(完整版)艾默生热设计规范

合集下载

艾默生空调方案

艾默生空调方案

精密空调设计及负荷计算(1)机房设计标准河南省医疗保险中心信息机房属于中型重要的自动化机房。

机房内有严格的温、湿度要求,机房内按国标GB50174-2008《计算机机房施工要求》的规定配置空调设备:A级级别项目夏季冬季22±2°C 20±2°C相对湿度45%~65%温度变化率<5°C/h并不得结露同时,主机房区的噪声声压级小于65分贝;主机房内要维持正压,与室外压差大于9.8帕;送风速度不小于3米/秒;在表态条件下,主机房内大于0.5微米的尘埃不大于18000粒/升;为使机房能达到上述要求,应采用精密空调机组才能满足要求。

(2)精确总热负荷的计算本工程主要的热负荷来源于设备的发热量及环境的热负荷。

因此,我们要了解主设备的数量及用电情况以确定精密空调的容量及配置;另外根据以往经验,除主要的设备热负荷之外的其他负荷,如机房照明负荷、建筑维护结构负荷、补充的新风负荷、人员的散热负荷等环境热负荷可根据机房的面积进行估算。

据目前了解机房面积为65 m2,机柜密度20面,机房内机柜密度不大,建议按照每350W/㎡的发热量来配置空调。

总热负荷:Q=SP=65×300=19.5Kw考虑到后期会有更多设备进入机房,适当增大空调选型功率,可以很好保护贵方的初期投资,因此我方提出选择一台22KW的机房精密空调进行制冷,以满足贵方后期的需要。

同时考虑到郑州秋冬两季气候较为干燥,加湿量很大,而传统的电极加湿罐在水质偏软的南方使用效果更好,因此我们此次建议书中推荐了最新的PEX空调系统(采用红外加湿技术),从根本上解决了频繁更换加湿罐的问题,无论从资金投入以及日后维护,均有明显改善。

艾默生推荐产品和方案●现根据上述的计算结果,结合机房现场情况,推荐选用艾默生公司先Liebert-PEX系列机房空调产品P1025U/LSF32系列空调产品1台。

●P1025U室内机组单机制冷量为22.1 KW >19.5KW,满足热负荷需要,单台有10%左右的制冷量冗余。

艾默生空调下送风设计方案

艾默生空调下送风设计方案

机房空调设计方案艾默生网络能源有限公司2014年9月26日1、系统设计依据1.《电信机房空调维护规程》2. GB/T2887-2000《电子计算机场地通用规范》3. GB50174-2008《电子计算机机房设计规范》4. GBJ19-87(2001版)采暖通风与空气调节设计规范T8833-2002 室内空气质量标准《计算机场地技术条件》2、机房设计要求设计方案应根据大楼的既有结构和客观条件,因地制宜;既要符合国家有关标准,又要满足所确定的需求,整个数据中心设计需要按国家A级设计规范进行。

全年365天、每天24小时运行。

中心机房属于大型重要的计算机中心。

机房内有严格的温、湿度要求,机房内按国标GB50174-2008《电子计算机机房设计规范》的规定配置空调设备:同时,主机房区的噪声声压级小于68分贝主机房内要维持正压,与室外压差大于帕送风速度不小于3米/秒在表态条件下,主机房内大于微米的尘埃不大于18000粒/升为使机房能达到上述要求,应采用精密空调机组才能满足要求,3、机房精密空调设计方案机房专用空调的性能指标:1.机房专用空调机组的的电气性能应符合IEC标准2.输入电压允许波动范围:220/380V +10% ? -15%,频率:50HZ ? 2HZ3.机房专用空调应能按要求自动调节室内温、湿度,具有制冷、加热、加湿、除湿等功能。

4.机房专用空调机组的适应环境:温度:室内 -10℃ ? +30℃室外 -30℃ ? +45℃湿度:≤95%RH5.机房专用空调运行的平均无故障时间MTBF≥10万小时。

空调负荷的确定方法机房主要热负荷的来源设备负荷(计算机类设备热负荷);机房照明负荷;建筑维护结构负荷;补充的新风负荷;人员的散热负荷等。

其他以上各种热负荷可以归纳为二大类:计算机类设备热负荷和机房环境热负荷(包括:机房照明负荷、建筑维护结构负荷、补充的新风负荷、人员的散热负荷等),计算机类设备负荷可以根据所有设备的耗电功率总和计算得到,而机房环境热负荷可按照每平方米100W的经验值测算得到。

