2017年高考三角函数试题

合集下载

2017-2018高考三角函数大题(可编辑修改word版)

2017-2018高考三角函数大题(可编辑修改word版)

2017-2018 高考三角函数大题一.解答题(共14 小题)2.(2018•新课标Ⅰ)在平面四边形ABCD 中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.3.(2018•北京)在△ABC 中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC 边上的高.4.(2018•北京)已知函数f(x)=sin2x+sinxcosx.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m 的最小值.5.(2018•上海)设常数a∈R,函数f(x)=asin2x+2cos2x.(1)若f(x)为偶函数,求 a 的值;(2)若f()= +1,求方程f(x)=1﹣在区间[﹣π,π]上的解.6.(2018•天津)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知bsinA=acos(B﹣).(Ⅰ)求角B 的大小;(Ⅱ)设a=2,c=3,求 b 和sin(2A﹣B)的值.7.(2017•新课标Ⅰ)△ABC 的内角A,B,C 的对边分别为a,b,c,已知△ABC 的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC 的周长.8.(2017•新课标Ⅱ)△ABC 的内角A,B,C 的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC 的面积为2,求b.9.(2017•新课标Ⅲ)△ABC 的内角A,B,C 的对边分别为a,b,c,已知sinA+cosA=0,a=2,b=2.(1)求c;(2)设D 为BC 边上一点,且AD⊥AC,求△ABD 的面积.10.(2017•天津)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知a>b,a=5,c=6,sinB= .(Ⅰ)求 b 和sinA 的值;(Ⅱ)求sin(2A+ )的值.11.(2017•北京)在△ABC 中,∠A=60°,c=a.(1)求sinC 的值;(2)若a=7,求△ABC 的面积.12.(2017•江苏)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若,求x 的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x 的值.13.(2017•浙江)已知函数f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).(Ⅰ)求f()的值.(Ⅱ)求f(x)的最小正周期及单调递增区间.14.(2017•上海)已知函数f(x)=cos2x﹣sin2x+,x∈(0,π).(1)求f(x)的单调递增区间;(2)设△ABC 为锐角三角形,角A 所对边a=,角B 所对边b=5,若f(A)=0,求△ABC 的面积.2017-2018 高考三角函数大题参考答案与试题解析一.解答题(共14 小题)1.(2018•新课标Ⅰ)已知函数f(x)=﹣x+alnx.(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,证明:<a﹣2.【解答】解:(1)函数的定义域为(0,+∞),函数的导数f′(x)=﹣﹣1+ =﹣,设g(x)=x2﹣ax+1,当a≤0 时,g(x)>0 恒成立,即f′(x)<0 恒成立,此时函数f(x)在(0,+∞)上是减函数,当a>0 时,判别式△=a2﹣4,①当0<a≤2 时,△≤0,即g(x)>0,即f′(x)<0 恒成立,此时函数f(x)在(0,+∞)上是减函数,②当a>2 时,x,f′(x),f(x)的变化如下表:x (0,)(,)(,+∞)f′(x)﹣0 + 0 ﹣f(x)递减递增递减综上当a≤2 时,f(x)在(0,+∞)上是减函数,当a>2 时,在(0,),和(,+∞)上是减函数,则(,)上是增函数.(2)由(1)知a>2,0<x1<1<x2,x1x2=1,则f(x1)﹣f(x2)=(x2﹣x1)(1+)+a(lnx1﹣lnx2)=2(x2﹣x1)+a(lnx1﹣lnx2),则=﹣2+ ,则问题转为证明<1 即可,即证明lnx1﹣lnx2>x1﹣x2,即证2lnx1>x1﹣在(0,1)上恒成立,设h(x)=2lnx﹣x+,(0<x<1),其中h(1)=0,求导得h′(x)=﹣1﹣=﹣=﹣<0,则h(x)在(0,1)上单调递减,∴h(x)>h(1),即2lnx﹣x+>0,故2lnx>x﹣,则<a﹣2 成立.2.