高考数学一轮复习 每日一题 复数的基本运算 文

合集下载

高中数学中的复数运算公式总结

高中数学中的复数运算公式总结

高中数学中的复数运算公式总结在高中数学中,复数是一个重要的概念,而掌握复数的运算公式对于解决相关问题至关重要。

复数的运算包括加、减、乘、除等,下面我们就来详细总结一下这些运算公式。

一、复数的定义形如\(a + bi\)(其中\(a\)、\(b\)均为实数,\(i\)为虚数单位,且\(i^2 =-1\))的数称为复数。

其中,\(a\)被称为实部,记作\(Re(z)\);\(b\)被称为虚部,记作\(Im(z)\)。

二、复数的四则运算1、加法运算两个复数\(z_1 = a_1 + b_1i\),\(z_2 = a_2 + b_2i\)的和为:\z_1 + z_2 =(a_1 + a_2) +(b_1 + b_2)i\例如,\(z_1 = 2 + 3i\),\(z_2 = 1 2i\),则\(z_1 + z_2=(2 + 1) +(3 2)i = 3 + i\)2、减法运算两个复数\(z_1 = a_1 + b_1i\),\(z_2 = a_2 + b_2i\)的差为:\z_1 z_2 =(a_1 a_2) +(b_1 b_2)i\例如,\(z_1 = 5 + 4i\),\(z_2 = 3 + 2i\),则\(z_1 z_2=(5 3) +(4 2)i = 2 + 2i\)3、乘法运算两个复数\(z_1 = a_1 + b_1i\),\(z_2 = a_2 + b_2i\)的积为:\\begin{align}z_1 \cdot z_2&=(a_1 + b_1i)(a_2 + b_2i)\\&=a_1a_2 + a_1b_2i + a_2b_1i + b_1b_2i^2\\&=(a_1a_2 b_1b_2) +(a_1b_2 + a_2b_1)i\end{align}\例如,\(z_1 = 2 + 3i\),\(z_2 = 1 + 2i\),则:\\begin{align}z_1 \cdot z_2&=(2 + 3i)(1 + 2i)\\&=2 + 4i + 3i + 6i^2\\&=2 + 7i 6\\&=-4 + 7i\end{align}\4、除法运算将复数\(\frac{z_1}{z_2}\)(\(z_2 \neq 0\))的运算转化为乘法运算,即分子分母同时乘以\(z_2\)的共轭复数\(\overline{z_2} = a_2 b_2i\),得到:\\begin{align}\frac{z_1}{z_2}&=\frac{z_1 \cdot \overline{z_2}}{z_2 \cdot \overline{z_2}}\\&=\frac{(a_1 + b_1i)(a_2 b_2i)}{(a_2 + b_2i)(a_2 b_2i)}\\&=\frac{(a_1a_2 + b_1b_2) +(b_1a_2 a_1b_2)i}{a_2^2 +b_2^2}\end{align}\例如,\(z_1 = 4 + 3i\),\(z_2 = 1 + 2i\),则:\\begin{align}\frac{z_1}{z_2}&=\frac{(4 + 3i)(1 2i)}{(1 + 2i)(1 2i)}\\&=\frac{4 8i + 3i 6i^2}{1 4i^2}\\&=\frac{4 5i + 6}{1 + 4}\\&=\frac{10 5i}{5}\\&=2 i\end{align}\三、复数的乘方运算1、\(i\)的幂次规律\(i^1 = i\),\(i^2 =-1\),\(i^3 = i\),\(i^4 =1\)。

