直且指向纸里B.小球受磁场力作用,方向与导线AB垂直且指向纸外C.小球受磁场力作用,方向与导线AB垂直向左D.小球不受磁场力作用[答案] D[解析]电场对其中的静止电荷、运动电荷都有力的作用,而磁场只对其中的运动电荷才有力的作用,且运动方向不能与磁场方向平行,所以D选项正确.题组三带电物体在磁场中的运动问题9.带电油滴以水平速度v0垂直进入磁场,恰做匀速直线运动,如图5所示,若油滴质量为m,磁感应强度为B,则下述说法正确的是()图5A .油滴必带正电荷,电荷量为mgv 0BB .油滴必带正电荷,比荷q m =qv 0BC .油滴必带负电荷,电荷量为mgv 0BD .油滴带什么电荷都可以,只要满足q =mgv 0B[答案] A[解析] 油滴水平向右匀速运动,其所受洛伦兹力必向上,与重力平衡,故带正电荷,其电荷量q =mgv 0B,A 正确.10.如图6所示,在竖直平面内放一个光滑绝缘的半圆形轨道,水平方向的匀强磁场与半圆形轨道所在的平面垂直.一个带负电荷的小滑块由静止开始从半圆轨道的最高点M 下滑到最右端,则下列说法中正确的是( )图6A .滑块经过最低点时的速度比磁场不存在时大B .滑块从M 点到最低点的加速度比磁场不存在时小C .滑块经过最低点时对轨道的压力比磁场不存在时小D .滑块从M 点到最低点所用时间与磁场不存在时相等 [答案] D[解析] 由于洛伦兹力不做功,故与磁场不存在时相比,滑块经过最低点时的速度不变,选项A 错误;由a =v 2R,与磁场不存在时相比,滑块经过最低点时的加速度不变,选项B 错误;由左手定则,滑块经最低点时受的洛伦兹力向下,而滑块所需的向心力不变,故滑块经最低点时对轨道的压力比磁场不存在时大,选项C错误;由于洛伦兹力始终与运动方向垂直,在任意一点,滑块经过时的速度均与不加磁场时相同,选项D正确.11.如图7所示,一带负电的滑块从绝缘粗糙斜面的顶端滑至底端时的速度为v,若加一个垂直纸面向外的匀强磁场,并保证滑块能滑至底端,则它滑至底端时的速度为()图7A.变大B.变小C.不变D.条件不足,无法判断[答案] B[解析]加上磁场后,滑块受一垂直斜面向下的洛伦兹力,使滑块所受摩擦力变大,做负功值变大,而洛伦兹力不做功,重力做功恒定,由能量守恒可知,速率变小.12.质量为m、带电荷量为+q的小球,用一长为l的绝缘细线悬挂在方向垂直纸面向里的匀强磁场中,磁感应强度为B,如图8所示,用绝缘的方法使小球位于使悬线呈水平的位置A,然后由静止释放,小球运动的平面与B的方向垂直,求小球第一次和第二次经过最低点C 时悬线的拉力F T1和F T2.图8[答案] 3mg -qB 2gl 3mg +qB 2gl[解析] 小球由A 运动到C 的过程中,洛伦兹力始终与v 的方向垂直,对小球不做功,只有重力做功,由动能定理有mgl =12m v 2C ,解得v C =2gl .在C 点,由左手定则可知洛伦兹力向上,其受力情况如图①所示. 由牛顿第二定律,有F T1+F 洛-mg =m v 2Cl .又F 洛=q v C B ,所以F T1=3mg -qB 2gl .同理可得小球第二次经过C 点时,受力情况如图②所示,所以F T2=3mg +qB 2gl . 13.如图9所示,质量为m =1kg 、电荷量为q =5×10-2C 的带正电的小滑块,从半径为R =0.4m 的光滑绝缘14圆弧轨道上由静止自A 端滑下.整个装置处在方向互相垂直的匀强电场与匀强磁场中.已知E =100V /m ,方向水平向右,B =1 T ,方向垂直纸面向里,g =10 m/s 2.图9求:(1)滑块到达C 点时的速度; (2)在C 点时滑块所受洛伦兹力. [答案] (1)2m/s ,方向水平向左 (2)0.1N ,方向竖直向下[解析] 以滑块为研究对象,自轨道上A 点滑到C 点的过程中,受重力mg ,方向竖直向下;静电力qE ,方向水平向右;洛伦兹力F 洛=q v B ,方向始终垂直于速度方向. (1)滑块从A 到C 的过程中洛伦兹力不做功,由动能定理得 mgR -qER =12m v 2C得v C =2(mg -qE )Rm=2m/s.方向水平向左. (2)根据洛伦兹力公式得:F =q v C B =5×10-2×2×1N =0.1N , 方向竖直向下.。

高三物理课时作业(35)

高三物理课时作业(35)

高三物理课时作业(35)(磁场对运动电荷的作用力)班级 姓名1.质谱仪的两大重要组成部分是加速电场和偏转磁场,如图为质谱仪的原理图。

设想有一个静止的质量为m 、 带电量为q 的带电粒子(不计重力) ,经电压为U 的加速电场加速后垂直进入磁感应强度为B 的偏转磁场中,带电粒子打到底片上的P 点,设OP =x ,则在图中能正确反映x 与U 之间的函数关系的是( )2.如图所示,摆球带负电荷的单摆,在一匀强磁场中摆动,匀强磁场的方向垂直纸面向里,摆球在AB 间摆动过程中,由A 摆到最低点C 时,摆线拉力的大小为F 1,摆球加速度大小为a 1;由B 摆到最低点C 时,摆线拉力的大小为F 2,摆球加速度大小为a 2,则( )A .F 1>F 2,a 1=a 2B .F 1<F 2,a 1=a 2C .F 1>F 2,a 1>a 2D .F 1<F 2,a 1<a 23.半径为r 的圆形空间内,存在着垂直于纸面向里的匀强磁场,一个带电粒子(不计重力)从A 点以速度v 0垂直于磁场方向射入磁场中,并从B 点射出。

∠AOB =120°,如图所示,则该带电粒子在磁场中运动的时间为( )A.2πr3v 0B.23πr 3v 0C.πr 3v 0D.3πr 3v 04.如图所示,在x >0、y >0的空间中有恒定的匀强磁场,磁感应强度的方向垂直于Oxy 平面向里,大小为B 。

现有一质量为m 、电荷量为q 的带电粒子,在x 轴上到原点的距离为x 0的P 点,以平行于y 轴的初速度射入此磁场,在磁场力作用下沿垂直于y 轴的方向射出此磁场,不计重力的影响。

由这些条件可知下列判断错误的是( )A .能确定粒子通过y 轴时的位置B .能确定粒子速度的大小C .能确定粒子在磁场中运动所经历的时间D .以上三个判断都不对5.如图所示,长为L 、间距为d 的平行金属板间,有垂直于纸面向里的匀强磁场,磁感应强度为B ,两板不带电,现有质量为m 、电荷量为q 的带正电粒子(重力不计),从左侧两极板的中心处以不同速率v 水平射入,欲使粒子不打在板上,求粒子速率v 应满足什么条件?高三物理课时作业(35)答案1、解析:带电粒子先经加速电场加速,故qU =12m v 2,进入磁场后偏转,OP =x =2r =2m v qB ,两式联立得OP =x =8mUB 2q∝U ,所以B 正确。

高中物理17.4.17.5课后课时精练新人教版选修35

高中物理17.4.17.5课后课时精练新人教版选修35

课后课时精练1.下列说法中正确的是( )A.光波和物质波都是概率波B.实物粒子不具有波动性C.光的波动性是光子之间彼此作用引发的D.光通过狭缝后在屏上形成明暗相间的条纹,光子在空间出现的概率可以通过波动规律肯定E.粒子的动量越大,其波动性越易观察F.因实物粒子具有波动性,故其轨迹是波浪线解析:实物粒子也具有波动性,B错,光的波动性并非是由光子之间的彼此作用引发的,C 错,实物粒子的波动性不是指其轨迹是波浪线,F错。

粒子动量越大,波长越短波动性越不明显,D错。

答案:AD2.有关经典物理学中的粒子,下列说法正确的是( )A.有必然的大小,但没有必然的质量B.有必然的质量,但没有必然的大小C.既有必然的大小,又有必然的质量D.有的粒子还有必然量的电荷解析:按照经典物理学关于粒子的理论概念得C、D正确。

答案:CD3.按照不肯定性关系ΔxΔp≥h4π,判断下列说法正确的是( )A. 采取办法提高测量Δx精度时,Δp的精度下降B. 采取办法提高测量Δx精度时,Δp的精度上升C. Δx与Δp测量精度与测量仪器及测量方式是不是完备有关D. Δx与Δp测量精度与测量仪器及测量方式是不是完备无关解析:不肯定性关系表明无论采用什么方式试图肯定坐标和相应动量中的一个,必然引发另一个较大的不肯定性,这样的结果与测量仪器及测量方式是完备无关,无论如何改善测量仪器和测量方式,都不可能逾越不肯定关系所给出的限度。

故A、D正确。

答案:AD4.如下图所示,弧光灯发出的光经一狭缝后,在锌板上形成亮暗相间的条纹,与锌板相连的验电器的铝箔有张角,则该实验不能证明( )A .光具有波动性B .从锌板上逸出带正电的粒子C .光能发生衍射D .光具有波粒二象性解析:在锌板形成明暗相间的条纹,证明光发生了衍射,也说明了光具有波动性,与锌板相连的验电器的铝箔有张角,证明了光电效应的发生,说明了光粒子性的一面,因此,证明了光具有波粒二象性。

答案:B5.经150 V 电压加速的电子束沿同一方向射出,穿过铝箔后射到其后的屏上,则( ) A .所有电子的运动轨迹均相同B .所有电子抵达屏上的位置坐标均相同C .电子抵达屏上的位置坐标可用牛顿运动定律肯定D .电子抵达屏上的位置受波动规律支配,无法用肯定的坐标来描述它的位置解析:电子属于微观粒子,由不肯定关系可知A 、B 、C 均错。