艾默生TA(E)热力膨胀阀技术文件

艾默生TA(E)热力膨胀阀技术文件

艾默生TA(E)系列可换芯式热力膨胀阀专为冷冻应用设计。

适用于多种商用冷冻应用:冷库、超市展示柜、活动式及延伸式冷柜、制冰机、冰激凌机、奶罐制冷机、运输类冷藏及制冷机组等,同样也适用于小冷量的空调和热泵系统。

TA(E)系列热力膨胀阀可换芯式结构便于满足不同的冷量需求,紧凑的外形、动力头/毛细管/感温包采用不锈钢材料,保证可靠性的同时更牢固更耐腐,便捷而精准的过热度调节机构可确保在宽负载和宽蒸发温度范围下,均可稳定、精确的控制过热度。

特性:•8种阀芯可供选择(带过滤网)。

•冷量覆盖0.82~19.8kW(R22)。

•最高运行压力为680psig,兼容多种冷媒。

•便捷的过热度调节。

•搭配有螺纹连接方式及焊接连接方式。

•激光焊接不锈钢动力头,毛细管和感温包也采用不锈钢材料。

•大膜片设计在宽负载和宽蒸发温度范围下,确保稳定而精确的过热度控制。

命名规则:举例:TAE HCS SAE 5FTTA E H C*SAE5FT系列名可拆卸阀芯设计平衡口E=外平衡忽略为内平衡冷媒代码H=R22S=R404AM=R134a充注代码CS=中低温WS(MOP)=压力限定接管尺寸和方式(进口×出口×平衡口)SAE=螺纹连接ODF=焊接*忽略平衡口则为内平衡阀体毛细管长度5FT (STD)选型表:冷媒PCN 型号描述充注MOP 平衡口尺寸连接管尺寸(进口×出口×平衡口)R22 066830 TAE HCS SAE 5FT HCS-EE 1/4 SAE 3/8 SAE x 1/2 SAE x1/4 SAE 066831 TA HCS SAE 5FT HCS IE - 3/8 SAE x 1/2 SAE066832 TAE HCS ODF 5FT HCS EE 1/4 ODF 3/8 SAE x 1/2 ODF x1/4 ODF 066833 TA HCS ODF 5FT HCS IE - 3/8 SAE x 1/2 ODF 066834 TAE HW100 ODF 5FT HW1006.9BarEE 1/4 ODF 3/8 SAE x 1/2 ODF x1/4 ODF 066835 TA HW100 ODF 5FT HW100 IE - 3/8 SAE x 1/2 ODF 066836 TAE HW100 SAE 5FT HW100 EE 1/4 SAE 3/8 SAE x 1/2 SAE x1/4 SAE 066837 TA HW100 SAE 5FT HW100 IE - 3/8 SAE x 1/2 SAE充注及标准过热度设定:选型表:阀芯组件(带滤网)*名义制冷量基于AHRI工况:外形尺寸:(单位mm)接管尺寸:SAE×SAE(螺纹×螺纹)外平衡阀内平衡阀内/外平衡阀体接管尺寸:SAE×ODF(螺纹×焊接)外平衡阀体内平衡阀体内/外平衡阀体声明:技术数据在印刷前已经校对过,印刷之后有再更新的可能,如有需要对某一参数确认,请联系艾默生环境优化技术。