高考数学一轮复习专题训练—复数

高考数学一轮复习专题训练—复数

复数考纲要求1.理解复数的基本概念;2.理解复数相等的充要条件;3.了解复数的代数表示法及其几何意义;4.会进行复数代数形式的四则运算;5.了解复数代数形式的加、减运算的几何意义.知识梳理1.复数的有关概念(1)定义:形如a +b i(a ,b ∈R)的数叫做复数,其中a 叫做复数z 的实部,b 叫做复数z 的虚部(i 为虚数单位). (2)分类:(3)复数相等:a +b i ⇔a =c 且b =d ((4)共轭复数:a +b i 与c +d i 共轭⇔a =c ,b =-d (a ,b ,c ,d ∈R).(5)模:向量OZ →的模叫做复数z =a +b i 的模,记作|a +b i|或|z |,即|z |=|a +b i|=a 2+b 2(a ,b ∈R).2.复数的几何意义(1)复数z =a +b i 一一对应复平面内的点Z (a ,b )(a ,b ∈R). (2)复数z =a +b i(a ,b ∈R)一一对应平面向量OZ →. 3.复数的运算(1)运算法则:设z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R. z 1±z 2=(a +b i)±(c +d i)=(a ±c )+(b ±d )i. z 1·z 2=(a +b i)(c +d i)=(ac -bd )+(bc +ad )i.z 1z 2=a +b i c +d i =ac +bd c 2+d 2+bc -ad c 2+d 2i(c +d i ≠0). (2)几何意义:复数加减法可按向量的平行四边形或三角形法则进行.如图所示给出的平行四边形OZ 1ZZ 2可以直观地反映出复数加减法的几何意义,即OZ →=OZ 1→+OZ 2→,Z 1Z 2→=OZ 2→-OZ 1→.1.i 的乘方具有周期性i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i ,i 4n +i 4n +1+i 4n +2+i 4n +3=0,n ∈N *. 2.(1±i)2=±2i ,1+i 1-i =i ;1-i1+i =-i.3.复数的模与共轭复数的关系 z ·z =|z |2=|z |2. 4.两个注意点(1)两个虚数不能比较大小;(2)利用复数相等a +b i =c +d i 列方程时,注意a ,b ,c ,d ∈R 的前提条件.诊断自测1.判断下列结论正误(在括号内打“√”或“×”) (1)复数z =a +b i(a ,b ∈R)中,虚部为b i.( )(2)复数中有相等复数的概念,因此复数可以比较大小.( ) (3)原点是实轴与虚轴的交点.( )(4)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.( )答案 (1)× (2)× (3)√ (4)√解析 (1)虚部为b ;(2)虚数不可以比较大小.2.已知i 为虚数单位,a 为实数,复数z 满足z +3i =a +a i ,若复数z 是纯虚数,则( ) A .a =3 B .a =0 C .a ≠0 D .a <0答案 B解析 由z +3i =a +a i ,得z =a +(a -3)i.又因为复数z 是纯虚数,所以⎩⎪⎨⎪⎧a =0,a -3≠0,解得a =0.3.已知(1+2i)z =4+3i ,则z =________. 答案 2+i解析 因为z =4+3i1+2i=4+3i 1-2i 1+2i 1-2i=10-5i5=2-i ,所以z =2+i.4.(2020·北京卷)在复平面内,复数z 对应的点的坐标是(1,2),则i·z =( ) A .1+2i B .-2+i C .1-2i D .-2-i答案 B解析 z =1+2i ,∴i·z =i(1+2i)=-2+i.故选B.5.(2019·全国Ⅲ卷改编)设复数z 满足(1+i)z =2i ,则|z |=( ) A.12 B .22C . 2D .2答案 C解析 法一 由(1+i)z =2i ,得z =2i1+i =1+i ,所以|z |= 2.法二 因为2i =(1+i)2,所以由(1+i)z =2i =(1+i)2,得z =1+i ,所以|z |= 2. 6.(2021·安庆一中月考)已知复数z =2i1-i3,则z 在复平面内对应的点所在的象限为第________象限. 答案 二 解析 ∵z =2i1-i3=-1-i 21-i3=-11-i=-12-i 2, ∴z =-12+i2对应的点⎝⎛⎭⎫-12,12位于第二象限.考点一 复数的相关概念1.(2020·浙江卷)已知a ∈R ,若a -1+(a -2)i(i 为虚数单位)是实数,则a =( ) A .1 B .-1C .2D .-2答案 C解析 由题可知复数的虚部为a -2,若该复数为实数,则a -2=0,即a =2.故选C. 2.(2019·全国Ⅱ卷)设z =i(2+i),则z =( ) A .1+2i B .-1+2iC .1-2iD .-1-2i答案 D解析 ∵z =i(2+i)=-1+2i ,∴z =-1-2i.故选D. 3.(2020·全国Ⅰ卷)若z =1+2i +i 3,则|z |=( ) A .0 B .1C . 2D .2答案 C解析 ∵z =1+2i +i 3=1+2i -i =1+i ,∴|z |=12+12= 2.故选C.4.(2021·西安调研)下面关于复数z =-1+i(其中i 为虚数单位)的结论正确的是( ) A.1z 对应的点在第一象限 B .|z |<|z +1| C .z 的虚部为i D .z +z <0 答案 D解析∵z=-1+i,∴1z=1-1+i=-1-i-1+i-1-i=-12-i2.则1z对应的点在第三象限,故A错误;|z|=2,|z+1|=1,故B错误;z的虚部为1,故C错误;z+z=-2<0,故D正确.