高考物理一轮复习课时练35

高考物理一轮复习课时练35

课时作业(三十五)1.(2012·济宁模拟)水平放置的金属框架cdef 处于如图所示的匀强磁场中,金属棒ab 处于粗糙的框架上且接触良好,从某时刻开始,磁感应强度均匀增大,金属棒ab 始终保持静止,则 ( )A .ab 中电流增大,ab 棒所受摩擦力增大B .ab 中电流不变,ab 棒所受摩擦力不变C .ab 中电流不变,ab 棒所受摩擦力增大D .ab 中电流增大,ab 棒所受摩擦力不变[解析] 由法拉第电磁感应定律E =ΔΦΔt =ΔB Δt·S 知,磁感应强度均匀增大,则ab 中感应电动势和电流不变,由F f =F 安=BIL 知摩擦力增大,选项C 正确.[答案] C2.如图所示,闭合金属线框从一定高度自由下落进入匀强磁场中,磁场足够大,从ab 边开始进入磁场到cd 边刚进入磁场的这段时间内,线框运动的速度-时间图象不可能是[解析] 当ab 边刚进入磁场时,若线框所受安培力等于重力,则线框在从ab 边开始进入磁场到cd 边刚进入磁场前做匀速运动,故A 是可能的;当ab 边刚进入磁场时,若线框所受安培力小于重力,则线框做加速度逐渐减小的加速运动,最后可能做匀速运动,故C 情况也可能;当ab 边刚进入磁场时,若线框所受安培力大于重力,则线框做加速度逐渐减小的减速运动,最后可能做匀速运动,故D 可能;线框在磁场中不可能做匀变速运动,故B 项是不可能的,故选B.[答案] B3.如右图所示,在粗糙绝缘水平面上有一正方形闭合线框abcd ,其边长为l ,质量为m ,金属线框与水平面的动摩擦因数为μ.虚线框a ′b ′c ′d ′内有一匀强磁场,磁场方向竖直向下.开始时金属线框的ab 边与磁场的d ′c ′边重合.现使金属线框以初速度v 0沿水平面滑入磁场区域,运动一段时间后停止,此时金属线框的dc 边与磁场区域的d ′c ′边距离为l .在这个过程中,金属线框产生的焦耳热为( ) A.12mv 20+μmgl B.12mv 20-μmgl C.12mv 20+2μmgl D.12mv 20-2μmgl [解析] 依题意知,金属线框移动的位移大小为2l ,此过程中克服摩擦力做功为2μmgl ,由能量守恒定律得金属线框中产生的焦耳热为Q =12mv 20-2μmgl ,故选项D 正确. [答案] D4.如图(甲)、(乙)、(丙)中,除导体棒ab 可动外,其余部分均固定不动,(甲)图中的电容器C 原来不带电.设导体棒、导轨和直流电源的电阻均可忽略,导体棒和导轨间的摩擦也不计,图中装置均在水平面内,且都处于方向垂直水平面(即纸面)向下的匀强磁场中,导轨足够长.现给导体棒ab 一个向右的初速度v 0,在(甲)、(乙)、(丙)三种情况下导体棒ab 的最终运动状态是 ( )A .三种情形下导体棒ab 最终都做匀速运动B .(甲)、(丙)中,ab 棒最终将以不同速度做匀速运动;(乙)中,ab 棒最终静止C .(甲)、(丙)中,ab 棒最终将以相同速度做匀速运动;(乙)中,ab 棒最终静止D .三种情形下导体棒ab 最终都静止[解析] 题图(甲)中ab 棒运动后给电容器充电,当充电完成后,棒以一个小于v 0的速度向右匀速运动.题图(乙)中构成了回路,最终棒的动能完全转化为电热,棒停止运动.题图(丙)中棒先向右减速为零,然后反向加速至匀速.故正确选项为B.[答案] B5.(2012·温州模拟)如图所示电路,两根光滑金属导轨,平行放置在倾角为θ的斜面上,导轨下端接有电阻R ,导轨电阻不计,斜面处在竖直向上的匀强磁场中,电阻可略去不计的金属棒ab 质量为m ,受到沿斜面向上且与金属棒垂直的恒力F 的作用,金属棒沿导轨匀速下滑,则它在下滑高度h 的过程中,以下说法正确的是A .作用在金属棒上各力的合力做功为零B .重力做的功等于系统产生的电能C .金属棒克服安培力做的功等于电阻R 上产生的焦耳热D .金属棒克服恒力F 做的功等于电阻R 上产生的焦耳热[解析] 根据动能定理可知,合力做的功等于动能的变化量,故选项A 正确;重力做的功等于重力势能的变化量,重力做的功等于克服F 所做的功与产生的电能之和,而克服安培力所做的功等于电阻R 上产生的焦耳热,故选项B 、D 均错误,C 正确.[答案] AC6.如右图所示,匀强磁场的磁感应强度为B ,方向竖直向下,在磁场中有一个边长为L 的正方形刚性金属框,ab 边的质量为m ,电阻为R ,其他三边的质量和电阻均不计.cd 边上装有固定的水平轴,将金属框自水平位置由静止释放,第一次转到竖直位置时,ab 边的速度为v ,不计一切摩擦,重力加速度为g ,则在这个过程中,下列说法正确的是A .通过ab 边的电流方向为a →bB .ab 边经过最低点时的速度v =2gLC .a 、b 两点间的电压逐渐变大D .金属框中产生的焦耳热为mgL -12mv 2 [解析] ab 边向下摆动过程中,磁通量逐渐减小,根据楞次定律及右手定则可知感应电流方向为b →a ,选项A 错误;ab 边由水平位置到达最低点过程中,机械能不守恒,所以选项B 错误;金属框摆动过程中,ab 边同时受安培力作用,故当重力与安培力沿其摆动方向分力的合力为零时,a 、b 两点间电压最大,选项C 错误;根据能量转化和守恒定律可知,金属框中产生的焦耳热应等于此过程中机械能的损失,故选项D 正确.[答案] D7.如右图所示,光滑的“Π”形金属导体框竖直放置,质量为m 的金属棒MN 与框架接触良好.磁感应强度分别为B 1、B 2的有界匀强磁场方向相反,但均垂直于框架平面,分别处在abcd 和cdef 区域.现从图示位置由静止释放金属棒MN ,当金属棒进入磁场B 1区域后,恰好做匀速运动.以下说法中正确的是 ( )A .若B 2=B 1,金属棒进入B 2区域后将加速下滑B .若B 2=B 1,金属棒进入B 2区域后仍将保持匀速下滑C .若B 2<B 1,金属棒进入B 2区域后将先加速后匀速下滑D .若B 2>B 1,金属棒进入B 2区域后将先减速后匀速下滑[解析] 当金属棒MN 进入磁场B 1区域时,金属棒MN 切割磁感线而使回路中产生感应电流,当金属棒MN 恰好做匀速运动时,其重力和安培力平衡,即有B 21l 2v R=mg .金属棒MN 刚进入B 2区域时,速度仍为v ,若B 2=B 1,则仍满足B 22l 2v R=mg ,金属棒MN 仍保持匀速下滑,选项A 错误,B 正确;若B 2<B 1,则金属棒MN 刚进入B 2区域时B 22l 2v R<mg ,金属棒MN 先加速运动,当速度增大到使安培力等于mg 时,金属棒MN 在B 2区域内匀速下滑,故选项C 正确;同理可知选项D 也正确.[答案] BCD9.如图所示,水平地面上方矩形区域内存在垂直纸面向里的匀强磁场,两个边长相等的单匝闭合正方形线圈Ⅰ和Ⅱ,分别用相同材料、不同粗细的导线绕制(Ⅰ为细导线).两线圈在距磁场上界面h 高处由静止开始自由下落,再进入磁场,最后落到地面.运动过程中,线圈平面始终保持在竖直平面内且下边缘平行于磁场上边界.设线圈Ⅰ、Ⅱ落地时的速度大小分别为v 1、v 2,在磁场中运动时产生的热量分别为Q 1、Q 2.不计空气阻力,则A .v 1<v 2,Q 1<Q 2B .v 1=v 2,Q 1=Q 2C .v 1<v 2,Q 1>Q 2D .v 1=v 2,Q 1<Q 2[解析] 线圈进入磁场前机械能守恒,进入磁场时速度均为v =2gh ,设线圈材料的密度为ρ1,电阻率为ρ2,线圈边长为L ,导线横截面积为S ,则线圈的质量m =ρ14LS ,电阻R =ρ24LS ,由牛顿第二定律得mg -B 2L 2v R =ma ,解得a =g -B 2v 16ρ1ρ2,可见两线圈在磁场中运动的加速度相同,两线圈落地时速度相同,即v 1=v 2,故A 、C 选项错误;线圈在磁场中运动时产生的热量等于克服安培力做的功,Q =W 安,而F 安=B 2L 2v R =B 2Lv 4ρ2S ,线圈Ⅱ横截面积S 大,F 安大,故Q 2>Q 1,故选项D 正确,B 错误.[答案] D10.(2012·海淀一模)光滑平行金属导轨M 、N 水平放置,导轨上放一根与导轨垂直的导体棒PQ .导轨左端与由电容为C 的电容器、单刀双掷开关和电动势为E 的电源组成的电路相连接,如图所示.在导轨所在的空间存在方向垂直于导轨平面的匀强磁场(图中未画出).先将开关接在位置a ,使电容器充电并达到稳定后,再将开关拨到位置b ,导体棒将会在磁场的作用下开始向右运动,设导轨足够大,则以下说法中正确的是A .空间存在的磁场方向竖直向下B .导体棒向右做匀加速运动C .当导体棒向右运动的速度达到最大值,电容器的电荷量为零D .导体棒运动的过程中,通过导体棒的电荷量Q <CE[解析] 充电后电容器的上极板带正电,将开关拨向位置b ,PQ 中的电流方向是由P →Q ,由左手定则判断可知,导轨所在处磁场的方向竖直向下,选项A 正确;随着放电的进行,导体棒速度增大,由于它所受的安培力大小与速度有关,所以由牛顿第二定律可知导体棒不能做匀加速运动,选项B 错误;运动的导体棒在磁场中切割磁感线,由右手定则判断可知,感应电动势方向由Q →P ,当其大小等于电容器两极板间电势差大小时,导体棒速度最大,此时电容器的电荷量并不为零,故选项C 错误;由以上分析可知,导体棒从开始运动到速度达到最大时,电容器所带电荷量并没有放电完毕,故通过导体棒的电荷量Q <CE ,选项D 正确.[答案] AD11.如图所示,足够长的光滑平行金属导轨cd 和ef ,水平放置且相距L ,在其左端各固定一个半径为r 的四分之三光滑金属圆环,两圆环面平行且竖直.在水平导轨和圆环上各有一根与导轨垂直的金属杆,两金属杆与水平导轨、金属圆环形成闭合回路,两金属杆质量均为m ,电阻均为R ,其余电阻不计.整个装置放在磁感应强度大小为B 、方向竖直向上的匀强磁场中.当用水平向右的恒力F =3mg 拉细杆a ,达到匀速运动时,杆b 恰好静止在圆环上某处,试求:(1)杆a 做匀速运动时,回路中的感应电流;(2)杆a 做匀速运动时的速度;(3)杆b 静止的位置距圆环最低点的高度.[解析] (1)匀速时,拉力与安培力平衡,F =BIL得:I =3mgBL(2)金属棒a 切割磁感线,产生的电动势E =BLv回路中电流I =E 2R联立得:v =23mgR B 2L2 (3)设平衡时棒b 和圆心的连线与竖直方向的夹角为θ则tan θ=Fmg=3,得θ=60° h =r (1-cos θ)=r 2[答案] (1)3mg BL (2)23mgR B 2L 2 (3)r 212.(2012·安徽六校联考)相距L =1.5 m 的足够长金属导轨竖直放置,质量为m 1=1 kg 的金属棒ab 和质量为m 2=0.27 kg 的金属棒cd 均通过棒两端的套环水平地套在金属导轨上,如图(甲)所示,虚线上方磁场方向垂直纸面向里,虚线下方磁场方向竖直向下,两处磁场磁感应强度大小相同.ab 棒光滑,cd 棒与导轨间动摩擦因数为μ=0.75,两棒总电阻为1.8 Ω,导轨电阻不计.ab 棒在方向竖直向上、大小按图(乙)所示规律变化的外力F 作用下,从静止开始沿导轨匀加速运动,同时cd 棒也由静止释放.(g =10 m/s 2)(1)求磁感应强度B 的大小和ab 棒加速度的大小;(2)已知在2 s 内外力F 做功40 J ,求这一过程中两金属棒产生的总焦耳热;(3)判断cd 棒将做怎样的运动,求出cd 棒达到最大速度所需的时间t 0,并在图(丙)中定性画出cd 棒所受摩擦力F f cd 随时间变化的图象.[解析] (1)经过时间t ,ab 棒的速率:v =at ,此时,回路中的感应电流为:I =E R =BLv R, 对ab 棒,由牛顿第二定律得:F -BIL -m 1g =m 1a ,由以上各式整理得:F =m 1a +m 1g +B 2L 2Rat , 在题图(乙)图线上取两点:t 1=0,F 1=11 N ;t 2=2 s ,F 2=14.6 N ,代入上式得a =1 m/s 2,B =1.2 T.(2)在2 s 末ab 棒的速率v 1=at =2 m/s ,所发生位移x =12at 2=2 m , 由动能定理得 W F -m 1gx -W 安=12m 1v 21,又Q =W 安,联立以上方程,解得:Q =18 J.(3)cd 棒先做加速度逐渐减小的加速运动,当cd 棒所受重力与滑动摩擦力相等时,速度达到最大;然后做加速度逐渐增大的减速运动,最后停止运动.当cd 棒速度达到最大时,有m 2g =μF N 又F N =F 安,F 安=BIL ,I =E R =BLv m R,v m =at 0,整理解得: t 0=m 2gR μB 2L 2a=2 s. F f cd 随时间变化的图象如图所示.[答案] (1)1.2 T 1 m/s 2(2)18 J (3)见解析。