(2018•新课标Ⅰ)在平面四边形ABCD 中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB= =,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB= =.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB= ,∵DC=2 ,∴BC===5.3.(2018•北京)在△ABC 中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC 边上的高.【解答】解:(Ⅰ)∵a<b,∴A<B,即 A 是锐角,∵cosB=﹣,∴sinB= ==,由正弦定理得= 得sinA= == ,则A=.(Ⅱ)由余弦定理得b2=a2+c2﹣2accosB,即64=49+c2+2×7×c×,即c2+2c﹣15=0,得(c﹣3)(c+5)=0,得c=3 或c=﹣5(舍),则AC 边上的高h=csinA=3×=.4.(2018•北京)已知函数f(x)=sin2x+sinxcosx.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m 的最小值.【解答】解:(I)函数f(x)=sin2x+ sinxcosx= +sin2x =sin(2x﹣)+,f(x)的最小正周期为T==π;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,可得2x﹣∈[﹣,2m﹣],即有2m﹣≥,解得m≥,则m 的最小值为.5.(2018•上海)设常数a∈R,函数f(x)=asin2x+2cos2x.(1)若f(x)为偶函数,求 a 的值;(2)若f()= +1,求方程f(x)=1﹣在区间[﹣π,π]上的解.【解答】解:(1)∵f(x)=asin2x+2cos2x,∴f(﹣x)=﹣asin2x+2cos2x,∵f(x)为偶函数,∴f(﹣x)=f(x),∴﹣asin2x+2cos2x=asin2x+2cos2x,∴2asin2x=0,∴a=0;(2)∵f()= +1,∴asin +2cos2()=a+1= +1,∴a=,∴f(x)= sin2x+2cos2x= sin2x+cos2x+1=2sin(2x+ )+1,∵f(x)=1﹣,∴2sin(2x+ )+1=1﹣,∴sin(2x+ )=﹣,∴2x+ =﹣+2kπ,或2x+=π+2kπ,k∈Z,∴x=﹣π+kπ,或x=π+kπ,k∈Z,∵x∈[﹣π,π],∴x= 或x=或x=﹣或x=﹣6.(2018•天津)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知bsinA=acos(B﹣).(Ⅰ)求角B 的大小;(Ⅱ)设a=2,c=3,求 b 和sin(2A﹣B)的值.【解答】解:(Ⅰ)在△ABC 中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣).∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB= ,又B∈(0,π),∴B=.(Ⅱ)在△ABC 中,a=2,c=3,B=,由余弦定理得b= = ,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA= ,∴sin2A=2sinAcosA= ,cos2A=2cos2A﹣1= ,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB= =.7.(2017•新课标Ⅰ)△ABC 的内角A,B,C 的对边分别为a,b,c,已知△ABC 的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC 的周长.【解答】解:(1)由三角形的面积公式可得S=acsinB= ,△ABC∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC= ;(2)∵6cosBcosC=1,∴cosBcosC= ,∴cosBcosC﹣sinBsinC==﹣,﹣∴cos(B+C)=﹣,∴cosA= ,∵0<A<π,∴A= ,∵===2R= =2 ,∴sinBsinC= •===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.8.