感悟升华 1.复数z=a+b i(a,b∈R),其中a,b分别是它的实部和虚部.若z为实数,则虚部b=0,与实部a无关;若z为虚数,则虚部b≠0,与实部a无关;若z为纯虚数,当且仅当a=0且b≠0.2.复数z=a+b i(a,b∈R)的模记作|z|或|a+b i|,即|z|=|a+b i|=a2+b2.3.复数z=a+b i(a,b∈R)的共轭复数为z=a-b i,则z·z=|z|2=|z|2,即|z|=|z|=z·z,若z∈R,则z=z.利用上述结论,可快速、简洁地解决有关复数问题.考点二复数的几何意义【例1】(1)(2019·全国Ⅰ卷)设复数z满足|z-i|=1,z在复平面内对应的点为(x,y),则() A.(x+1)2+y2=1 B.(x-1)2+y2=1C.x2+(y-1)2=1 D.x2+(y+1)2=1(2)(2020·临沂质检)已知a1-i=-1+b i,其中a,b是实数,则复数a-b i在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限答案(1)C(2)B解析(1)由已知条件,可设z=x+y i(x,y∈R).∵|z-i|=1,∴|x+y i-i|=1,∴x2+(y-1)2=1.故选C.(2)由a1-i=-1+b i,得a =(-1+b i)(1-i)=(b -1)+(b +1)i ,∴⎩⎪⎨⎪⎧b +1=0,a =b -1,即a =-2,b =-1, ∴复数a -b i =-2+i 在复平面内对应点(-2,1),位于第二象限.感悟升华 1.复数z =a +b i(a ,b ∈R)一一对应Z (a ,b )一一对应OZ →=(a ,b ).2.由于复数、点、向量之间建立了一一对应的关系,因此解题时可运用数形结合的方法,可把复数、向量与解析几何联系在一起,使问题的解决更加直观.【训练1】 (1)若复数z =(2+a i)(a -i)在复平面内对应的点在第三象限,其中a ∈R ,i 为虚数单位,则实数a 的取值范围为( ) A .(-2,2) B .(-2,0) C .(0,2)D .[0,2)(2)(2021·郑州模拟)已知复数z 1=2-i2+i 在复平面内对应的点为A ,复数z 2在复平面内对应的点为B ,若向量AB →与虚轴垂直,则z 2的虚部为________. 答案 (1)B (2)-45解析 (1)z =(2+a i)(a -i)=3a +(a 2-2)i在复平面内对应的点在第三象限,∴⎩⎪⎨⎪⎧3a <0,a 2-2<0,解得-2<a <0.(2)z 1=2-i 2+i =2-i 22+i 2-i =35-45i ,所以A ⎝⎛⎭⎫35,-45, 设复数z 2对应的点B (x 0,y 0),则AB →=⎝⎛⎭⎫x 0-35,y 0+45, 又向量AB →与虚轴垂直,∴y 0+45=0,故z 2的虚部y 0=-45.考点三 复数的运算【例2】 (1)(2020·全国Ⅰ卷)若z =1+i ,则|z 2-2z |=( ) A .0B .1C . 2D .2(2)在数学中,记表达式ad -bc 为由⎪⎪⎪⎪⎪⎪ab cd 所确定的二阶行列式.若在复数域内,z 1=1+i ,z 2=2+i 1-i ,z 3=z 2,则当⎪⎪⎪⎪⎪⎪z 1 z 2z 3 z 4=12-i 时,z 4的虚部为________. 答案 (1)D (2)-2解析 (1)法一 z 2-2z =(1+i)2-2(1+i)=-2,|z 2-2z |=|-2|=2. 法二 |z 2-2z |=|(1+i)2-2(1+i)|=|(1+i)(-1+i)| =|1+i||-1+i|=2. 故选D. (2)依题意,⎪⎪⎪⎪⎪⎪z 1 z 2z 3 z 4=z 1z 4-z 2z 3,因为z 3=z 2,且z 2=2+i1-i =2+i1+i2=1+3i 2,所以z 2·z 3=|z 2|2=52,因此有(1+i)z 4-52=12-i ,即(1+i)z 4=3-i ,故z 4=3-i 1+i=3-i1-i2=1-2i.所以z 4的虚部是-2.感悟升华 1.复数的加法、减法、乘法运算可以类比多项式运算,除法关键是分子分母同乘以分母的共轭复数,注意要把i 的幂写成最简形式. 2.记住以下结论,可提高运算速度: (1)(1±i)2=±2i ;(2)1+i 1-i =i ;(3)1-i 1+i=-i ;(4)-b +a i =i(a +b i);(5)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i(n ∈N).【训练2】 (1)(2020·新高考山东卷)2-i1+2i=( )A .1B .-1C .iD .-i(2)(2020·全国Ⅱ卷)设复数z 1,z 2满足|z 1|=|z 2|=2,z 1+z 2=3+i ,则|z 1-z 2|=________. 答案 (1)D (2)2 3 解析 (1)2-i 1+2i =2-i1-2i 1+2i1-2i=-5i5=-i.故选D.(2)法一 设z 1=a +b i(a ,b ∈R),则z 2=3-a +(1-b )i ,则⎩⎨⎧ |z 1|2=a 2+b 2=4,|z 2|2=3-a 2+1-b 2=4,即⎩⎨⎧a 2+b 2=4,3a +b =2.∴|z 1-z 2|2=(2a -3)2+(2b -1)2 =4(a 2+b 2)-4(3a +b )+4=12. 因此|z 1-z 2|=2 3.法二 设复数z 1,z 2对应的向量为a ,b , 则复数z 1+z 2,z 1-z 2对应向量为a +b ,a -b , 依题意|a |=|b |=2,|a +b |=2, 又因为|a +b |2+|a -b |2=2|a |2+2|b |2, 所以|a -b |2=12,故|z 1-z 2|=|a -b |=2 3.