2022届高考物理总复习 课时作业35 新人教版选修3-4

2022届高考物理总复习 课时作业35 新人教版选修3-4

课时作业三十五分钟:45分钟满分:100分一、选择题每小题7分,共63分1.2022·安徽高考一边沿轴正方向传播的简谐横波,某时刻的波形如图所示.0.25 m0.1 m10 cm30 cm50 cm70 cm0.25 m50 cm 4 m6 m4m4 m 1 m1 m2 mB.波速为1 m/C.3 末A、B两质点的位移相同D.1 末A质点的振动速度大于B质点的振动速度[解析] 由A、B两质点的振动图象及传播可画出t=0时刻的波动图象如图所示,由此可得λ=错误! m,A正确;由振动图象得周期T=4 ,故v=错误!=错误! m/=错误! m/,B错误;由振动图象知3 末A质点位移为-2 cm,B质点位移为0,故C错误;由振动图象知1 末A质点处于波峰,振动速度为零,B质点处于平衡位置,振动速度最大,故D错误.[答案] A8.如图所示,在平面内有一沿水平轴正方向传播的简谐横波,波速为3.0 m/,频率为H,振幅为×10-2m,已知t=0时刻2m1m2m2m= 1.2 m, 4 km9 km36 km25 km36 km25 km36 km40 cm50 cm20 cm[解析] 1声源靠近A处的人,由多普勒效应知,他接收到的频率变大,即f1>f2;相反,声源远离B处的人,则他接收到的频率变小,即f2<f2Δt=\to50 cm40 cm10 cm20 cm30 cm40 cm70 cm0.4 m2 m4 cm120cm2.5 cm2 m120 cm2.5 cm 3 m4 m=10 m/2由图上可以看出波向右传播,t=0时,离A点最近的波峰在=2 m处,该点距Q点距离为=4 m,因此再经过t1时间,Q点第一次出现波峰,t1=错误!=错误!=3坐标为=3 m的质点此时处在平衡位置,由于波沿轴正方向传播,所以质点向上运动,周期为,所以质点的振动周期也为,从图上可以看出振幅为0.5 m,因此坐标为=3 m的质点的位移与时间关系式为=t=πt[答案] 110 m/ 2 3=πt。

高中物理选修3-5课时作业2:16.4习题课:动量和能量的综合应用

学案6 习题课:动量和能量的综合应用题组一滑块—木板模型子弹打木块模型1.如图1所示,一个木箱原来静止在光滑水平面上,木箱内粗糙的底板上放着一个小木块.木箱和小木块都具有一定的质量.现使木箱获得一个向右的初速度v0,则()图1A.小木块、木箱最终都将静止B.小木块最终将相对木箱静止,二者一起向右运动C.小木块在木箱内壁将始终来回往复碰撞,而木箱一直向右运动D.如果小木块与木箱的左壁碰撞后相对木箱静止,则二者将一起向左运动[答案] B[解析] 木箱和小木块组成的系统,所受合外力为零,故系统动量守恒.系统初动量向右,故小木块相对木箱静止后,系统总动量也向右,故B 正确,A 、D 、C 错误.2.两质量分别为M 1和M 2的劈A 和B ,高度相同,放在光滑水平面上,A 和B 的倾斜面都是光滑曲面,曲面下端与水平面相切,如图2所示,一质量为m 的物块位于劈A 的倾斜面上,距水平面的高度为h ,物块从静止滑下,然后又滑上劈B ,求物块在B 上能够达到的最大高度.图2[答案]M 1M 2(M 1+m )(M 2+m )h[解析] 设物块到达劈A 的底端时,物块和A 的速度大小分别为v 和v 1,由机械能守恒定律和动量守恒定律得 mgh =12m v 2+12M 1v 21 M 1v 1=m v设物块在劈B 上达到的最大高度为h ′,此时物块和B 的共同速度大小为v 2,由机械能守恒定律和动量守恒定律得 mgh ′+12(M 2+m )v 22=12m v 2 m v =(M 2+m )v 2解得h ′=M 1M 2(M 1+m )(M 2+m )h3.如图3所示,质量m 1=0.3kg 的小车静止在光滑的水平面上,车长L =1.5m ,现有质量m 2=0.2kg 可视为质点的物块,以水平向右的速度v 0=2m /s 从左端滑上小车,最后在车面上某处与小车保持相对静止.物块与车面间的动摩擦因数μ=0.5,取g =10 m/s 2,求:图3(1)物块在车面上滑行的时间t ;(2)要使物块不从小车右端滑出,物块滑上小车左端的速度v 0′不超过多少. [答案] (1)0.24s (2)5m/s[解析] (1)设物块与小车相对静止时的共同速度为v ,以水平向右为正方向,根据动量守恒定律有m 2v 0=(m 1+m 2)v设物块与车面间的滑动摩擦力大小为F ,对物块应用牛顿运动定律有 F =m 2·v 0-v t又F =μm 2g 解得t =m 1v 0μ(m 1+m 2)g代入数据得t =0.24s.(2)要使物块恰好不从小车右端滑出,须使物块到达车面最右端时与小车有共同的速度,设其为v ′,则 m 2v 0′=(m 1+m 2)v ′ 由功能关系有12m 2v 0′2=12(m 1+m 2)v ′2+μm 2gL 代入数据解得v 0′=5m/s故要使物块不从小车右端滑出,物块滑上小车左端的速度v 0′不超过5m/s.4.如图4所示,一不可伸长的轻质细绳,静止地悬挂着质量为M 的木块,一质量为m 的子弹,以水平速度v 0击中木块,已知M =9m ,不计空气阻力.问:图4(1)如果子弹击中木块后未穿出(子弹进入木块时间极短),在木块上升的最高点比悬点O 低的情况下,木块能上升的最大高度是多少?(设重力加速度为g )(2)如果子弹在极短时间内以水平速度v 04穿出木块,则在这一过程中子弹、木块组成的系统损失的机械能是多少? [答案] (1)v 20200g (2)716m v 20[解析] (1)因为子弹与木块作用时间极短,子弹与木块间的相互作用力远大于它们的重力,所以子弹与木块组成的系统水平方向动量守恒,设子弹与木块开始上升时的速度为v 1,则m v 0=(m +M )v 1因不计空气阻力,所以系统上升过程中机械能守恒,设木块上升的最大高度为h ,则 12(m +M )v 21=(m +M )gh h =v 20200g(2)子弹射穿木块前后,子弹与木块组成的系统水平方向动量守恒,设子弹穿出时木块的速度为v 2,则m v 0=m ·v 04+M v 2,在这一过程中子弹、木块组成的系统损失的机械能为 ΔE =12m v 20-12m (v 04)2-12M v 22=716m v 2题组二 弹簧类模型5.如图5所示,A 、B 两个木块用轻弹簧相连接,它们静止在光滑水平面上,A 和B 的质量分别是99m 和100m ,一颗质量为m 的子弹以速度v 0水平射入木块A 内没有穿出,则在以后的过程中弹簧弹性势能的最大值为( )图5A.m v 20400B.m v 20200C.99m v 20200D.199m v 20400[答案] A[解析] 子弹射入木块A 的过程中,动量守恒,有m v 0=100m v 1,子弹、A 、B 三者速度相等时,弹簧的弹性势能最大,100m v 1=200m v 2,弹性势能的最大值E p =12×100m v 21-12×200m v 22=m v 20400. 6.如图6所示,粗糙斜面与光滑水平面通过半径可忽略的光滑小圆弧平滑连接,斜面倾角α=37°,A 、B 是两个质量均为m =1kg 的小滑块(可看做质点),C 为左端附有胶泥的薄板(质量不计),D 为两端分别连接B 和C 的轻质弹簧.当滑块A 置于斜面上且受到大小F =4N ,方向垂直斜面向下的恒力作用时,恰能向下匀速运动.现撤去F ,让滑块A 从斜面上距斜面底端L =1m 处由静止下滑.(g =10m/s 2,sin37°=0.6,cos37°=0.8),求:图6(1)滑块A 到达斜面底端时的速度大小;(2)滑块A 与C 接触后粘连在一起,求此后两滑块和弹簧构成的系统在相互作用过程中,弹簧的最大弹性势能. [答案] (1)2m/s (2)1J[解析] (1)施加恒力F 时,μ(F +mg cos α)=mg sin α未施加力F 时,(mg sin α-μmg cos α)L =m v 212代入数据,解得v 1=2m/s.(2)滑块A 与C 接触后,A 、B 、C 、D 组成的系统动量守恒,能量守恒,所以当A 、B 具有共同速度时,系统动能最小,弹簧弹性势能最大,设为E p ,有 m v 1=2m v 2 12m v 21=E p +12·2m v 22 代入数据,得E p =1J.题组三 动量和能量的综合应用7.如图7所示,一轻质弹簧的一端固定在滑块B 上,另一端与滑块C 接触但不连接,该整体静止在光滑水平地面上,并且C 被锁定在地面上.现有一滑块A 从光滑曲面上离地面h 高处由静止开始下滑,与滑块B 发生碰撞并粘连在一起压缩弹簧,当速度减为碰后速度一半时滑块C 解除锁定.已知m A =m ,m B =2m ,m C =3m .求:图7(1)滑块A 与滑块B 碰撞结束瞬间的速度; (2)被压缩弹簧的弹性势能的最大值. [答案] (1)132gh (2)724mgh[解析] (1)滑块A 下滑过程中机械能守恒,设A 到达水平面时速度为v 1,由机械能守恒定律有m A gh =12m A v 21,解得v 1=2gh . A 、B 碰撞过程动量守恒,设滑块A 与滑块B 碰撞结束瞬间的速度为v 2,由动量守恒定律有 m A v 1=(m A +m B )v 2,解得v 2=m A v 1m A +m B =132gh .(2)滑块C 解除锁定后,滑块A 、B 继续压缩弹簧,被压缩弹簧的弹性势能最大时,滑块A 、B 、C 速度相等,设为速度v 3,由动量守恒定律有: (m A +m B )v 22=(m A +m B +m C )v 3.故v 3=14v 2=1122gh .滑块A 、B 发生碰撞后到弹簧压缩最大,A 、B 、C 及弹簧组成的系统机械能守恒,由机械能守恒定律有:E pmax =12(m A +m B )v 22-12(m A+m B +m C )v 23,E pmax =724mgh . 8.如图8所示,带有半径为R 的14光滑圆弧的小车其质量为M ,置于光滑水平面上,一质量为m 的小球从圆弧的最顶端由静止释放,则小球离开小车时,小球和小车的速度分别为多少?图8[答案]2MgRM +m,方向水平向左 2m 2gRM (M +m ),方向水平向右[解析] 小球和小车组成的系统虽然总动量不守恒,但在水平方向动量守恒,且全过程满足机械能守恒,设小球和小车分离时,小球的速度为v 1,方向水平向左,小车的速度为v 2,方向水平向右. 则:m v 1-M v 2=0 mgR =12m v 21+12M v 22 解得v 1=2MgRM +m,方向水平向左,v 2=2m 2gRM (M +m ),方向水平向右.9.如图9所示,一条轨道固定在竖直平面内,粗糙的ab 段水平,bcde 段光滑,cde 段是以O 为圆心、R 为半径的一小段圆弧.可视为质点的物块A 和B 紧靠在一起,静止于b 处,A 的质量是B 的3倍.两物块在足够大的内力作用下突然分离,分别向左、右始终沿轨道运动.B 到d 点时速度沿水平方向,此时轨道对B 的支持力大小等于B 所受重力的34.A 与ab段的动摩擦因数为μ,重力加速度为g ,求:图9(1)物块B 在d 点的速度大小v ; (2)物块A 滑行的距离. [答案] (1)gR 2 (2)R 8μ[解析] (1)设B 物块的质量为m ,在d 点的速度为v ,B 物块在d 点,受力分析得: mg -34mg =m v 2R ,解得v =gR2.(2)B 物块从b 到d 的过程中,由机械能守恒得: 12m v 2B =mgR +12m v 2 A 、B 物块分离过程中,动量守恒: 即有:3m v A =m v BA 物块减速运动到停止,由动能定理得 -3μmgs =0-12×3m v 2A 联立以上各式解得:s =R 8μ.。