热设计的基本原则

热设计的基本原则

热设计的基本原则
热设计的基本原则:
1.热设计应与电气设计、结构设计同时进行,使热设计,结构设计,电气设计相互兼顾;并应遵守相应的国际,国内行业标准。

2.应将设备内温度控制在所规定的范围内,求得设备温度稳定性,以保证设备内的元器件均能在设定的热环境中长期正常工作。

3.作为设备热设计的温度控制稳定装置,其在规定期限内的可靠性要大于设备的可靠性,必要时可采用冗余措施,考虑相应的设计余量,提高其可靠性。

4.热设计应考虑产品的经济性指标,在保证散热的前提下使其结构简单、可靠且体积最小、成本最低。

热设计不能盲目加大散热余量,尽量使用自然对流或低转速风扇等可靠性高的冷却方式。

艾默生精密空调设计手册20091109

艾默生精密空调设计手册20091109

Liebert.PEX系列机房专用空调设计安装手册目录目录 (2)一、性能 (3)1. Liebert.PEX系列精密空调室内机基本技术指标 (3)2. 室内机机械参数 (5)3. 风帽尺寸 (6)4. 室外机机械参数 (8)二、系统安装布局 (10)1. 系统总体布局 (10)2. 安装室内机 (13)1)机房要求 (13)2)安装空间 (13)3)维护空间要求 (14)4)机组底座 (14)3. 安装室外机 (16)4. 安装机组管路 (16)1)一般原则 (17)2)连接管路 (17)附录:PEX机组接线图 (20)-3-一、 性能1. Liebert.PEX 系列精密空调室内机基本技术指标风冷型、水冷型、乙二醇冷上出风参数:机型类型P1020UAP1025UAP1030UAP1035UAP2040UAP2045UAP2050UAP2055UAP2060UAP2070UAP3080UAP3090UAP3100UA制冷量 19.4 22.1 29.2 32.4 39.5 44.4 45.7 52 57.9 65.9 79.4 87.2 97.924dB ℃ 50%RH 显冷量 18.3 20.7 25.9 28 37.2 40.7 42 46.1 51.6 56.3 69.2 77.5 83.9制冷量 19.3 21.9 28.1 31.8 39.8 42.9 44.5 49.7 56.4 63.5 76.7 83.5 96.5制冷量和显冷量(kW )24dB ℃ 45%RH 显冷量19.1 21.7 27.4 29.9 39.5 42.6 44.2 48.8 55.1 59.7 73.5 82.2 89.9标准风量(m 3/h )5400 6300 7866 7920 10440 11610 12240 13032 15390 15480 19188 22770 22860风机台数 1 1 1 1 2 2 2 2 2 2 3 3 3风机机外静压(Pa )25-200 25-200 25-200 25-200 25-200 25-200 25-200 25-200 25-200 25-200 25-200 25-200 25-200压缩机1 数量 1 1 1 1 2 1 2 1 2 2 2 2 2电加热3功率(kW ) 6 6 6 6 9 9 9 9 9 9 12 12 12 加湿量(kg/h ) 4.5 4.5 4.5 4.5 10 10 10 10 10 10 10 10 10 远红外加湿器 加湿水盘 不锈钢不锈钢不锈钢不锈钢不锈钢不锈钢不锈钢不锈钢不锈钢不锈钢不锈钢不锈钢不锈钢尺寸(mm ) 666*816*96 666*816*96 666*816*96 666*816*96 666*816*96 666*816*96 666*816*96 666*816*96 666*816*96 666*816*96 666*816*96 666*816*96 666*816*96滤网4数量1 1 1 12 2 2 2 2 23 3 3回液管ID (mm ) 16 16 16 16 16 16 16 16 16 16 16 16 16排气管ID (mm ) 22 22 22 22 22 22 22 22 22 22 22 22 22远红外加湿器 注水管OD (mm ) 6.35 6.35 6.35 6.35 6.35 6.35 6.35 6.35 6.35 6.35 6.35 6.35 6.35风冷型室内机组接口尺寸冷凝水排水管ID (mm )19 19 19 19 19 19 19 19 19 19 19 19 19 水流量调节阀6尺寸(inch ) 1 1 1-1/4 1-1/4 1 1-1/4 1 1-1/4 1-1/4 1-1/4 1-1/4 1-1/4 1-1/4 进水量(l/s ) 1.15 1.32 1.73 1.90 2.35 2.58 2.66 3.05 3.47 3.83 4.67 5.12 5.73 水冷型冷却水供应要求7压降(kPa )45.560.954.450.046.992.161.1104.357.850.154.989.494.5水冷型接口尺寸 进出水管7OD (mm ) 28 28 35 35 28 35 28 35 35 35 35 35 35 净重(kg ) 320 330 340 350 590 560 610 570 640 650 910 930 950FLA 5(A ) 23.125.230.432.342.948.547.153.557.561.371.977.787.7电参数 空开32 32 40 40 63 63 63 63 80 80 100 100 100注:1:涡旋,R22制冷剂(可兼容R407C )。