法三 设z 1+z 2=z =3+i ,则z 在复平面上对应的点为P (3,1),所以|z 1+z 2|=|z |=2,由平行四边形法则知OAPB 是边长为2,一条对角线也为2的菱形,则另一条对角线的长为|z 1-z 2|=2×32×2=2 3.A 级 基础巩固一、选择题1.设z =-3+2i ,则在复平面内z 对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限答案 C解析 z =-3-2i ,故z 对应的点(-3,-2)位于第三象限. 2.(2020·全国Ⅲ卷)复数11-3i 的虚部是( ) A .-310B .-110C .110D .310答案 D解析 z =11-3i =1+3i 1-3i 1+3i =110+310i ,虚部为310.故选D.3.(2020·全国Ⅱ卷)(1-i)4=( ) A .-4 B .4C .-4iD .4i答案 A解析 (1-i)4=(1-2i +i 2)2=(-2i)2=4i 2=-4.4. (2021·全国大联考)如图,复数z 1,z 2在复平面上分别对应点A ,B ,则z 1·z 2=( )A .0B .2+iC .-2-iD .-1+2i答案 C解析 由复数几何意义,知z 1=-1+2i ,z 2=i , ∴z 1·z 2=i(-1+2i)=-2-i.5.设复数z 满足|z -3|=2,z 在复平面内对应的点为M (a ,b ),则M 不可能为( ) A .(2,3) B .(3,2) C .(5,0) D .(4,1) 答案 D解析 设z =a +b i(a ,b ∈R),则z -3=(a -3)+b i , ∴(a -3)2+b 2=4,验证点M (4,1),不满足.6.(2021·河南部分重点高中联考)若复数a +|3-4i|2+i (a ∈R)是纯虚数,则a =( )A .-3B .-2C .2D .3答案 B解析 a +|3-4i|2+i =a +52-i2+i 2-i =a +2-i 为纯虚数.则a +2=0,解得a =-2.7.设2+ii +1-2i =a +b i( a ,b ∈R ,i 为虚数单位),则b -a i =( )A .-52-32iB .52-32iC.52+32i D .-52+32i答案 A解析 因为2+i i +1-2i =2+i1-i i +11-i -2i =32-52i =a +b i ,所以a =32,b =-52,因此b -a i=-52-32i.故选A.8.如图所示,在复平面内,复数z 1,z 2对应的向量分别是OA →,OB →,则复数z 1·z 2对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案 D解析 由图知OA →=(-2,-1),OB →=(0,1),所以z 1=-2-i ,z 2=i ,z 1·z 2=1-2i ,所以复数z 1·z 2所对应的点为(1,-2),该点在第四象限.二、填空题9.(2020·江苏卷)已知i 是虚数单位,则复数z =(1+i)(2-i)的实部是________. 答案 3解析 z =(1+i)(2-i)=2-i +2i -i 2=3+i ,所以复数z 的实部为3.10.在复平面内,O 为原点,向量OA →对应的复数为-1+2i ,若点A 关于直线y =-x 的对称点为B ,则向量OB →对应的复数为________.答案 -2+i解析 因为A (-1,2)关于直线y =-x 的对称点B (-2,1),所以向量OB →对应的复数为-2+i.11.已知复数z =1+2i 1+i +2i z ,则|z |等于________. 答案 22解析 由z =1+2i 1+i+2i z 得z =1+2i 1+i 1-2i =1+2i 3-i=1+2i 3+i 3-i 3+i =1+7i 10, 故|z |=11012+72=22. 12.已知i 为虚数单位,若复数z =1-a i 1+i(a ∈R)的实部为-3,则|z |=________,复数z 的共轭复数z =________.答案 5 -3+4i解析 因为z =1-a i 1+i =1-a i 1-i 1+i 1-i =1-a -a +1i 2的实部为-3,所以1-a 2=-3,解得a =7. 所以z =-3-4i , 故|z |=-32+-42=5,且共轭复数z =-3+4i.B 级 能力提升13.(2020·南宁模拟)已知z =3-i 1-i (其中i 为虚数单位),则z 的共轭复数z 的虚部是( ) A .-1B .-2C .1D .2 答案 A解析 ∵z =3-i 1-i =3-i 1+i 1-i 1+i=4+2i 2=2+i , ∴z =2-i ,∴z 的虚部为-1.14.(2021·哈尔滨调研)已知z 的共轭复数是z ,且|z |=z +1-2i(i 为虚数单位),则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 答案 D解析 设z =x +y i(x ,y ∈R),因为|z |=z +1-2i ,所以x 2+y 2=x -y i +1-2i =(x +1)-(y+2)i ,所以⎩⎨⎧ x 2+y 2=x +1,y +2=0,解得⎩⎪⎨⎪⎧x =32,y =-2. 所以复数z 在复平面内对应的点为⎝⎛⎭⎫32,-2,此点位于第四象限. 15.⎝ ⎛⎭⎪⎫1+i 1-i 6+2+3i 3-2i=________. 答案 -1+i解析 原式=⎣⎡⎦⎤1+i 226+2+3i3+2i 32+22=i 6+6+2i +3i -65=-1+i. 16.已知复数z =x +y i(x ,y ∈R),且|z -2|=3,则y x的最大值为________. 答案 3解析 因为|z -2|=x -22+y 2=3,所以(x -2)2+y 2=3. 由图可知⎝⎛⎭⎫y x max =31= 3.。