高考物理总复习 课时配套作业49 新人教版选修35

课时作业(四十九)1.下列说法正确的是( )A .α射线与γ射线都是电磁波B .β射线为原子的核外电子电离后形成的电子流C .用加温、加压或改变其化学状态的方法都不能改变原子核衰变的半衰期D .原子核经过衰变生成新核,则新核的质量总等于原核的质量[解析] α射线为粒子流,γ射线为电磁波,故A 错.β射线来自原子核内部,不是核外电子电离产生的,故B 错.据放射性元素的衰变规律可知C 项正确,D 错误.[答案] C2.14C 测年法是利用14C 衰变规律对古生物进行年代测定的方法,若以横坐标t 表示时间,纵坐标m 表示任意时刻14C 的质量,m 0为t =0时14C 的质量.下面四幅图中能正确反映14C 衰变规律的是 ( )[解析] 由公式m =m 0·(12)tτ并结合数学知识可知C 正确.[答案] C3.原子核A Z X 与氘核21H 反应生成一个α粒子和一个质子.由此可知 ( ) A .A =2,Z =1 B .A =2,Z =2 C .A =3,Z =3D .A =3,Z =2[解析] 写出核反应方程:AZ X +21H→42He +11H ,由质量数守恒和电荷数守恒,列方程:A +2=4+1,Z +1=2+1,解得:A =3,Z =2,故选项D 正确.[答案] D4.(2012·绍兴检测)我国最新一代核聚变装置“EAST”在安徽合肥首次放电、显示了EAST 装置具有良好的整体性能,使等离子体约束时间达1000 s ,温度超过1亿度,标志着我国磁约束核聚变研究进入国际先进水平.合肥也成为世界上第一个建成此类全超导非圆截面核聚变实验装置并能实际运行的地方.核聚变的主要原料是氘,在海水中含量极其丰富.已知氘核的质量为m 1,中子的质量为m 2,32He 的质量为m 3,质子的质量为m 4,则下列说法中正确的是( )A .两个氘核聚变成一个32He 所产生的另一个粒子是质子 B .两个氘核聚变成一个32He 所产生的另一个粒子是中子 C .两个氘核聚变成一个32He 所释放的核能为(2m 1-m 3-m 4)c 2D .与受控核聚变比较,现行的核反应堆产生的废物具有放射性[解析] 由核反应方程知221H ―→32He +10X ,X 应为中子,释放的核能应为ΔE =(2m 1-m 3-m 2)c 2,聚变反应的污染非常小.而现实运行的裂变反应的废料具有很强的放射性,故A 、C 错误,B 、D 正确.[答案] BD5.(2012·西安检测)由于放射性元素23793Np 的半衰期很短,所以在自然界一直未被发现,只是在使用人工的方法制造后才被发现.已知23793Np 经过一系列α衰变和β衰变后变成20983Bi ,下列论断中正确的是( )A.20983Bi 的原子核比23793Np 的原子核少28个中子 B.20983Bi 的原子核比23793Np 的原子核少18个中子 C .衰变过程中共发生了7次α衰变和4次β衰变 D .衰变过程中共发生了4次α衰变和7次β衰变 [解析]20983Bi 的中子数为209-83=126,237 93Np 的中子数为237-93=144,20983Bi 的原子核比23793Np 的原子核少18个中子,A 错、B 对;衰变过程中共发生了α衰变的次数为237-2094=7次,β衰变的次数是2×7-(93-83)=4次,C 对、D 错.[答案] BC6.我国科学家研制“两弹”所涉及的基本核反应方程有: (1)23592U +10n→9038Sr +13654Xe +k 10n ; (2)21H +31H→42He +d 10n ;关于这两个方程,下列说法正确的是 ( )A .方程(1)属于α衰变B .方程(2)属于轻核聚变C .方程(1)中k =10,方程(2)中d =1D .方程(1)中k =6,方程(2)中d =1[解析] 本题考查核反应方程.(1)式为典型的裂变方程,故A 选项错误.(2)为聚变反应,故B 项正确.根据质量数守恒和电荷数守恒定律可得k =10,d =1,故C 选项正确.[答案] BC7.(2012·河北石家庄市模拟)正电子发射型计算机断层显像(PET)的基本原理是:将放射性同位素158O 注入人体,158O 在人体内衰变放出的正电子与人体内的负电子相遇而湮灭转化为一对γ光子,被探测器采集后,经计算机处理生成清晰图象.则根据PET 原理判断下列表述正确的是( )A.158O 在人体内衰变的方程是158O→157N +01e B .正、负电子湮灭的方程是01e + 0-1e→2γ C .在PET 中,158O 主要用途是作为示踪原子 D .在PET 中,15 8O 主要用途是参与人体的新陈代谢[解析] 由题意知A 、B 正确,显像的原理是采集γ光子,即注入人体内的158O 衰变放出正电子和人体内的负电子湮灭转化为γ光子,因此158O 主要用途是作为示踪原子,故C 对,D 错.[答案] ABC8.(2011·天津理综)回旋加速器在核科学、核技术、核医学等高新技术领域得到了广泛应用,有力地推动了现代科学技术的发展.当今医学影像诊断设备PET/CT 堪称“现代医学高科技之冠”,它在医疗诊断中,常利用能放射正电子的同位素碳11作示踪原子.碳11可由小型回旋加速器输出的高速质子轰击氮14获得,同时还会产生另一粒子,试写出核反应方程.若碳11的半衰期τ为20 min ,经2.0 h 剩余碳11的质量占原来的百分之几?(结果取2位有效数字)[解析] 核反应方程为147N +11H ―→11 6C +42He设碳11原有质量为m 0,经过t 1=2.0 h ,剩余的质量为m r ,根据半衰期定义有[答案]147N +11H→11 6C +42He 1.6%9.238 92U 放射性衰变有多种可能途径,其中一种途径是先变成210 83Bi ,而21083Bi 可以经一次衰变变成210a X(X 代表某种元素),也可以经一次衰变变成 b81Ti ,210a X 和 b81Ti 最后都变成20682Pb ,衰变路径如右图所示.则图中( )A .a =84,b =206B .①是β衰变,②是α衰变C .①是α衰变,②是β衰变 D. b81Ti 经过一次α衰变变成20682Pb[解析] 由21083Bi 衰变为210a X ,质量数没有变化,所以①是β衰变,根据核电荷数守恒,同时可判断a =84;由210 83Bi 衰变为 b81Ti ,因为核电荷数减2,可判断②为α衰变,根据质量数守恒,同时可判断b =206,所以A 、B 正确,C 项错误; b81Ti 经过一次β衰变变成20682Pb ,D 项错误.[答案] AB10.(2012·山西太原市调测)钴60是金属元素钴的放射性同位素之一,其半衰期为5.27年.它会通过β衰变放出能量高达315 keV 的高速电子衰变为镍60,同时会放出两束γ射线,其能量分别为1.17 MeV 及1.33 MeV.钴60的应用非常广泛,几乎遍及各行各业.在农业上,常用于辐射育种、食品辐射保藏与保鲜等;在工业上,常用于无损探伤、辐射消毒、辐射加工、辐射处理废物以及自动控制等;在医学上,常用于癌症和肿瘤的放射治疗.关于钴60下列说法正确的是( )A .衰变方程为6027Co→6028Ni + 0-1eB .利用钴60对人体肿瘤进行放射治疗是利用其衰变放出的电子流C .钴60可以作为示踪原子研究人体对药物的吸收D .钴60衰变过程中不会有质量亏损[解析] 据质量数守恒及电荷数守恒,可判断A 项正确.钴60半衰期太长,且衰变放出的高能粒子对人体伤害太大,不能作为药品的示踪原子,C 项不正确;利用钴60对人体肿瘤进行放射治疗是利用其衰变放出的γ射线,因为衰变释放能量,必然存在质量亏损,B 、D 两项都不正确.[答案] A11.太阳中含有大量的氘核,因氘核不断发生核反应释放大量的核能,以光和热的形式向外辐射.已知氘核质量为 2.0136 u ,氦核质量为 3.0150 u ,中子质量为 1.0087 u,1 u 的质量相当于931.5 MeV 的能量则:(1)完成核反应方程:21H +21H→________+10n. (2)求核反应中释放的核能.(3)在两氘核以相等的动能0.35 MeV 进行对心碰撞,并且核能全部转化为机械能的情况下,求反应中产生的中子和氦核的动能.[解析] (1)32He(2)ΔE =Δmc 2=(2×2.0136 u-3.0150 u -1.0087 u)×931.5 MeV=3.26 MeV. (3)两核发生碰撞时:0=Mv 1-mv 2 由能量守恒可得:ΔE +2E k =12Mv 21+12mv 22由以上两式解得:E He =12Mv 21=0.99 MeV ,E 中=12mv 22=2.97 MeV[答案] (1)32He (2)3.26 MeV (3)0.99 MeV 2.97 MeV12.(2012·浙江金丽衢联考)如右图所示,有界的匀强磁场磁感应强度为B =0.05 T ,磁场方向垂直于纸面向里,MN 是磁场的左边界.在磁场中A 处放一个放射源,内装22688Ra ,22688Ra 放出某种射线后衰变成22286Rn.(1)写出上述衰变方程.(2)若A 处距磁场边界MN 的距离OA =1.0 m 时,放在MN 左侧边缘的粒子接收器收到垂直于边界MN 方向射出的质量较小的粒子,此时接收器距过OA 的直线1.0 m .求一个静止22688Ra 核衰变过程中释放的核能有多少?(取1 u =1.6×10-27kg ,e =1.6×10-19C ,结果保留三位有效数字)[解析] (1)22688Ra→22286Rn +42He(2)衰变过程中释放的α粒子在磁场中做匀速圆周运动,半径R =1.0 m ,由2evB =mv 2R得α粒子的速度v =2eBRm,衰变过程中系统动量守恒,222 86Rn 、42He 质量分别为222 u 、4 u ,则222 u×v ′=4 u×v , 得22286Rn 的速度v ′=2111v ,释放的核能E =12×222 u×v ′2+12×4 u×v 2=113e 2B 2R 2222 u代入数据解得E =2.04×10-14J.[答案] (1)22688Ra →22286Rn +42He (2)2.04×10-14J。