艾默生电子设备强迫风冷热设计规范

艾默生电子设备强迫风冷热设计规范

艾默生电子设备强迫风冷热设计规范艾默生电子设备强迫风冷热设计规范艾默生电子是一家致力于工业自动化技术、商用电力系统技术、数据中心技术和电信通讯技术领域的全球领先技术提供商。

作为这一行业的领军企业,艾默生电子对于产品的研发和设计有严格的要求,其中强迫风冷热设计是其中十分重要的一环。

强迫风冷热设计,顾名思义就是通过局部强制通风的方式来实现设备散热的一种方式。

在现代电子设备中,由于器件集成度和功率密度的不断提高,设备内部产生的热量也越来越多,而设备运行时又必须保持稳定的工作状态,因此散热是非常重要的。

艾默生电子针对不同的产品线都有相应的强迫风冷热设计规范,下面将重点介绍其设计要点以及原因。

一、电子设备的工作原理在介绍强迫风冷热设计规范之前,需要先了解电子设备的工作原理。

电子设备是由许多不同种类的电子器件组成的,这些器件能够将电能转化为其他形式的能量:如光能、热能等。

这些器件在工作中会产生大量的热量,如果不及时散热就容易造成器件温度过高,导致设备的性能下降,或者直接损坏器件。

因此,保证电子设备的散热至关重要。

二、强迫风冷热设计的原理艾默生电子的强迫风冷热设计是一种利用风力强制加速设备内部空气流动,以实现快速排热的技术。

这种技术通常通过设置风扇和散热器的方式来实现。

风扇会将外界的冷空气引入设备内部,并将热空气排出设备外部。

散热器则可以对热量进行有效的散热,以保证设备的正常工作。

三、强迫风冷热设计规范1. 设备内部空间结构设备内部的空间结构是影响强迫风冷热设计最重要的因素之一,其主要影响因素包括设备的大小、器件布局、排列方式等。

艾默生电子要求设备内部应具有良好的空气流通性,可以合理地分配热量和优化热点位置,以确保设备的散热效果。

2. 设备散热器的设计艾默生电子的设备散热器设计通常适用于具有大功率的设备。

这些散热器通常采用大直径,高转速的风扇,以确保设备能够适应在高负载、高温度环境中的运行。

散热器的外形和结构也需要根据不同的设备类型进行个性化设计,以确保其散热效果达到最佳状态。

最全热设计规范(2020版)


流 速[m/s] 流 动 方 向 上 的 长 度[m ]
2020/10/11
29
对流换热改善
2020/10/11
30
改善对流换热系数的措施
流体相变变化
流体在气体和液体之间变化
引起流动原因 流体流动形态 流体物理性质 传热面几何性质
强制对流和自然对流 层流和紊流 比热容、导热系数、密度、黏度 形状、大小
△t=Q R
2
结合公式1和公式2,得出热阻和导热系数的关系:
R= L / K A
2020/10/11
3 9
热传导改善
2020/10/11
10
热阻的影响因素
R= L / K A
减少热传路径长度
降低热阻
选用导热系数高的材料
增加导热面积
2020/10/11
11
散热片导热热阻模型
Ta
Ta
Ts
Ts
Tc
Tc
自然散热主要由两部分组成:辐射换热+自然对流。其中辐射换热占的 比例20~50%左右(跟物体温度及表面处理有关) 自然散热时,可以假设热交换系数10w/m2. ℃
2020/10/11
27
自然对流换热系数
竖直设置
水平设置向上
水平设置向下
姿势系数 代 表 长 度[m]
0.56 长度方向
0.52
0.26
Q ---- 传导散热量, W K ---- 导热系数, W/m·℃
A ---- 导体横截面积, m2
△t ---- 传热路径两端温差, ℃ L ---- 传热路径长度, m
2020/10/11
8
传导热阻的概念
由公式 Q = K A △t / L变形可得:

热设计技术规范


2024/1/26
5
热设计应用领域
2024/1/26
电子设备
热设计在电子设备领域应用广泛,如计算机、手机、平板电脑等。通过优化设备的散热结 构、提高散热效率,可以确保设备在长时间工作或高负荷运行时保持良好的性能。
航空航天
在航空航天领域,热设计对于确保飞行器的稳定性和安全性至关重要。通过合理的热设计 ,可以控制飞行器内部温度,防止设备过热或结冰,确保各种传感器和控制系统正常工作 。
3
ห้องสมุดไป่ตู้
热设计定义与目的
热设计定义
热设计是一种工程方法,旨在优化电 子设备和系统的热性能,确保其在各 种工作条件下能够稳定、高效地运行 。
热设计目的
通过合理的热设计,可以降低设备的 工作温度,提高设备的可靠性、稳定 性和寿命,同时优化能源利用效率, 减少热污染和环境影响。
2024/1/26
4
热设计原则与方法
火箭热设计
解决高速飞行时产生的气动加热问题,保护关键部件免受高温影响 。
18
汽车零部件热设计案例
1 2
发动机热设计
改进冷却系统结构,提高散热性能,降低发动机 温度波动。
电池热设计
针对电动汽车电池组,采用液冷或风冷技术,确 保电池在适宜温度下工作,延长使用寿命。
3
空调系统热设计
优化空调制冷和制热效果,提高能效比,提升驾 乘舒适度。
设计迭代
根据测试结果对热设计方案进行迭代优化,直至满足 设计要求。
2024/1/26
15
04
热设计实例分析
BIG DATA EMPOWERS TO CREATE A NEW
ERA
2024/1/26
16

艾默生热设计规范

共两部分:1. 电子设备的自然冷却热设计规范2. 电子设备的强迫风冷热设计规范电子设备的自然冷却热设计规范2004/05/01 发布2004/05/01 实施艾默生网络能源有限公司修订信息表目录目录 (3)前言 (5)1目的 (6)2适用范围 (6)3关键术语 (6)4弓丨用/参考标准或资料 (7)5规范内容 (7)5.1遵循的原则 (7)5.2产品热设计要求 (8)5.2.1产品的热设计指标 (8)5.2.2元器件的热设计指标 (8)5.3系统的热设计 (9)5.3.1常见系统的风道结构 (9)5.3.2系统通风面积的计算 (10)5.3.3户外设备(机柜)的热设计 (11)5.3.3.1 太阳辐射对户外设备(系统)的影响 (11)5.3.3.2户外柜的传热计算 (13)5.3.4系统前门及防尘网对系统散热的影响 (15)5.4模块级的热设计 (15)5.4.1 模块损耗的计算方法 (15)5.4.2机箱的热设计 (15)5.4.2.1机箱的选材 (15)5.4.2.2模块的散热量的计算 (15)5.4.2.3机箱辐射换热的考虑 (16)5.4.2.4机箱的表面处理 (17)5.5单板级的热设计 (17)5.5.1选择功率器件时的热设计原则 (17)5.5.2元器件布局的热设计原则 (17)5.5.3元器件的安装 (18)5.5.4导热介质的选取原则 (19)5.5.5 PCB板的热设计原则 (20)5.5.6安装PCB板的热设计原则 (22)5.5.7元器件结温的计算 (22)5.6 散热器的选择与设计 (23)5.6.1散热器需采用的自然冷却方式的判别 (23)5.6.2自然冷却散热器的设计要点 (23)5.6.3自然冷却散热器的辐射换热考虑 (24)5.6.4海拔高度对散热器的设计要求 (24)5.6.5散热器散热量计算的经验公式 (25)5.6.6强化自然冷却散热效果的措施 (25)6.1进行产品热测试的目的 (25)6.1.1热设计方案优化 (26)6.1.2热设计验证 (26)6.2热测试的种类及所用的仪器、设备 (26)6.2.1温度测试 (26)7附录 (27)7.1元器件的功耗计算方法 (27)7.2散热器的设计计算方法 (29)7.3自然冷却产品热设计检查模板 (30).、八、-刖言本规范由艾默生网络能源有限公司研发部发布实施,适用于本公司的产品设计开发及相关活动。

艾默生空调技术手册PEX

图1-1机(双门)1.2 型号说明PEX系列空调型号说明见图2-3所示。

P 1 020 U W P M S 1 R加湿类型:0-无加湿;R-红外加湿;S-电极加湿再热类型:0-无电加热;1-一级电加热;2-二级电加热显示屏形式:S-小显示屏;L-大显示屏电源形式:M-三相/50Hz/400V系统配置:R-制冷剂为R22,涡旋压缩机2个;P-制冷剂为R22,涡旋压缩机1个S-制冷剂为R407C,涡旋压缩机2个;Z-制冷剂为R407C,涡旋压缩机1个冷却方式:A-风冷;W-水冷;G-乙二醇冷却送风方式:U-上出风;F-下出风;D-风管型制冷量级别:××KW机组框架:1-单门;2-双门;3-三门PEX系列1.3 风冷机组技术参数1.3.1 上出风风冷机组技术参数上出风风冷机组技术参数如表3-1所示。