复数的基本运算规则

复数的基本运算规则

复数的基本运算规则
1. 嘿,复数相加可简单啦!就像走路一样,实部和实部相加,虚部和虚部相加呀。

比如说,(3+2i)加上(1+4i),那就是 3+1 等于 4 作为实部,
2+4 等于 6 作为虚部,结果就是 4+6i 呀,是不是很好懂呢!
2. 哇塞,复数相减也不难呀!跟分东西似的,实部减实部,虚部减虚部哟。

像(5+3i)减去(2+1i),5 减 2 等于 3 就是实部,3 减 1 等于 2 就是虚部,就是 3+2i 嘞,这多容易呀!
3. 嘿,复数乘法有规律的哦!就好像搭积木,每个部分都要相乘再组合起来。

比如(2+i)乘以(3-i),展开后得到 6-2i+3i-i²,因为i²等于-1,所以最后就是7+i 呀,有意思吧!
4. 哇哦,复数除法可有点特别呢!要把分母有理化呀,就像给它变个魔法。

比如(3+4i)除以(1+2i),分子分母同时乘以 1-2i,经过一番计算,最后就能得到答案啦,你想不想试试呀?
5. 哎呀呀,复数的模不就是它的“大小”嘛!就像衡量一个东西有多大一样。

要是有个复数 3+4i,它的模就是根号下3 ²加4 ²呀,等于 5 呢,很神奇吧!
6. 嘿哟,共轭复数就像一对双胞胎呀!实部相同,虚部互为相反数。

比如
2+3i 的共轭复数就是 2-3i,这很有趣对不对?
7. 复数的运算规则掌握了可就厉害啦!无论是解决数学问题还是实际应用中,都超级有用的呢!就像拥有了一把神奇的钥匙,可以打开好多知识的大门呀!
我的观点结论:复数的基本运算规则确实很重要,而且并不难理解和掌握呀,只要多练习,就能运用自如啦!。

数学一轮总复习复数运算篇

数学一轮总复习复数运算篇

数学一轮总复习复数运算篇数学一轮总复习复数运算篇复数是数学中的重要概念之一,在各个数学分支中都有广泛的应用。

复数运算在初中和高中阶段的数学学习中扮演着重要的角色。

本篇文章将为大家总结和复习复数运算的相关知识,帮助大家巩固理解并掌握这一概念。

一、复数的定义与表示方法复数是由实数和虚数构成的数,通常表示为z=a+bi,其中a为实部,bi为虚部。

这里的i是虚数单位,满足i²=-1。

复数既可以用代数形式表示,也可以用几何形式表示。

在代数形式中,实部和虚部都是实数,而在几何形式中,复数可以用平面上的向量表示,向量的起点是原点,终点则是复平面上对应的点。

二、复数的四则运算1. 复数的加法和减法复数的加法和减法都是按照实部与虚部分别相加和相减的规则来进行的。

例如,对于两个复数z1=a₁+b₁i 和z2=a₂+b₂i ,其加法和减法的公式分别如下:加法:z1+z2=(a₁+a₂)+(b₁+b₂)i减法:z1-z2=(a₁-a₂)+(b₁-b₂)i2. 复数的乘法复数的乘法是按照分配律和i²=-1的规则进行的。

对于两个复数z1=a₁+b₁i 和z2=a₂+b₂i,其乘法的公式如下:乘法:z1×z2=(a₁a₂-b₁b₂)+(a₁b₂+b₁a₂)i3. 复数的除法复数的除法涉及到共轭复数的概念。

对于一个复数z=a+bi,其共轭复数记作z*,根据共轭复数的定义,z*的实部与z的实部相同,而虚部的符号相反。

复数的除法公式如下:除法:z1÷z2=(a₁a₂+b₁b₂)/(a₂²+b₂²)+((b₁a₂-a₁b₂)/(a₂²+b₂²))i三、复数的乘方与开方1. 复数的乘方复数的乘方是指将一个复数连续乘以自身多次的运算。

复数的乘法规则可以推广到复数的乘方运算中。

例如,对于一个复数z=a+bi,其平方可以表示为:平方:z²=(a+bi)×(a+bi)=a²+2abi+b²i²=(a²-b²)+2abi同理,复数的立方、四次方等运算也可以按照相似的方式进行。