2019高中物理 第十八章 课时作业新人教版选修3-5【共4套24页】

本套资源目录2019高中物理第十八章原子结构综合测评三含解析新人教版选修3_52019高中物理第十八章课时作业十一含解析新人教版选修3_52019高中物理第十八章课时作业十二含解析新人教版选修3_52019高中物理第十八章课时作业十含解析新人教版选修3_5综合测评(三)第十八章原子结构分值:100分时间:60分钟命题报告求,第7~10题有多个选项符合要求)1.关于阴极射线的性质,下列说法正确的是( )A.阴极射线是电子打在玻璃管壁上产生的B.阴极射线本质是电子C.阴极射线在电磁场中的偏转表明阴极射线带正电D.阴极射线的比荷比氢原子核小【解析】阴极射线是原子受激发射出的电子流,故A、C错,B对;电子带电量与氢原子核相同,但质量是氢原子核的11 836,故阴极射线的比荷比氢原子核大,D错.【答案】 B2.按照玻尔理论,一个氢原子的电子从一半径为r a的圆轨道自发地直接跃迁到一半径为r b的圆轨道上,r a>r b,此过程中( )A.原子要辐射一系列频率的光子B.原子要吸收一系列频率的光子C.原子要辐射某一频率的光子D.原子要吸收某一频率的光子【解析】从某一轨道直接跃迁到另一轨道,只能辐射或吸收一特定频率的光子;再根据r a>r b,从较远轨道向较近轨道跃迁,即从高能级向低能级跃迁,要辐射光子,故C正确.【答案】 C3.(2014·福建师大附中期末检测)处于基态的氢原子受到某种单色光的照射时,只激发出波长为λ1、λ2、λ3的三种单色光,且λ1>λ2>λ3,则照射光的波长为( )A.λ1λ2λ1+λ2 B.λ2λ3λ2+λ3C .λ2+λ3D .λ1【解析】 处于基态的氢原子受到照射后能够辐射三种频率的光,说明它跃迁到第三能级,吸收的光子能量应为E =h ν=h cλ=h c λ3,而hν3=hν1+hν2.即h c λ3=h c λ1+h c λ2可得λ3=λ1λ2λ1+λ2,只有A 项正确.【答案】 A4.氢原子从n =3的能级跃迁到n =2的能级放出光子的频率为ν,则它从基态跃迁到n =4的能级吸收的光子频率为( )A.49ν B.34ν C.2516νD.274ν 【解析】 设氢原子基态能量为E 1,则由玻尔理论可得:19E 1-14E 1=hν,116E 1-E 1=hν41,解得:吸收的光子频率ν41=274ν,D 正确.【答案】 D5.现有k 个氢原子被激发到量子数为3的能级上,若这些受激氢原子最后都回到基态,则在此过程中发出的光子总数是(假定处在量子数为n 的激发态的氢原子跃迁到各较低能级的原子数都是处在该激发态能级上的原子总数的1n -1)( ) A.k2 B .k C.3k2D .2k 【解析】 由题意可知,k 个处于n =3能级的氢原子向n =2和n =1两个能级跃迁的原子数均为k 2,而处于n =2能级的k 2个氢原子向n =1跃迁的原子数为k2,故此过程发出的光子总数为2×k 2+k 2=32k ,C 正确.【答案】 C6.氢原子从能量为E 1的较高激发态跃迁到能量为E 2的较低激发态,设真空中的光速为c ,则( )A .吸收光子的波长为c (E 1-E 2)hB .辐射光子的波长为c (E 1-E 2)h C .吸收光子的波长为ch E 1-E 2 D .辐射光子的波长为chE 1-E 2【解析】 由玻尔理论的跃迁假设知,当氢原子由较高的能级向较低的能级跃迁时辐射光子,由关系式hν=E 1-E 2得ν=E 1-E 2h .又有λ=c ν,故辐射光子的波长为λ=chE 1-E 2,选项D 正确.【答案】 D7.关于巴耳末公式1λ=R ⎝ ⎛⎭⎪⎫122-1n 2(n =3,4,5,…)的理解,正确的是( )A .此公式只适用于氢原子发光B .公式中的n 可以是任意数,故氢原子发光的波长是任意的C .公式中的n 是大于等于3的正整数,所以氢原子光谱不是连续的D .该公式包含了氢原子的所有光谱线【解析】 巴耳末公式是分析氢原子的谱线得到的一个公式,它只反映氢原子谱线的一个线系,故A 对,D 错.公式中的n 只能取不小于3的正整数,故B 错,C 对.【答案】 AC图18.氢原子的能级如图1所示.已知可见光的光子能量在1.62 eV 到3.11 eV 之间.由此可推知,氢原子( )A .从高能级向n =1能级跃迁时发出的光的波长比可见光的短B .从高能级向n =2能级跃迁时发出的光均为可见光C .从高能级向n =3能级跃迁时发出的光的频率比可见光的高D .从n =3能级向n =2能级跃迁时发出的光为可见光【解析】 从高能级向n =1的能级跃迁的过程中辐射出的最小光子能量为10.20 eV ,不在1.62 eV 到3.11 eV 之间,选项A 正确.从高能级向n =2能级跃迁时放出的光子的能量小于等于3.40 eV ,从n =7、8…跃迁到n =2放出的光子能量大于3.11 eV ,故选项B 错.从高能级向n =3能级跃迁时放出的光子能量最大为1.51 eV ,光子频率均小于可见光,选项C 错.从n =3到n =2的过程中放出的光子的能量等于1.89 eV ,介于1.62 eV 到3.11 eV 之间,所以是可见光,选项D 对.【答案】 AD图29.已知金属钙的逸出功为2.7 eV ,氢原子的能级图如图2所示,一群氢原子处于量子数n =4能级状态,则( )A .氢原子可能辐射6种频率的光子B .氢原子可能辐射5种频率的光子C .有3种频率的辐射光子能使钙发生光电效应D .有4种频率的辐射光子能使钙发生光电效应 【解析】 由N =n (n -1)2知,氢原子可能放出6种频率的光子,选项A 正确,B 错;原子由n =4向低能级跃迁放出的6种频率的光子中,由hν=E m -E n ,知有3种频率的光子的能量大于金属钙的逸出功2.7 eV ,所以选项C 正确,D 错.【答案】 AC10.关于氢原子能级的跃迁,下列叙述中正确的是( )A .用波长为60 nm 的X 射线照射,可使处于基态的氢原子电离出自由电子B .用能量为10.2 eV 的光子照射,可使处于基态的氢原子跃迁到激发态C .用能量为11.0 eV 的光子照射,可使处于基态的氢原子跃迁到激发态D .用能量为12.5 eV 的光子照射,可使处于基态的氢原子跃迁到激发态【解析】 根据玻尔理论,只有那些能量刚好等于两能级间的能量差的光子才能被氢原子所吸收(即hν=E m -E n ),使氢原子发生跃迁.当氢原子由基态向n =2、3、4…轨道跃迁时应吸收的光子能量分别为:ΔE 21=E 2-E 1=E 122-E 1=-13.64eV -(-13.6)eV =10.20 eV ,ΔE 31=E 3-E 1=E 132-E 1=-13.69eV -(-13.6)eV =12.09 eV ,ΔE 41=E 4-E 1=E 142-E 1=-13.616eV -(-13.6)eV =12.75 eV ,ΔE ∞1=0-E 1=-(-13.6 eV)=13.6 eV(电离).波长为λ=60 nm 的X 射线,其光子能量E =h ·c λ=6.63×10-34×3×10860×10-9 J =3.315×10-18J =20.71 eV>ΔE ∞1.所以可使氢原子电离,A 正确;比较B 、C 、D 选项中的光子能量与各能级与基态的能量差,知道只有B 项中光子可使氢原子从基态跃迁到n =2的激发态,B 正确.【答案】 AB二、填空题(本题共3小题,共20分)图311.(6分)氢原子的能级图如图3所示,一群氢原子处于量子数n =4能级状态,则氢原子最多辐射________种频率的光子.辐射光子的最大能量为________.【解析】 根据氢原子跃迁的能级示意图,可知当处于n =4的能量状态的氢原子跃迁时会辐射6种频率的光子.当从n =4跃迁到n =1轨道时,辐射的能量最大,ΔE =[-0.85-(-13.6)] eV =12.75 eV.【答案】 6 12.75 eV图412.(6分)(2013·江苏高考)根据玻尔原子结构理论,氦离子(He +)的能级图如图4所示.电子处在n =3轨道上比处在n =5轨道上离氦核的距离________(选填“近”或“远”).当大量He +处在n =4的激发态时,由于跃迁所发射的谱线有________条.【解析】 根据玻尔理论r n =n 2r 1可知电子处在n =3的轨道上比处在n =5的轨道上离氦核的距离近.大量He +处在n =4的激发态时,根据N =n (n -1)2知发射的谱线有6条.【答案】 近 613.(8分)(1)钠金属中的电子吸收光子的能量,从金属表面逸出,这就是光电子.光电子从金属表面逸出的过程中,其动量的大小________(选填“增大”、“减小”或“不变”),原因是________.(2)已知氢原子处在第一、第二激发态的能级分别为-3.40 eV 和-1.51 eV ,金属钠的截止频率为5.53×1014Hz ,普朗克常量h =6.63×10-34J ·s.请通过计算判断,氢原子从第二激发态跃迁到第一激发态过程中发出的光照射金属钠板,能否发生光电效应.【解析】 (1)略(2)氢原子放出的光子能量E =E 2-E 1,代入数据得E =1.89 eV 金属钠的逸出功W 0=hνc ,代入数据得W 0=2.3 eV 因为E <W 0,所以不能发生光电效应.【答案】 (1)减小 光电子受到金属表面层中力的阻碍作用(或需要克服逸出功)(2)不能三、计算题(本题共3小题,共40分.)14.(12分)(2013·通州高二检测)氦原子被电离一个核外电子,形成类氢结构的氦离子.已知基态的氦离子能量为E 1=-54.4 eV ,氦离子能级的示意图如图5所示,用一群处于第4能级的氦离子发出的光照射处于基态的氢气.求:图5(1)氦离子发出的光子中,有几种能使氢原子发生光电效应? (2)发生光电效应时,光电子的最大初动能是多少? 