表1-1 上出风风冷机组技术参数上出风风冷机组冷凝器技术参数如下:注意如所需数据未在表中列出,请与艾默生开发部门联系。

1.PEX冷凝器技术参数PEX冷凝器技术参数如表3-2到表3-7所示。

表1-2 PE X冷凝器技术参数(R22,环境温度35℃)表1-3 PE X冷凝器技术参数(R22,环境温度38℃)表1-4 PE X冷凝器技术参数(R22,环境温度41℃)表1-5 PE X冷凝器技术参数(R407C,环境温度35℃)表1-6 PE X冷凝器技术参数(R407C,环境温度38℃)表1-7 PE X冷凝器技术参数(R407C,环境温度41℃)2.低温型室外机技术参数低温型室外机技术参数如表3-8和表3-9所示。

表1-8 低温型室外机技术参数(R22,环境温度35℃)表1-9 低温型室外机冷凝器技术参数(R407C,环境温度35℃)1.3.2 下出风风冷机组技术参数下出风风冷机组技术参数如表3-10所示。

表1-10 下出风风冷机组技术参数下出风风冷机组冷凝器技术参数如下:注意1.下出风机型测试机外静压为20Pa。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

共两部分:1. 电子设备的自然冷却热设计规范2. 电子设备的强迫风冷热设计规范电子设备的自然冷却热设计规范2004/05/01发布2004/05/01实施艾默生网络能源有限公司修订信息表目录目录 (3)前言 (5)1目的 (6)2 适用范围 (6)3 关键术语 (6)4引用/参考标准或资料 (7)5 规范内容 (7)5.1 遵循的原则 (7)5.2 产品热设计要求 (8)5.2.1产品的热设计指标 (8)5.2.2 元器件的热设计指标 (8)5.3 系统的热设计 (9)5.3.1 常见系统的风道结构 (9)5.3.2 系统通风面积的计算 (10)5.3.3 户外设备(机柜)的热设计 (11)5.3.3.1太阳辐射对户外设备(系统)的影响 (11)5.3.3.2 户外柜的传热计算 (13)5.3.4 系统前门及防尘网对系统散热的影响 (15)5.4 模块级的热设计 (15)5.4.1 模块损耗的计算方法 (15)5.4.2 机箱的热设计 (15)5.4.2.1 机箱的选材 (15)5.4.2.2 模块的散热量的计算 (15)5.4.2.3 机箱辐射换热的考虑 (16)5.4.2.4 机箱的表面处理 (17)5.5 单板级的热设计 (17)5.5.1 选择功率器件时的热设计原则 (17)5.5.2 元器件布局的热设计原则 (17)5.5.3 元器件的安装 (18)5.5.4 导热介质的选取原则 (19)5.5.5 PCB板的热设计原则 (20)5.5.6 安装PCB板的热设计原则 (22)5.5.7 元器件结温的计算 (22)5.6 散热器的选择与设计 (23)5.6.1散热器需采用的自然冷却方式的判别 (23)5.6.2 自然冷却散热器的设计要点 (23)5.6.3 自然冷却散热器的辐射换热考虑 (24)5.6.4 海拔高度对散热器的设计要求 (24)5.6.5 散热器散热量计算的经验公式 (25)5.6.6强化自然冷却散热效果的措施 (25)6产品的热测试 (25)6.1进行产品热测试的目的 (25)6.1.1热设计方案优化 (26)6.1.2热设计验证 (26)6.2热测试的种类及所用的仪器、设备 (26)6.2.1温度测试 (26)7 附录 (27)7.1 元器件的功耗计算方法 (27)7.2 散热器的设计计算方法 (29)7.3自然冷却产品热设计检查模板 (30)前言本规范由艾默生网络能源有限公司研发部发布实施,适用于本公司的产品设计开发及相关活动。