高考复数知识点总结

高考复数知识点总结

高考复数知识点总结复数是高中数学中的一个重要内容,也是高考数学中的常考知识点。

理解和掌握复数的相关知识,对于提高数学成绩和解决数学问题具有重要意义。

下面我们就来对高考中复数的知识点进行一个全面的总结。

一、复数的定义形如 a + bi(a,b∈R)的数叫做复数,其中 a 叫做复数的实部,b 叫做复数的虚部。

当 b = 0 时,复数 a + bi 为实数;当b ≠ 0 时,复数a + bi 为虚数;当 a = 0,b ≠ 0 时,复数 a + bi 为纯虚数。

二、复数的表示形式1、代数形式:z = a + bi(a,b∈R)2、几何形式:在复平面内,复数z =a +bi 对应点的坐标为(a,b),其中实轴上的点表示实数,虚轴上的点(除原点外)表示纯虚数。

3、三角形式:z = r(cosθ +isinθ),其中 r =√(a²+ b²),cosθ = a/r,sinθ = b/r。

4、指数形式:z = re^(iθ)三、复数的运算1、复数的加法:(a + bi)+(c + di)=(a + c)+(b +d)i2、复数的减法:(a + bi)(c + di)=(a c)+(b d)i3、复数的乘法:(a + bi)(c + di)=(ac bd)+(ad + bc)i4、复数的除法:(a + bi)÷(c + di)=(ac + bd)/(c²+ d²) +(bc ad)/(c²+ d²)i在进行复数运算时,要注意将复数的实部和虚部分别进行运算。

四、复数的模复数 z = a + bi 的模记作|z|,|z| =√(a²+ b²)。

复数的模表示复数在复平面上对应的点到原点的距离。

五、共轭复数两个实部相等,虚部互为相反数的复数互为共轭复数。

若 z = a +bi,则其共轭复数为z= a bi。

共轭复数的性质:1、 z +z= 2a(实部的 2 倍)2、 z z= 2bi(虚部的 2 倍)3、 z·z= a²+ b²=|z|²六、复数的方程1、实系数一元二次方程 ax²+ bx + c = 0(a ≠ 0)在复数范围内的根的判别式:△= b² 4ac当△>0 时,方程有两个不相等的实数根;当△= 0 时,方程有两个相等的实数根;当△<0 时,方程有两个共轭虚根。

高考数学一轮总复习复数的运算与复数方程的解法与复数函数的性质

高考数学一轮总复习复数的运算与复数方程的解法与复数函数的性质

高考数学一轮总复习复数的运算与复数方程的解法与复数函数的性质复数是数学中的一个重要概念,它包括实部和虚部。

在高考数学中,复数的运算、复数方程的解法以及复数函数的性质都是经常出现的考点。

本文将对这三个内容进行详细的讲解。

一、复数的运算复数的运算主要包括加减法、乘法和除法。

复数的加减法就是将实部与实部相加减,虚部与虚部相加减。

例如,(2+3i)+(4+5i)=6+8i,(4-2i)-(3+5i)=1-7i。

复数的乘法是将实部与实部相乘然后减去虚部与虚部相乘。

例如,(2+3i)*(4+5i)=7+22i,(4-2i)*(3+5i)=26+10i。

复数的除法需要将分母有理化,将分子与分母乘以共轭复数,再进行简化。

例如,(2+3i)/(4+5i)=(23-2i)/41。

二、复数方程的解法复数方程是指方程中含有未知数的复数解的方程。

对于一元一次复数方程a+bi=0,解析解为x=-b/a。

对于一元二次复数方程ax^2+bx+c=0,可以使用求根公式进行求解。

其中,根的公式为x1,x2=(-b±√(b^2-4ac))/(2a)。

若b^2-4ac>0,则方程有两个不相等的实根;若b^2-4ac=0,则方程有两个相等的实根;若b^2-4ac<0,则方程有两个共轭复数根。

三、复数函数的性质复数函数是指函数自变量或者函数取值是复数的函数。

复数函数的性质主要包括奇偶性、周期性和双曲线。

对于函数f(x),若f(-x)=f(x),则称函数f(x)为偶函数;若f(-x)=-f(x),则称函数f(x)为奇函数。

对于周期性,复数函数f(x)的周期是指存在常数T>0,使得f(x+T)=f(x)成立。

对于双曲线,复数函数f(x)的双曲线是指将复平面看作坐标平面后,函数的图像在复平面上的表示为双曲线。

总结:高考数学中关于复数的运算、复数方程的解法以及复数函数的性质都是需要掌握的重要知识点。

掌握了复数的运算规则,能够灵活运用加减法、乘法和除法进行计算。

高考数学必考知识点复数

高考数学必考知识点复数复数是高中数学中的重要概念,也是高考数学中必考的知识点之一。

许多学生对复数有些陌生,不太了解其概念和性质。

本文将详细介绍复数的基本概念、运算规则以及在解决实际问题中的应用等方面,帮助学生更好地掌握这一知识点。

1. 复数的概念复数是由实数和虚数构成的数。

其中,实数可以看作是复数的一部分,而虚数被定义为单位虚数 $i$ 与实数乘积所得。

一个复数可以表示为 $a+bi$ 的形式,其中 $a$ 和 $b$ 分别代表实数部分和虚数部分。

例如,$3+2i$、$-5i$ 都是复数。

2. 复数的运算(1)复数的加法和减法:复数的加法和减法遵循实部相加(减),虚部相加(减)的规则。

即,设复数 $z_1 = a_1+b_1i$,$z_2 = a_2+b_2i$,则有$z_1+z_2 = (a_1+a_2) + (b_1+b_2)i$,$z_1-z_2 = (a_1-a_2) + (b_1-b_2)i$。