【解析】 (1)一群氦离子跃迁时,一共发出N =n (n -1)2=6种光子由频率条件hν=E m -E n 知6种光子的能量分别是 由n =4到n =3 hν1=E 4-E 3=2.6 eV 由n =4到n =2 hν2=E 4-E 2=10.2 eV 由n =4到n =1 hν3=E 4-E 1=51.0 eV 由n =3到n =2 hν4=E 3-E 2=7.6 eV 由n =3到n =1 hν5=E 3-E 1=48.4 eV 由n =2到n =1 hν6=E 2-E 1=40.8 eV由发生光电效应的条件知,h ν3、hν5、hν6三种光子可使处于基态的氢原子发生光电效应.(2)由光电效应方程E k =hν-W 0知,能量为51.0 eV 的光子使氢原子逸出的光电子初动能最大,将W 0=13.6 eV 代入,E k =hν-W 0得E k =37.4 eV.【答案】 (1)3种 (2)37.4 eV图615.(12分)(2014·涟水中学月考)氢原子的能级图如图6所示.原子从能级n =3向n =1跃迁所放出的光子,正好使某种金属材料产生光电效应.有一群处于n =4能级的氢原子向较低能级跃迁时所发出的光照射该金属.普朗克常量h =6.63×10-34J ·s ,求:(1)氢原子向较低能级跃迁时共能发出几种频率的光; (2)该金属的逸出功和截止频率.【解析】 (1)处于n =4能级的氢原子向低能级跃迁时可产生的光的频率的种数为N =n (n -1)2=4×32=6(种).(2)W =E 3-E 1=12.09 eV ,E 3-E 1=hν 解得ν=2.9×1015Hz.【答案】 (1)6 (2)12.09 eV 2.9×1015Hz16.(16分)将氢原子电离,就是从外部给电子能量,使其从基态或激发态脱离原子核的束缚而成为自由电子.(1)若要使n =2激发态的氢原子电离,至少要用多大频率的电磁波照射该氢原子? (2)若用波长为200 nm 的紫外线照射该氢原子,则电子飞到离核无穷远处时的速度多大?(电子电荷量e =1.6×10-19C ,电子质量m e =0.91×10-30kg)【解析】 (1)n =2时,E 2=-13.622eV =-3.4 eV. 所谓电离,就是使处于基态或激发态的原子的核外电子跃迁到n =∞的轨道,n =∞时,E ∞=0.所以,要使处于n =2激发态的原子电离,电离能应为ΔE =E ∞-E 2=3.4 eV , ν=ΔE h =3.4×1.6×10-196.63×10-34Hz =8.21×1014 Hz.(2)波长为200 nm 的紫外线一个光子所具有的能量E 0=h ν=6.63×10-34×3×108200×10-9 J =9.945×10-19J , 电离能ΔE =3.4×1.6×10-19J =5.44×10-19J ,由能量守恒:E 0-ΔE =12m e v 2,代入数据解得:v =9.95×105m/s.【答案】 (1)8.21×1014Hz (2)9.95×105m/s课时作业(十一)[全员参与·基础练]1.(2014·南京高二检测)关于线状谱,下列说法中正确的是( )A.每种原子处在不同温度下发光的线状谱不同B.每种原子处在不同的物质中的线状谱不同C.每种原子在任何条件下发光的线状谱都相同D.两种不同的原子发光的线状谱可能相同【解析】每种原子都有自己的结构,只能发出由内部结构决定的特征谱线,不会因温度、物质不同而改变,C正确.【答案】 C2.太阳的光谱中有许多暗线,它们对应着某些元素的特征谱线.产生这些暗线是由于( )A.太阳表面大气层中缺少相应的元素B.太阳内部缺少相应的元素C.太阳表面大气层中存在着相应的元素D.太阳内部存在着相应的元素【解析】太阳光谱中的暗线是由于太阳内部发出的强光经过温度较低的太阳大气层时产生的,表明太阳大气层中含有与这些特征谱线相应的元素.【答案】 C3.下列关于光谱的说法正确的是 ( )A.炽热固体、液体和高压气体发出的光谱是连续谱B.各种原子的线状谱中的明线和它的吸收谱中的暗线必定一一对应C.气体发出的光只能产生线光谱D.甲物质发出的白光通过低温的乙物质蒸气可得到甲物质的吸收光谱【解析】由于通常看到的吸收光谱中的暗线比线状光谱中的明线要少一些,所以B 不对;气体发光时,若是高压气体发光则形成连续光谱,若是稀薄气体发光则形成线光谱,故C也不对;甲物质发出的白光通过低温的乙物质蒸气后,得到的是乙物质的吸收光谱,所以D错误.答案为A.【答案】 A4.(多选)关于物质的吸收光谱和明线光谱之间的关系,下列说法中正确的是( ) A.吸收光谱和明线光谱的产生方法不同,它们的谱线互不相关B.同种物质吸收光谱中的暗线跟它明线光谱中的明线相对应C.明线光谱与吸收光谱都是原子光谱,它们的特征谱线相对应D.明线光谱与吸收光谱都可以用于光谱分析,以鉴别物质和确定化学组成【解析】明线光谱与吸收光谱都是原子的特征谱线,但是明线光谱是原子光谱,吸收光谱不是原子光谱,C错误;明线光谱和吸收光谱都可以进行光谱分析,D正确;同种物质吸收光谱中的暗线与它明线光谱中的明线相对应,B正确,A错误.【答案】BD5.(多选)(2014·盐城检测)如图18­3­2甲所示是a、b、c、d四种元素的线状谱,图乙是某矿物质的线状谱,通过光谱分析可以了解到该矿物质中缺乏( )甲乙图18­3­2A.a元素B.b元素C.c元素D.d元素【解析】对比题图甲和题图乙可知,题图乙中没有b、d对应的特征谱线,所以该矿物质中缺乏b、d两种元素.【答案】BD6.(多选)关于经典电磁理论与原子的核式结构之间的关系,下列说法正确的是( ) A.经典电磁理论很容易解释原子的稳定性B.根据经典电磁理论,电子绕原子核转动时,电子会不断释放能量,最后被吸附到原子核上C.根据经典电磁理论,原子光谱应该是连续的D.原子的核式结构模型彻底否定了经典电磁理论【解析】根据经典电磁理论,电子绕原子核转动时,电子会不断释放能量最后被吸附到原子核上,原子不应该是稳定的,并且发射的光谱应该是连续的.【答案】BC7.(2014·广州高二检测)下列说法不正确的是( )A.巴耳末线系光谱线的条数只有4条B.巴耳末线系光谱线有无数条C.巴耳末线系中既有可见光,又有紫外光D.巴耳末线系在可见光范围内只有4条【解析】巴耳末线系中的光谱线有无数条,但在可见光区域只有4条光谱线.故正确的是B、C、D,A错误.【答案】 A8.(多选)下列关于特征谱线的几种说法,正确的有( )A.明线光谱中的明线和吸收光谱中的暗线都是特征谱线B.明线光谱中的明线是特征谱线,吸收光谱中的暗线不是特征谱线C.明线光谱中的明线不是特征谱线,吸收光谱中的暗线是特征谱线D.同一元素的明线光谱的明线与吸收光谱的暗线是相对应的【解析】明线光谱中的明线与吸收光谱中的暗线均为特征谱线,并且实验表明各种元素吸收光谱中的每一条暗线都跟这种原子的明线光谱中的一条明线相对应.所以A、D正确,B、C错误.【答案】AD[超越自我·提升练]9.对于巴耳末公式,下列说法正确的是( )A.所有氢原子光谱的波长都与巴耳末公式相对应B.巴耳末公式只确定了氢原子发光的可见光部分的光的波长C.巴耳末公式确定了氢原子发光的一个线系的波长,其中既有可见光,又有紫外光D .巴耳末公式确定了各种原子发光中的光的波长【解析】 巴耳末公式只确定了氢原子发光中一个线系的波长,不能描述氢原子发出的各种波长,也不能描述其他原子的发光,A 、D 错误;巴耳末公式是由当时已知的可见光中的部分谱线总结出来的,但它适用于整个巴耳末线系,该线系包括可见光和紫外光,B 错误,C 正确.【答案】 C10.氢原子光谱的巴耳末系中波长最长的光波的光子能量为E 1,其次为E 2,则E 1E 2为( )A.2027B.2720C.23D.32 【解析】 由1λ=R ⎝ ⎛⎭⎪⎫122-1n 2得:当n =3时,波长最长,1λ1=R ⎝ ⎛⎭⎪⎫122-132,当n =4时,波长次之,1λ2=R ⎝ ⎛⎭⎪⎫122-142,解得λ1λ2=2720,由E =h c λ得:E 1E 2=λ2λ1=2027. 【答案】 A11.在氢原子的光谱的紫外区的谱线系中有多条谱线,试利用莱曼系的公式1λ=R ⎝ ⎛⎭⎪⎫112-1n 2,n =2,3,4,…,计算紫外线的最长波和最短波的波长. 【解析】 根据莱曼系波长倒数公式: 1λ=R ⎝ ⎛⎭⎪⎫112-1n 2,n =2,3,4,… 可得λ=1R (112-1n 2),n =2,3,4,…当n =2时波长最长,其值为λ=1R (112-122)=134R =134×1.097×107m =1.22×10-7 m.当n =∞时,波长最短,其值为λ=1R (112-0)=1R =11.097×107 m =9.12×10-8 m. 【答案】 1.22×10-7 m 9.12×10-8m12.氢原子光谱除了巴耳末系外,还有莱曼系、帕邢系等,其中帕邢系的公式为1λ=R ⎝ ⎛⎭⎪⎫132-1n 2,n =4,5,6,…,R =1.10×107 m -1.若已知帕邢系的氢原子光谱在红外线区域,试求:(1)n =6时,对应的波长;(2)帕邢系形成的谱线在真空中的波速为多少?n =6时,传播频率为多大?【解析】 (1)帕邢系公式1λ=R ⎝ ⎛⎭⎪⎫132-1n 2,当n =6时,得λ=1.09×10-6 m. (2)帕邢系形成的谱线在红外线区域,而红外线属于电磁波,在真空中以光速传播,故波速为光速c =3×108 m/s ,由v =λT =λν,得ν=v λ=c λ=3×1081.09×10-6 Hz =2.75×1014 Hz. 【答案】 (1)1.09×10-6m(2)3×108 m/s 2.75×1014 Hz课时作业(十二)[全员参与·基础练]1.(2014·苏州高二检测)根据玻尔模型,原子中电子绕核运转的半径( )A.可以取任意值B.可以在某一范围内取任意值C.可以取一系列不连续的任意值D.是一系列不连续的特定值【解析】由玻尔理论“轨道量子化”可知电子绕核运转的轨道半径是一系列不连续的特定值,D正确,A、B、C错误.【答案】 D2.根据玻尔的氢原子理论,电子在各条可能轨道上运动的能量是指( )A.电子的动能B.电子的电势能C.电子的电势能与动能之和D.电子的动能、电势能和原子核能之和【解析】根据玻尔理论,电子绕核在不同轨道上做圆周运动,库仑力提供向心力,故电子的能量指电子的总能量,包括动能和电势能,所以C选项是正确的.【答案】 C3.