(2017•新课标Ⅱ)△ABC 的内角A,B,C 的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC 的面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sinB=4(1﹣cosB),∵sin2B+cos2B=1,∴16(1﹣cosB)2+cos2B=1,∴16(1﹣cosB)2+cos2B﹣1=0,∴16(cosB﹣1)2+(cosB﹣1)(cosB+1)=0,∴(17cosB﹣15)(cosB﹣1)=0,∴cosB= ;(2)由(1)可知sinB=,= ac•sinB=2,∵S△ABC∴ac=,∴b2=a2+c2﹣2accosB=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.9.(2017•新课标Ⅲ)△ABC 的内角A,B,C 的对边分别为a,b,c,已知sinA+cosA=0,a=2,b=2.(1)求c;(2)设D 为BC 边上一点,且AD⊥AC,求△ABD 的面积.【解答】解:(1)∵sinA+cosA=0,∴tanA= ,∵0<A<π,∴A= ,由余弦定理可得a2=b2+c2﹣2bccosA,即28=4+c2﹣2×2c×(﹣),即c2+2c﹣24=0,解得c=﹣6(舍去)或c=4,故c=4.(2)∵c2=b2+a2﹣2abcosC,∴16=28+4﹣2×2 ×2×cosC,∴cosC= ,∴CD= = =∴CD= BC∵S= AB•AC•sin∠BAC= ×4×2×=2 ,△ABC∴S△ABD= S△ABC=10.(2017•天津)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知a>b,a=5,c=6,sinB= .(Ⅰ)求 b 和sinA 的值;(Ⅱ)求sin(2A+)的值.【解答】解:(Ⅰ)在△ABC 中,∵a>b,故由sinB=,可得cosB=.由已知及余弦定理,有=13,∴b= .由正弦定理,得sinA=.∴b= ,sinA= ;(Ⅱ)由(Ⅰ)及a<c,得cosA=,∴sin2A=2sinAcosA= ,cos2A=1﹣2sin2A=﹣.故sin(2A+)= =.11.(2017•北京)在△ABC 中,∠A=60°,c=a.(1)求sinC 的值;(2)若a=7,求△ABC 的面积.【解答】解:(1)∠A=60°,c=a,由正弦定理可得sinC=sinA= ×=,(2)a=7,则c=3,∴C<A,由(1)可得cosC=,∴sinB=sin(A+C)=sinAcosC+cosAsinC= ×+×=,= acsinB= ×7×3×=6 .∴S△ABC12.(2017•江苏)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若,求x 的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x 的值.【解答】解:(1)∵=(cosx,sinx),=(3,﹣),∥,∴﹣cosx=3sinx,∴tanx=﹣,∵x∈[0,π],∴x= ,(2)f(x)= =3cosx﹣sinx=2 (cosx﹣sinx)=2 cos(x+),∵x∈[0,π],∴x+ ∈[ ,],∴﹣1≤cos(x+ )≤,当x=0 时,f(x)有最大值,最大值3,当x=时,f(x)有最小值,最小值﹣2 .13.(2017•浙江)已知函数f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).(Ⅰ)求f()的值.(Ⅱ)求f(x)的最小正周期及单调递增区间.【解答】解:∵函数f(x)=sin2x﹣cos2x﹣2 sinx cosx=﹣sin2x﹣cos2x=2sin(2x+ )(Ⅰ)f()=2sin(2×+)=2sin =2,(Ⅱ)∵ω=2,故T=π,即f(x)的最小正周期为π,由2x+∈[﹣+2kπ,+2kπ],k∈Z 得:x∈[﹣+kπ,﹣+kπ],k∈Z,故f(x)的单调递增区间为[﹣+kπ,﹣+kπ]或写成[kπ+ ,kπ+ ],k∈Z.14.(2017•上海)已知函数f(x)=cos2x﹣sin2x+,x∈(0,π).(1)求f(x)的单调递增区间;(2)设△ABC 为锐角三角形,角A 所对边a=,角B 所对边b=5,若f(A)=0,求△ABC 的面积.【解答】解:(1)函数f(x)=cos2x﹣sin2x+=cos2x+,x∈(0,π),由2kπ﹣π≤2x≤2kπ,解得kπ﹣π≤x≤kπ,k∈Z,k=1 时,π≤x≤π,可得f(x)的增区间为[,π);(2)设△ABC 为锐角三角形,角A 所对边a=,角B 所对边b=5,若f(A)=0,即有cos2A+=0,解得2A=π,即A=π,由余弦定理可得a2=b2+c2﹣2bccosA,化为c2﹣5c+6=0,解得c=2 或3,若c=2,则cosB=<0,即有B 为钝角,c=2 不成立,则c=3,△ABC 的面积为S= bcsinA= ×5×3×= .。