本规范替代以前公司的同名规范,老版本的同名规范一律废除。

本规范更换了新的模板,并根据公司产品开发需求的变化及已积累的设计经验增加了新的内容。

本规范由我司所有的产品开发部门遵照执行。

本规范于2004/05/01 批准发布;本规范拟制部门:结构设计中心;本规范拟制人:李泉明;审核人:张士杰;本规范标准化审查人:数据管理中心;本规范批准人:研发管理办;1目的建立一个电子设备在自然冷却条件下的热设计规范,以保证设备内部的各个元器件如开关管、整流管、IPM模块、整流桥模块、变压器、滤波电感等的工作温度在规定的范围内,从而保证电子设备在设定的环境条件下稳定、安全、可靠的运行。

2 适用范围本热设计规范适用于自然冷却电子设备设计与开发,主要应用于以下几个方面:●机壳的选材●结构设计与布局●器件的选择●散热器的设计与选用●通风口的设计、风路设计●热路设计3 关键术语3.1 热环境设备或元器件的表面温度、外形及黑度,周围流体的种类、温度、压力及速度,每一个元器件的传热通路等情况3.2 热特性设备或元器件温升随热环境变化的特性,包括温度、压力和流量分布特征。

3.3导热系数(λ w/m.k)表征材料热传导性能的参数指标,它表明单位时间、单位面积、负的温度梯度下的导热量。

3.4 对流换热系数(α w/m2.k)对流换热系数反映了两种介质间对流换热过程的强弱,表明了当流体与壁面间的温差为1℃时,在单位时间通过单位面积的热量。

3.5 热阻(℃/w)反映介质或介质间传热能力的大小,表明了1W热量所引起的温升大小。

)3.6 雷诺数(Re雷诺数的大小反映了流体流动时的惯性力与粘滞力的相对大小,雷诺数是说明流体流态的一个相似准则。

)3.7 普朗特数(Pr普朗特数是说明流体物理性质对换热影响的相似准则。

3.8 格拉晓夫数(G)r格拉晓夫数反映了流体所受的浮升力与粘滞力的相对大小,是说明自然对流换热强度的一个相似准则。

3.9 定性温度确定对流换热过程中流体物理性质参数的温度。

3.10肋片的效率表示某扩展表面单位面积所能传递的热量与同样条件下光壁所能传递的热量之比。

3.11黑度实际物体的辐射力和同温度下黑体的辐射力之比,它取决于物体种类、表面状况、表面温度及表面颜色。

3.12 外部环境温度的定义自冷时指距设备各主要表面80mm处的温度平均值;强迫风冷(使用风扇)时指距离空气入口80~200mm截面的温度平均值。

3.13 机箱表面的温度定义机箱表面温度指在机箱各表面几何中心处的温度。

3.14 设备风道的进、出口风温的定义冷却空气入口、出口温度指在入口或出口处与风速方向垂直的截面内各点温度的平均值。

3.15 冷板散热器指采用真空钎焊、锡焊、铲齿或插片工艺成型的齿间距较密、宽高比较大的散热器。

3.16 太阳辐射强度太阳辐射强度指1m2黑体表面在太阳照射下所获得的热量值,单位为W/m2. 4引用/参考标准或资料下列标准包含的条文,通过在本标准中引用而构成本标准的条文。

在标准出版时,所示版本均为有效。

所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。

GBxxxxx-89 电力半导体器件用散热器使用导则GB11456-89 电力半导体器件用型材散热器技术条件GJB/Z27-92 国家军用标准汇编,电子设备可靠性设计手册GB/T 12993-91 电子设备热性能评定电子设备结构设计标准手册TS-S0E0199002电子设备的自然冷却热设计规范V1.0分散式散热产品的热设计规范5 规范内容5.1 遵循的原则5.1.1进行产品的热设计应与电气设计、结构设计同时进行,平衡热设计、结构设计、电气设计各种需求。