(2014·无锡期末)已知处于某一能级n上的一群氢原子向低能级跃迁时,能够发出10种不同频率的光,下列能表示辐射光波长最长的那种跃迁的示意图是( )【解析】 根据玻尔理论,波长最长的跃迁对应着频率最小的跃迁,根据氢原子能级图,频率最小的跃迁对应的是从5到4的跃迁,选项A 正确.【答案】 A4.已知氢原子的基态能量为E 1,激发态能量E n =E 1/n 2,其中n =2,3,….用h 表示普朗克常量,c 表示真空中的光速.能使氢原子从第一激发态电离的光子的最大波长为( )A .-4hc 3E 1B .-2hc E 1C .-4hc E 1D .-9hcE 1【解析】 处于第一激发态时n =2,故其能量E 2=E 14,电离时释放的能量ΔE =0-E 2=-E 14,而光子能量ΔE =hc λ,则解得λ=-4hc E 1,故C 正确,A 、B 、D 均错. 【答案】 C图18­4­45.(多选)如图18­4­4所示给出了氢原子的6种可能的跃迁,则它们发出的光( ) A.a的波长最长B.d的波长最长C.f比d光子能量大D.a频率最小【解析】能级差越大,对应的光子的能量越大,频率越大,波长越小.【答案】ACD图18­4­56.(多选)(2014·浙江湖州期末)氢原子能级图如图18­4­5所示,a,b,c分别表示原子在不同能级之间的三种跃迁途径,设a,b,c在跃迁过程中,放出光子的能量和波长分别是E a 、E b 、E c 和λa 、λb 、λc ,若a 光恰能使某金属产生光电效应,则( )A .λa =λb +λcB.1λb =1λa +1λcC .E b =E a +E cD .c 光也能使该金属产生光电效应【解析】 E a =E 2-E 1,E b =E 3-E 1,E c =E 3-E 2,故E b =E a +E c ,C 项正确;又因为E =hν=h c λ,故1λb =1λa +1λc ,A 项错误,B 项正确;a 光恰能使某金属发生光电效应,而E a >E c .故c 光不能使该金属产生光电效应,D 项错误.【答案】 BC图18­4­67.(多选)氢原子的能级如图18­4­6所示,已知可见光的光子能量范围约为1.62~3.11 eV.下列说法正确的是( )A .处于n =3能级的氢原子可以吸收任意频率的紫外线,并发生电离B .大量氢原子从高能级向n =3能级跃迁时,可能发出可见光C .大量处于n =4能级的氢原子向低能级跃迁时,可能发出6种不同频率的光D .一个处于n =3能级的氢原子向低能级跃迁时,最多可能发出3种不同频率的光【解析】 由于E 3=-1.51 eV ,紫外线光子的能量大于可见光光子的能量,即E 紫>E ∞-E 3=1.51 eV ,可以使氢原子电离,A 正确;大量氢原子从高能级向n =3能级跃迁时,最大能量为1.51 eV ,即辐射出光子的能量最大为1.51 eV ,小于可见光光子的能量,B 错误;n =4时跃迁发出光的频率数为C 24=6种,C 正确;一个处于n =3能级的氢原子向低能级跃迁时最多可能发出3-1=2种不同频率的光,D 错误.【答案】 AC图18­4­78.(2014·苏北四市期末)氢原子的能级如图18­4­7所示.有一群处于n=4能级的氢原子,若原子从n=4向n=2跃迁时所发出的光正好使某种金属产生光电效应,则:(1)这群氢原子发出的光中共有________种频率的光能使该金属产生光电效应;(2)从n=4向n=1跃迁时发出的光照射该金属,所产生的光电子的最大初动能为________eV.【解析】(1)从n=4向n=2跃迁刚好发生光电效应,设该金属的极限频率为ν1.则ΔE=E4-E2=hν1=(-0.85)eV-(-3.4)eV=2.55 eV.若要使金属产生光电效应,则释放的光子的能量应满足ΔE>2.55 eV.故可有从n=4至n=1,n=3至n=1,n=2至n=1,n=4至n=2跃迁产生4种频率的光可满足要求.(2)E k=hν-W0=(E4-E1)-2.55 eV=10.2 eV.【答案】(1)4 (2)10.2[超越自我·提升练]图18­4­89.(多选)用大量具有一定能量的电子轰击大量处于基态的氢原子,观测到了一定数目的光谱线.调高电子能量再次进行观测,发现光谱线的数目比原来增加了5条.用Δn 表示两次观测中最高激发态的量子数n 之差,E 表示调高后电子的能量.根据氢原子的能级图(如图18­4­8所示)可以判断,Δn 和E 的可能值为( )A .Δn =1,13.22 eV<E <13.32 eVB .Δn =2,13.22 eV<E <13.32 eVC .Δn =1,12.75 eV<E <13.06 eVD .Δn =2,12.75 eV<E <13.06 eV【解析】 由原子在某一能级跃迁最多发射谱线数N =n (n -1)2可知:N 2=1,N 3=3,N 4=6,N 5=10,N 6=15,N 7=21,由题意可知,比原来增加5条光谱线,则调高电子能量前后,最高激发态的量子数分别可能为2和4,5和6,即Δn =2或Δn =1当Δn =2时,原子吸收了实物粒子(电子)的能量,则调高后电子的能量E 4-E 1<E <E 5-E 1所以[-0.85-(-13.6)] eV<E <[-0.54-(-13.6)] eV即12.75 eV<E <13.06 eV ,故D 正确;同理当Δn =1时,使调高后电子的能量满足E 6-E 1<E <E 7-E 1[-0.38-(-13.60)] eV<E <[-0.28-(-13.60)] eV即13.22 eV<E <13.32 eV ,故A 正确.【答案】 AD10.(多选)一群处于基态的氢原子吸收某种光子后,向外辐射了ν1、ν2、ν3三种频率的光子,且ν1>ν2>ν3,则( )A .被氢原子吸收的光子的能量为hν1B .被氢原子吸收的光子的能量为hν2C .ν1=ν2+ν3D .h ν1=hν2+hν3【解析】 氢原子吸收光子能向外辐射出三种频率的光子,说明氢原子从基态跃迁到了第三激发态,在第三激发态不稳定,又向低能级跃进,发出光子,其中从第三能级跃迁到第一能级的光子能量最大,为hν1,从第二能级跃迁到第一能级的光子能量比从第三能级跃迁到第二能级的光子能量大,由能量守恒可知,氢原子一定是吸收了能量为hν1的光子,且关系式hν1=hν2+hν3,ν1=ν2+ν3存在.【答案】 ACD11.氢原子在基态时轨道半径为r 1=0.53×10-10 m ,能量E 1=-13.6 eV.求氢原子处于基态时:(1)电子的动能;(2)原子的电势能;(3)用波长是多少的光照射可使其电离?(已知电子质量m =9.1×10-31 kg)【解析】 (1)设处于基态的氢原子核外电子的速度为v 1,则k e 2r 21=mv 21r 1,所以电子的动能E k1=12mv 21=ke 22r 1=9×109×(1.6×10-19)22×0.53×10-10×1.6×10-19 eV =13.6 eV.(2)因为E 1=E k1+E p1,所以 E p1=E 1-E k1 =-13.6 eV -13.6 eV=-27.2 eV.(3)设用波长为λ的光照射可使氢原子电离:hc λ=0-E 1. 所以λ=-hc E 1=-6.63×10-34×3×108-13.6×1.6×10-19 m =9.14×10-8 m. 【答案】 (1)13.6 eV (2)-27.2 eV (3)9.14×10-8 m12.有一群氢原子处于量子数n =4的激发态中,能发出几条光谱线?其中最高频率、最低频率各为多少?若有一个氢原子处于量子数n =4的激发态时,最多能发出几种频率的光子?【解析】 一群氢原子向低能级跃迁时,各种跃迁方式都会发生,即可以从n =4的激发态到n =3,n =2,n =1的各能级,再从n =3的激发态到n =2,n =1的各能级,再从n =2的激发态到n =1的基态,故有N =n (n -1)2=6种频率的光子产生,如图所示为跃迁情况示意图.最高频率的光子满足hν1=-0.85 eV -(-13.6 eV)=12.75 eV =2.04×10-18 J ,ν1≈3.1×1015 Hz.最低频率的光子满足hν2=-0.85 eV -(1.51 eV)=0.66 eV =1.056×10-19 J ,ν2≈1.6×1014 Hz.一个氢原子向较低能级跃迁,最多有三种频率的光子,因为它从n =4的能级跃迁至n =3的能级时一定不存在由n =4的能级直接跃迁至n =1的能级的可能.【答案】 (1)6条 3.1×1015 Hz 1.6×1014 Hz 3种课时作业(十)[全员参与·基础练]1.下列关于原子结构的说法正确的是( )A.电子的发现说明了原子内部还有复杂结构B.α粒子散射实验揭示了原子的核式结构C.α粒子散射实验中绝大多数α粒子都发生了较大偏转D.α粒子散射实验中有的α粒子发生较大偏转是α粒子与原子发生碰撞所致【解析】电子的发现,证明了原子内部有带正电的物质,α粒子的散射实验说明了原子内部很空,揭示了原子的核式结构.故正确答案为B.【答案】 B2.卢瑟福和他的助手做α粒子轰击金箔实验,获得了重要发现,关于α粒子散射实验的结果,下列说法正确的是( )A.证明了质子的存在B.证明了原子核是由质子和中子组成的C.证明了原子的全部正电荷和几乎全部质量都集中在一个很小的核里D.说明了原子中的电子只能在某些轨道上运动【解析】α粒子散射实验发现了原子内存在一个集中了全部正电荷和几乎全部质量的核.数年后卢瑟福发现核内有质子并预测核内存在中子,所以C对,A、B错;玻尔发现了电子轨道量子化,D错.【答案】 C3.卢瑟福在解释α粒子散射实验的现象时,不考虑α粒子与电子的碰撞影响,这是因为( )A.α粒子与电子之间有相互斥力,但斥力很小,可忽略B.α粒子虽受电子作用,但电子对α粒子的合力为零C.电子体积极小,α粒子不可能碰撞到电子D.电子质量极小,α粒子与电子碰撞时能量损失可忽略【解析】α粒子与电子间有库仑引力,电子的质量很小,α粒子与电子相碰,运动方向不会发生明显的改变,所以α粒子和电子的碰撞可以忽略.A、B、C错,D正确.【答案】 D4.当α粒子穿过金箔发生大角度偏转的过程中,下列说法正确的是( )A.α粒子先受到原子核的斥力作用,后受原子核的引力的作用B.α粒子一直受到原子核的斥力作用。