(2)复数的乘法:复数的乘法可以使用分配律展开,注意虚数 $i$ 与自身的乘积为 $-1$。

例如,$(a+bi)(c+di) = (ac-bd) + (ad+bc)i$。

需要注意的是,复数的乘法满足交换律和结合律。

(3)复数的除法:复数的除法需要将除数分母的虚数部分进行有理化,化为实数形式。

具体操作是将分母的虚数部分与其共轭相乘,即将分母化为实数。

然后将被除数与实数形式的除数进行乘法运算,得到的结果即为商。

例如,$(a+bi)/(c+di) = [(a+bi)(c-di)] / [(c+di)(c-di)]$。

3. 复数的性质(1)复数的模:复数的模表示复数离原点的距离,可以用勾股定理求得。

设复数 $z = a+bi$,则有 $|z| = \sqrt{a^2 + b^2}$。

模的性质包括非负性、零模性、模的加法和乘法性质等。

(2)共轭复数:复数的共轭是指保持实部不变,虚部取相反数的复数。

即,设复数 $z = a+bi$,则其共轭复数为 $\bar{z} = a-bi$。

数学复数高考知识点总结

数学复数高考知识点总结数学是高考中的一门重要科目,而复数是其中的一个难点。

在高考中,对于复数的理解和应用是很有考察价值的。

下面,我们将对数学中的复数知识点进行总结和分析。

一、复数的定义和表示复数由实部和虚部组成,可以用a+bi的形式表示,其中a为实部,b为虚部,i为虚数单位。

实部和虚部分别是实数,它们通过虚数单位i联系在一起。

二、复数的基本运算1. 复数的加法和减法:实部相加,虚部相加(减)。

2. 复数的乘法:“FOIL”法则,先分别相乘,再合并同类项。

3. 复数的除法:用有理化的方法将分子和分母都乘以共轭复数,再进行分子分母的分配和合并。

三、共轭复数共轭复数是指虚部的符号变相的复数,如果一个复数的虚部为b,那么该复数的共轭复数为a-bi。

共轭复数的性质有:1. 两个复数相乘,则它们的共轭复数相乘。

2. 两个复数相除,则它们的共轭复数相除。

四、复数的模和幅角复数的模反映了复数的大小,可以用勾股定理求得。

如果复数为z=a+bi,则模为|z|=√(a^2+b^2)。

复数的幅角是指复数和实轴正方向的夹角,可以用反三角函数求得。

如果复数为z=a+bi,则幅角为θ=arctan(b/a)。

五、复数的指数形式复数可以用指数形式表示,即z=r*e^(iθ),其中r为模,θ为幅角。

复数的指数形式有以下性质:1. 两个复数相乘,则它们的指数形式相乘。

2. 两个复数相除,则它们的指数形式相除。

3. 复数的乘方可以用角度的加减表示。

六、复数的根对于一个复数z=a+bi,如果存在某个正整数n,使得z^n=a+bi,则称a+bi为z的n次根。

复数的根有以下性质:1. 一个复数的n次根有n个,可以通过求模、求幅角和运用DeMoivre公式得到。

2. 复数的平方根为±√(z),复数的三次根为3√(z),依此类推。

通过对数学中复数的知识点的总结和分析,我们可以看出,复数是数学中一个重要的概念,高考中对复数的理解和应用具有一定的考察价值。

复数专题复习(经典、全面)

复数专题复习(经典、全面)复数专题复一、复数的概念及运算:1、复数的概念:复数由实部和虚部组成,其中虚部用虚数单位i表示。

2、复数的分类:根据实部和虚部的取值情况,复数可以分为实数、虚数、纯虚数和非纯虚数。

3、复数的运算法则:加减法具有交换律和结合律,乘法具有交换律、结合律和分配律,除法可以通过复数的共轭和模来计算。

4、复数的共轭和模:复数的共轭是实部不变、虚部取相反数的复数,复数的模表示复数对应点与原点的距离。

5、复数共轭和模的运算性质:复数的共轭和模具有一些特殊的运算性质,例如复数的和的共轭等于各自的共轭之和,复数的积的模等于各自的模之积。

二、典型问题分析:考点1:复数的基本运算1.复数(1+3i)/(3-i)的值等于-1+i。

2.已知复数z满足(3+3i)z=3i,则z=-1+i。

3.复数(1-i)^2/(3+3i)的值等于-1/2+i/2.4.复数(1+i)^2/(1-i)的值等于1-i。

考点2:复数的模长运算1.已知复数z=(3+i)/(2-6i),则|z|=11/10.2.已知|z-1+i|=2,复数z的实部为a,虚部为1,则1<a<3.考点3:复数的实部与虚部1.复数1-i的虚部为-1.考点4:复数与复平面内的点关系1.在复平面内,复数1+i对应的点位于第一象限。