5.1.2 热设计应遵循相应的国际、国内标准、行业标准、公司标准。

5.1.3 热设计应满足产品的可靠性要求,以保证设备内的元器件均能在设定的热环境中正常工作,并保证达到设定的MTBF指标。

5.1.4 各个元器件的参数选择、安装位置与方式必须符合散热要求。

5.1.4.1元器件的发热表面与散热表面之间的接触热阻应尽可能小。

5.1.4.2 根据元器件的损耗大小及温升要求确定是否加装散热器。

5.1.4.3 模块的控制回路中尽可能加装温度继电器、压力继电器等热保护回路,以提高系统的可靠性。

5.1.5 在进行热设计时,应考虑相应的设计冗余,以避免在使用过程中因工况发生变化而引起的热耗散及流动阻力的增加。

5.1.6 热设计应考虑产品的经济性指标,在保证散热的前提下使其结构简单、可靠且体积最小、成本最低。

5.1.7 采用自然冷却的条件:常压下单位面积的最大功耗:小于0.024-0.039w/cm2,上限适应于通风条件较恶劣的情况,下限适应于通风条件较好的场合。

5.2 产品热设计要求5.2.1产品的热设计指标5.2.1.1 散热器的表面温度最高处的温升应小于50℃.5.2.1.2 模块内部空气的平均温升应小于25℃。

5.2.2 元器件的热设计指标元器件的热设计指标应符合TS-S0A0204001《器件应力降额规范》,具体指标如下:5.2.2.1 功率器件的工作结温应小于最大结温的(0.5-0.8)倍对额定结温为175℃的功率器件, 工作结温小于140℃.对额定结温为150℃的功率器件, 工作结温小于120℃.对额定结温为125℃的功率器件, 工作结温小于100℃.5.2.2.2 碳膜电阻120℃金属膜电阻100℃压制线绕电阻 150℃涂剥线绕电阻 225 ℃5.2.2.3 变压器、扼流圈表面温度A级 90 ℃B级 110 ℃F级 150 ℃H级 180 ℃5.2.2.4 电容器的表面温度纸质电容器 75-85℃电解电容器 65-80℃薄膜电容器 75-85℃云母电容器 75-85℃陶瓷电容器 75-85℃5.3 系统的热设计5.3.1 常见系统的风道结构5.3.1.1系统风道设计的一些基本原则:●进、出风口尽量远离,以强化烟囱效果。

●出风口尽可能设计在系统的顶部。

●在机柜的面板、侧板、后板没有特别要求一般不要开通风孔,以利于形成有效的烟囱。

●系统后部应留一定空间以利于气流顺畅流出。

●为了避免下部热源对于上层热源的影响,可采用隔板形成独立风道。

●为了避免热空气流入配电单元而影响其可靠性,可把气流风道隔离,形成完整、独立的风道。

●除进、出风口外,其它部位须完全密封。

●除进、出风口外,其它部位须完全密封。

风道2 风道3●系统为自然对流独立散热风道,机柜出风口在后门的顶部或顶部。

●模块或插框为前后通风冷却。

●机柜后面的风道要求有足够的宽度,通常推荐大于200mm以上。

●配电单元如果位于系统顶部,需与风道隔离,以避免热空气对配电元器件的影响。

●除进、出风口外,其它部位须完全密封。

●系统为自然对流独立散热风道,机柜出风口在后门的顶部或顶部。

●模块或插框强迫风冷且必须为上下风道。

●机柜后面的风道要求有足够的宽度,通常推荐大于200mm以上。

●配电单元如果位于系统顶部,需与风道隔离,以避免热空气对配电元器件的影响。

●除进、出风口外,其它部位须完全密封。

图1 典型系统风道结构示意图5.3.2 系统通风面积的计算系统进风口的面积大小按下式计算:S=Q/(7.4×10-5H×Δt1.5) (1)s-通风口面积的大小,cm2Q-机柜内总的散热量,WH-机柜的高度,cmΔt=t2-t1--内部空气温度t2与外部空气温度 t1之差,℃出风口的面积大小应为进风口面积大小的1.5-2倍;5.3.3 户外设备(机柜)的热设计5.3.3.1太阳辐射对户外设备(系统)的影响5.3.3.1.1 太阳辐射强度及其影响因素户外柜由于处于室外,太阳辐射将是其热设计必须考虑的重要一环。

到达地面的太阳辐射主要受大气层厚度的影响,大气层越厚,对太阳辐射的吸收、反射和散射就越严重,到达地面的太阳辐射就越少。

此外大气的状况和大气的质量对到达地面的太阳辐射也有影响。

到达地面的太阳辐射强度的大小,主要取决于地球对太阳的相对运动,也就是取决于被照射地点与太阳射线形成的高度角β和太阳光线通过大气层的厚度,显然地球上不同地区、不同季节、不同气象条件下到达地面的太阳辐射强度都是不相同的。

相关文档
最新文档