高三物理人教版-选修3-5-课时作业-1.1动量定理课时作业

课时作业动量和动量定理1.关于动量的概念,下列说法正确的是( ) A.动量大的物体惯性一定大B.动量大的物体运动一定快C.动量相同的物体运动方向一定相同D.动量相同的物体速度小的惯性大2.关于动量的大小,下列叙述中正确的是( ) A.质量小的物体动量一定小B.质量小的物体动量不一定小C.速度大的物体动量一定大D.速度大的物体动量不一定大3.关于动量变化量的方向,下列说法中正确的是( ) A.与速度方向相同B.与速度变化的方向相同C.与物体受力方向相同D.与物体受到的总冲量的方向相同4.对于任何一个质量不变的物体, A.物体的动量发生变化,其动能一定变化B.物体的动量发生变化,其动能不一定变化C.物体的动能不变,其动量一定不变D.物体的动能发生变化,其动量不一定变化5.对于力的冲量的说法,正确的是( )A.力越大,力的冲量就越大B.作用在物体上的力大,力的冲量也不一定大C.F1与其作用时间t1的乘积F1t1等于F2与其作用时间t2的乘积F2t2,则这两个冲量相同D.静置于地面的物体受到水平推力F的作用,经时间t物体仍静止,则此推力的冲量为零6.从同一高度落下的玻璃杯掉在水泥地上比掉在泥土上易碎,是因为掉在水泥地上时,杯子( ) A.受到的冲量大B.受到的作用力大C.动量的变化量大D.动量大7.汽车从静止开始沿平直轨道做匀加速运动,所受的阻力始终不变,在此过程中,A.汽车输出功率逐渐增大B.汽车输出功率不变C.在任意两相等的时间内,汽车动能变化相等D.在任意两相等的时间内,汽车动量变化的大小相等8.如图2-1所示,把重物G压在纸带上,用一水平力缓慢拉动纸带,用另一水平力快速拉动纸带,纸带都被从重物下面抽出,对这两个过程,下面的解释正确的是( )A.缓慢拉动纸带时,纸带对重物的摩擦力大B.快速拉动纸带时,纸带对重物的摩擦力小C.缓慢拉动纸带时,纸带给重物的冲量大D.快速拉动纸带时,纸带给重物的冲量小9.一质量为m的运动员从下蹲状态向上起跳,经Δt时间,身体伸直并刚好离开地面,速度为v。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三物理课时作业(35)(磁场对运动电荷的作用力)班级 姓名1.质谱仪的两大重要组成部分是加速电场和偏转磁场,如图为质谱仪的原理图。

设想有一个静止的质量为m 、 带电量为q 的带电粒子(不计重力) ,经电压为U 的加速电场加速后垂直进入磁感应强度为B 的偏转磁场中,带电粒子打到底片上的P 点,设OP =x ,则在图中能正确反映x 与U 之间的函数关系的是( )2.如图所示,摆球带负电荷的单摆,在一匀强磁场中摆动,匀强磁场的方向垂直纸面向里,摆球在AB 间摆动过程中,由A 摆到最低点C 时,摆线拉力的大小为F 1,摆球加速度大小为a 1;由B 摆到最低点C 时,摆线拉力的大小为F 2,摆球加速度大小为a 2,则( )A .F 1>F 2,a 1=a 2B .F 1<F 2,a 1=a 2C .F 1>F 2,a 1>a 2D .F 1<F 2,a 1<a 23.半径为r 的圆形空间内,存在着垂直于纸面向里的匀强磁场,一个带电粒子(不计重力)从A 点以速度v 0垂直于磁场方向射入磁场中,并从B 点射出。

∠AOB =120°,如图所示,则该带电粒子在磁场中运动的时间为( )A.2πr3v 0B.23πr 3v 0C.πr 3v 0D.3πr 3v 04.如图所示,在x >0、y >0的空间中有恒定的匀强磁场,磁感应强度的方向垂直于Oxy 平面向里,大小为B 。

现有一质量为m 、电荷量为q 的带电粒子,在x 轴上到原点的距离为x 0的P 点,以平行于y 轴的初速度射入此磁场,在磁场力作用下沿垂直于y 轴的方向射出此磁场,不计重力的影响。

由这些条件可知下列判断错误的是( )A .能确定粒子通过y 轴时的位置B .能确定粒子速度的大小C .能确定粒子在磁场中运动所经历的时间D .以上三个判断都不对5.如图所示,长为L 、间距为d 的平行金属板间,有垂直于纸面向里的匀强磁场,磁感应强度为B ,两板不带电,现有质量为m 、电荷量为q 的带正电粒子(重力不计),从左侧两极板的中心处以不同速率v 水平射入,欲使粒子不打在板上,求粒子速率v 应满足什么条件?高三物理课时作业(35)答案1、解析:带电粒子先经加速电场加速,故qU =12m v 2,进入磁场后偏转,OP =x =2r =2m v qB ,两式联立得OP =x =8mUB 2q∝U ,所以B 正确。

答案:B2、解析:绳的拉力、洛伦兹力始终与单摆的运动方向垂直,不做功。

只有重力做功,所以a 1=a 2,当单摆由A 摆到最低点C 时,绳的拉力和洛伦兹力方向相同,由B 摆到最低点C 时,绳的拉力与洛伦兹力方向相反,故F 1<F 2。

答案:B=16T =πm3qB ,但题中已知条件不3、解析:由∠AOB =120°可知,弧AB 所对圆心角θ=60°,故t 够,没有此项选择,另想办法找规律表示t 。

由匀速圆周运动t = AB /v 0,从图中分析有R =3r ,则 AB =R ·θ=3r ×π3=33πr ,则t = AB /v 0=3πr3v 0。

D 项正确。

答案:D4、解析:因粒子垂直于x 轴射入磁场,又垂直于y 轴射出磁场,可确定坐标原点O 为圆心,半径R =x 0。

由x 0=m v 0Bq 可知,可求出v 0=Bqx 0m ,由t =T 4,T =2πm Bq ,可求出t =πm2Bq ,也能求出粒子射出磁场的位置,y =x 0。

答案:D5、解析:设粒子刚好打在上极板左边缘时(如图所示).R 1=d 4,又R 1=m v 1qB ,解得v 1=Bqd4m .设粒子刚好打在上极板右边缘时,由图知:R 22=L 2+(R 2-d 2)2,所以R 2=4L 2+d 24d,又R 2=m v 2qB ,解得v 2=Bq (4L 2+d 2)4md.综上分析,要使粒子不打在极板上,其入射速率应满足以下条件:v <Bqd4m 或v >Bq (4L 2+d 2)4md . 答案:v <Bqd 4m 或v >Bq (4L 2+d 2)4md高三物理课时作业(36)(磁场对运动电荷的作用力)班级 姓名1.如图所示,在一矩形区域内,不加磁场时,不计重力的带电粒子以某初速度垂直左边界射入,穿过此区域的时间为t .若加上磁感应强度为B 、垂直纸面向外的匀强磁场,带电粒子仍以原来的初速度入射,粒子飞出磁场时偏离原方向60°,利用以上数据可求出下列物理量中的( )A .带电粒子的比荷B .带电粒子在磁场中运动的周期C .带电粒子的初速度D .带电粒子在磁场中运动的半径 2.两个带电粒子以同一速度、同一位置进入匀强磁场,在磁场中它们的运动轨迹如图所示。

粒子a 的运动轨迹半径为r 1,粒子b 的运动轨迹半径为r 2,且r 2=2r 1,q 1、q 2分别是粒子a 、b 所带的电荷量,则( )A .a 带负电、b 带正电、q 1m 1∶q 2m 2=2∶1B .a 带负电、b 带正电、q 1m 1∶q 2m 2=1∶2C .a 带正电、b 带负电、q 1m 1∶q 2m 2=2∶1D .a 带正电、b 带负电、q 1m 1∶q 2m 2=1∶13.如图所示,一带负电的质点在固定的正点电荷作用下绕该正电荷做匀速圆周运动,周期为T 0,轨道平面位于纸面内,质点的速度方向如图中箭头所示.现加一垂直于轨道平面的匀强磁场,已知轨道半径并不因此而改变,则 ( )A .若磁场方向指向纸里,质点运动的周期将大于T 0B .若磁场方向指向纸里,质点运动的周期将小于T 0C .若磁场方向指向纸外,质点运动的周期将大于T 0D .若磁场方向指向纸外,质点运动的周期将小于T0 4.如图所示,表面粗糙的斜面固定于地面上,并处于方向垂直纸面向外、磁感应强度为B 的匀强磁场中.质量为m 、带电荷量为+Q 的小滑块从斜面顶端由静止下滑.在滑块下滑的过程中,下列判断正确的是( )A .滑块受到的摩擦力不变B .滑块到达地面时的动能与B 的大小无关C .滑块受到的洛伦兹力方向垂直斜面向下D .B 很大时,滑块可能静止于斜面上5.如图所示,在磁感应强度为B 的水平匀强磁场中,有一足够长的绝缘细棒OO ′在竖直面内垂直于磁场方向放置,细棒与水平面夹角为α。

一质量为m 、带电荷量为+q 的圆环A 套在OO ′棒上,圆环与棒间的动摩擦因数为μ,且μ<tan α,现让圆环A 由静止开始下滑,试问圆环在下滑过程中:(1)圆环A 的最大加速度为多大?获得最大加速度时的速度为多大? (2)圆环A 能够达到的最大速度为多大?高三物理课时作业(36)答案1.解析:由带电粒子在磁场中运动的偏转角,可知带电粒子运动轨迹所对的圆心角为60°,因此由几何关系得磁场宽度l =r sin60°=m v 0qB sin60°,又未加磁场时有l =v 0t ,所以可求得比荷q m =sin60°Bt ,A 项对;周期T =2πm qB 可求出,B 项对;因初速度未知,所以C 、D 项错.答案:AB2、解析:根据磁场方向及两粒子在磁场中的偏转方向可判断出a 、b 分别带正、负电,根据半径之比可计算出比荷之比为2∶1。

答案:C3.解析:当磁场方向指向纸里时,由左手定则可知电子受到背离圆心向外的洛伦兹力,向心力变小,由F =mr 4π2T 2可知周期变大,A 对,B 错.同理可知,当磁场方向指向纸外时电子受到指向圆心的洛伦兹力,向心力变大,周期变小,C 错,D 对.答案:AD4.解析:由左手定则知C 正确.而F f =μF N =μ(mg cos θ+BQ v )要随速度增加而变大,A 错误.若滑块滑到斜面底端已达到匀速运动状态,应有F f =mg sin θ,可得v =mg BQ (sin θμ-cos θ),可看到v 随B 的增大而减小.若滑块滑到斜面底端时还处于加速运动状态,则在B 越强时,F f 越大,滑块克服阻力做功越多,到达斜面底端的速度越小,B 错误.当滑块能静止于斜面上时应有mg sin θ=μmg cos θ,即μ=tan θ,与B 的大小无关,D 错误.答案:C5、解析:(1)由于μ<tan α,所以环将由静止开始沿棒下滑。

环A 沿棒运动的速度为v 1时,受到重力mg 、洛伦兹力q v 1B 、杆的弹力F N1和摩擦力F f 1=μF N1。

根据牛顿第二定律,对圆环A 受力分析有 沿棒的方向:mg sin α-F f 1=ma 垂直棒的方向:F N1+q v 1B =mg cos α所以当Ff 1=0(即F N1=0)时,a 有最大值a m ,且a m =g sin α 此时q v 1B =mg cos α 解得:v 1=mg cos αqB。

(2)设当环A 的速度达到最大值v m 时,环受杆的弹力为F N2,摩擦力为F f 2=μF N2。

此时应有a=0,即mg sinα=F f2在垂直杆方向上F N2+mg cosα=q v m B解得:v m=mg(sinα+μcosα)μqB。

答案:(1)g sinαmg cosαqB(2)mg(sinα+μcosα)μqB。

相关文档
最新文档