2017年高考三角函数试题

2017年高考三角函数试题

2017年高考三角函数试题D5:答案:25解析:∵f (x )=sin x -2cos x 5x -φ),其中sin φ=55,cos φ=55.当x -φ=2k π+π2(k ∈Z)时,f (x )取最大值. 即θ-φ=2k π+π2(k ∈Z),θ=2k π+π2+φ(k ∈Z). ∴cos θ=πcos 2ϕ⎛⎫+ ⎪⎝⎭=-sin φ=55-.6:(2014·全国新课标卷Ⅰ,文7)在函数①y =cos|2x |,②y =|cosx |,③y =cos ⎝⎛⎭⎪⎪⎫2x +π6,④y =tan ⎝ ⎛⎭⎪⎪⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③答案.A [解析] 函数y =cos|2x |=cos 2x ,其最小正周期为π,①正确;将函数y =cos x 的图像中位于x 轴上方的图像不变,位于x 轴下方的图像对称地翻转至x 轴上方,即可得到y =|cos x |的图像,所以其最小天正周期也为π,②正确;函数y =cos ⎝⎛⎭⎪⎪⎫2x +π6的最小正周期为π,③正确;函数y=tan ⎝⎛⎭⎪⎪⎫2x -π4的最小正周期为π2,④不正确. 7:(16年新课标3,文7)若tanθ=31,则cos2θ=( D ) (A )45-(B )15-(C )15(D )458:(2013课标全国Ⅱ,文16)函数y =cos(2x +φ)(-π≤φ<π)的图像向右平移π2个单位后,与函数y =πsin 23x ⎛⎫+ ⎪⎝⎭的图像重合,则φ=__________.8:答案:5π6解析:y =cos(2x +φ)向右平移π2个单位得,πcos 22y x ϕ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦=cos(2x -π+φ)=ππsin 2π++=sin 222x x ϕϕ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭,而它与函数πsin 23y x ⎛⎫=+ ⎪⎝⎭的图像重合,令2x +φ-π2=2x +π3+2k π,k ∈Z , 得5π+2π6k ϕ=,k ∈Z. 又-π≤φ<π,∴5π6ϕ=.9:(16年新课标3,文科14)函数y =sin x –cos x 的图像可由函数y =2sin x 的图像至少向右平移___3π___个单位长度得到. 9:答案:5π610:(16年新课标2,文科3)函数的部分图像如图所示,则 ( A )=sin()y A x ωϕ+(A )(B ) (C ) (D ) 11:(2013课标全国Ⅰ,文9)函数f (x )=(1-cos x )sin x 在[-π,π]的图像大致为( ).11: 答案:C解析:由f (x )=(1-cos x )sin x 知其为奇函数.可排除B .当x ∈π0,2⎛⎤ ⎥⎝⎦时,f (x )>0,排除A. 当x ∈(0,π)时,f ′(x )=sin 2x +cos x (1-cos x )=-2cos 2x +cos x +1.2sin(2)6y x π=-2sin(2)3y x π=-2sin(2+)6y x π=2sin(2+)3y x π=令f ′(x )=0,得2π3x =. 故极值点为2π3x =,可排除D ,故选C. 12:(16年新课标1:文科6)若将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为( B ) (A )y =2sin(2x +π4) (B )y =2sin(2x +π3) (C )y =2sin(2x –π4) (D )y =2sin(2x –π3) 两角和与差的正弦、余弦、正切1:(2014·新课标2,文科14)函数f (x )=sin(x +φ)-2sin φcos x 的最大值为________.[解析] f (x )=sin(x +φ)-2sin φcos x =sin x cos φ+cos x sin φ-2sin φcos x =sin x cos φ-cos x sin φ=sin(x -φ),其最大值为1.2:(2014·全国新课标卷Ⅰ,文科2) 若tan α>0,则( )A .sin α>0B .cos α>0C .sin 2α>0D .cos2α>0答案:C [解析]因为sin 2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α>0,所以选C. 3:(2013课标全国Ⅱ,文6)已知sin 2α=23,则2πcos 4α⎛⎫+ ⎪⎝⎭=( ).A .16B .13C .12D .23答案:A解析:由半角公式可得,2πcos 4α⎛⎫+⎪⎝⎭=π21cos 211sin 21232226αα⎛⎫++- ⎪-⎝⎭===.4:(16年新课标3,文科11)函数的最大值为( B )(A )4 (B )5 (C )6 (D )75:(16年新课标1,文科14)已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ–π4)=. 5: 答案:54-解三角形17.(2012课标全国1,文17) 中,内角A .B .C 成等差数列,其对边满足,求.【命题意图】: 本试题主要考查了解三角形的运用。

2017年三角函数高考真题

2017年三角函数高考真题
(1)求 cos B ; (2)若 a c 6 , ABC 面积为 2,求 b.
8【. 2017年新课标Ⅲ卷,17】ABC 的内角A,B,C的对边分别为a,b,c,已知 sin A a 2 7 ,b2.
(1)求c; (2)设 D 为 BC 边上一点,且 AD AC ,求 △ABD 的面积.
3 cos A 0 ,
A. f (x) 的一个周期为 2π
B. y f (x) 的图像关于直线 x 8π 对称 3
C.
f
(x
)
的一个零点为
x
π 6
D.
f
(x)

(π 2
,
π)
单调递减
3.【2017 年新课标Ⅱ卷,14】函数 f x sin2 x
3
cos
x
3 4

x
0,
2
)的最大值


4. 【2017 年新课标Ⅱ卷,文 13】函数 f (x) 2 cos x sin x 的最大值为
.
5. (【 2017 年 新 课 标 Ⅱ 卷 , 文 16 】 △ABC 的 内 角 A, B, C 的 对 边 分 别 为 a, b, c , 若 2bcosB=acosC+ccosA,则 B= 6.【2017 年新课标Ⅰ卷,17】△ABC 的内角 A,B,C 的对边分别为 a,b,c,已知△ABC
2017 年 高考真题(三角)

1.【2017 年新课标Ⅰ卷,9】已知曲线 C1:y=cos x,C2:y=sin (2x+ ),则下面结正确的
3
是( )
π A.把 C1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向右平移 6