1.正确的结论个数是1.2.设 $f(z)=1-z$,$z_1=2+3i$,$z_2=5-i$,则 $f(z_1-z_2)=f(-3+4i)=-4-4i$,答案为 A。

3.设 $z=x+yi$,则 $(x+2)^2+(y-2)^2=1$,即$x^2+y^2+4x-4y+3=0$,这是一个圆心为 $(-2,2)$,半径为$\sqrt{2}$ 的圆。

$|z-2-2i|=\sqrt{(x-2)^2+(y-2)^2}$,是以$(2,2)$ 为圆心,半径为 $1$ 的圆,最小值为 $2$,答案为 A。

4.$p=z+z^*=2a$,$q=z\cdot z^*=a^2+1$,因为 $a^2+1\geq 2a$,所以 $q\geq p$,答案为 D。

高中数学复数知识点及练习

【1】复数的基本概念(1)形如a + b i 的数叫做复数(其中R b a ∈,);复数的单位为i ,它的平方等于-1,即1i 2-=.其中a 叫做复数的实部,b 叫做虚部。

实数:当b = 0时复数a + b i 为实数; 虚数:当0≠b 时的复数a + b i 为虚数;纯虚数:当a = 0且0≠b 时的复数a + b i 为纯虚数 (2)两个复数相等的定义:00==⇔=+∈==⇔+=+b a bi a R d c b a d b c a di c bi a )特别地,,,,(其中,且 (3)共轭复数:z a bi =+的共轭记作z a bi =-;(4)复平面:建立直角坐标系来表示复数的平面叫复平面;z a bi =+,对应点坐标为(),p a b =;(象限的复习)(5)复数的模:对于复数z a bi =+,把z =z 的模; 【2】复数的基本运算 设111z a b i =+,222z a b i =+(1) 加法:()()121212z z a a b b i +=+++; (2) 减法:()()121212z z a a b b i -=-+-;(3) 乘法:()()1212122112z z a a b b a b a b i ⋅=-++ 特别22z z a b ⋅=+。

(4)幂运算:1i i =21i =-3i i =-41i =5i i =61i =-【3】复数的化简c diz a bi+=+(,a b 是均不为0的实数)的化简就是通过分母实数化的方法将分母化为实数:()()22ac bd ad bc ic di c di a bi z a bi a bi a bi a b ++-++-==⋅=++-+【例1】若复数()312a iz a R i +=∈-(i 为虚数单位),(1)若z 为实数,求a 的值 (2)当z 为纯虚数,求a 的值。

【变式1】设a 是实数,且112a ii -++是实数,求a 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复数的基本运算
高考频度:★★★★★难易程度:★☆☆☆☆
典例在线
(2017年高考浙江卷)已知a ,b ∈R ,2i 34i a b +=+()(i 是虚数单位)则22a b +=,ab =.
【参考答案】5,2
【试题解析】由题意可得22
2i 34i a b ab -+=+,则2232a b ab ⎧-=⎨=⎩,解得2241a b ⎧=⎨=⎩,则225,2a b ab +==. 【解题必备】(1)本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如(i)(i)()()i,(,,,)a b c d ac bd ad bc a b c d ++=-++∈R .其次要熟
悉复数相关基本概念,如复数i(,)a b a b +∈R 的实部为a 、虚部为b a ,b )、共轭为i a b -等.
(2)复数的加法、减法、乘法运算可以类比多项式运算;复数除法运算的关键是分子、分母同乘以分母的共轭复数转化为复数的乘法运算,注意要把i 的幂化成最简形式.
(3)记住以下结论,可提高运算速度:①2(i i )12±=±;②1i i 1i +=-;③1i i 1i -=-+;④i i i
a b b a +=-;⑤4i 1n =,41i i n +=,42i 1n +=-,43i i n +=-,即i 的整数次幂的运算具有周期性,周期为4. 学霸推荐
1.已知复数z 满足(34i)25z +=,则z =
A .34i -
B .34i +
C .34i --
D .34i -+
2,则复数z 的共轭复数是 A .1i +
B .1i -
C D 3.下面是关于复数2i z =-的四个命题:1p :5z =;2p :234i z =-;3p :z 的共轭复数为2i -+;4p :
z 的虚部为1-,其中真命题为
A .2p ,3p
B .1p ,2p
C .2p ,4p
D .3p ,4p
1.【答案】A 【解析】由题意2525(34i)25(34i)34i 3+4i (3+4i)(34i)25
z --=
===--,故选A . 2.【答案】D
3.【答案】C
1-,所以24,p p 是真命题,
则应选C.。

相关文档
最新文档