2017解三角形高考真题

2017解三角形高考真题

2017高考真题解三角形汇编1.(2017高考题)(本小题13分)在△ABC 中,A ∠ =60°,c =37a . (Ⅰ)求sin C 的值;(Ⅱ)若a =7,求△ABC 的面积. (15)(共13分)解:(Ⅰ)在△ABC 中,因为60A ∠=︒,37c a =,所以由正弦定理得sin 3sin 7c A C a ===. (Ⅱ)因为7a =,所以3737c =⨯=.由余弦定理2222cos a b c bc A =+-得222173232b b =+-⨯⨯, 解得8b =或5b =-(舍).所以△ABC 的面积11sin 8322S bc A ==⨯⨯=2.(2017全国卷1理科)△ABC 的角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长.17.解:(1)由题设得21sin 23sin a ac B A =,即1sin 23sin ac B A=.由正弦定理得1sin sin sin 23sin AC B A =. 故2sin sin 3B C =.(2)由题设及(1)得1cos cos sin sin ,2B C B C -=-,即1cos()2B C +=-. 所以2π3B C +=,故π3A =. 由题设得21sin 23sin a bc A A=,即8bc =.由余弦定理得229b c bc +-=,即2()39b c bc +-=,得b c +=.故ABC △的周长为33.(2017全国卷1文科)△ABC 的角A 、B 、C 的对边分别为a 、b 、c 。

已知sin sin (sin cos )0B A C C +-=,a =2,cC =BA .π12B .π6C .π4D .π34.(2016全国卷2理科)ABC ∆的角,,A B C 的对边分别为,,a b c ,已知2sin()8sin 2B AC +=. (1)求cos B(2)若6a c += , ABC ∆面积为2,求.b (1)由题设及2sin 8sin2A B C B ππ++==得,故sin 4-cosB B =(1)上式两边平方,整理得 217cos B-32cosB+15=0 解得 15cosB=cosB 171(舍去),= (2)由158cosB sin B 1717==得,故14a sin 217ABC S c B ac ∆== 又17=22ABC S ac ∆=,则由余弦定理学 科&网及a 6c +=得2222b 2cos a 2(1cosB)1715362(1)2174a c ac Bac =+-=-+=-⨯⨯+=(+c )所以b=2.5.(2017全国卷2文科16)△ABC 的角A,B,C 的对边分别为a,b,c,若2b cosB=a cosC+c cosA,则B=3π6.(2017全国卷3理科)△ABC 的角A ,B ,C 的(百度搜索“童老师高中数学”,快速提分课程)对边分别为a ,b ,c ,已知sin AA =0,a,b =2.(1)求c ;(2)设D 为BC 边上一点,且AD ⊥ AC,求△ABD 的面积. 17.解:(1)由已知得tanA=π2A=3在 △ABC 中,由余弦定理得2222844cos+2-24=03c 6c c c c c π=+-=-,即解得(舍去),=4 (2)有题设可得ππ∠∠=∠-∠==,所以26CAD BAD BAC CAD故△ABD 面积与△ACD 面积的比值为π=1sin 26112AB AD AC AD 又△ABC的面积为⨯⨯∠=∆142sin 2BAC ABD 7.(2017全国卷3文科)△ABC 的角A ,B ,C 的对边分别为a ,b ,c 。

专题09 三角函数-三年(2017-2019)高考真题数学(理)分项汇编 Word版含解析

专题09 三角函数-三年(2017-2019)高考真题数学(理)分项汇编 Word版含解析

姓名,年级:时间:专题09 三角函数1.【2019年高考全国Ⅰ卷理数】函数f (x )=在[,]-ππ的图像大致为A .B .C .D .【答案】D【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x-+----===--+-+,得()f x 是奇函数,其图象关于原点对称,排除A .又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,排除B,C ,故选D . 【名师点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养,采取性质法或赋值法,利用数形结合思想解题.解答本题时,先判断函数的奇偶性,得()f x 是奇函数,排除A ,再注意到选项的区别,利用特殊值得正确答案.2.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④ C .①④D .①③【答案】C 【解析】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴为偶函数,故①正确.2sin cos ++x xx x当ππ2x <<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误. 当0πx ≤≤时,()2sin f x x =,它有两个零点:0,π;当π0x -≤<时,()()sin sin f x x x =--2sin x =-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N 时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④正确,故选C .【名师点睛】本题也可画出函数()sin sin f x x x =+的图象(如下图),由图象可得①④正确.3.【2019年高考全国Ⅱ卷理数】下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=|cos2x |B .f (x )=|sin2x |C .f (x )=cos |x |D .f (x )=sin|x |【答案】A【解析】作出因为sin ||y x =的图象如下图1,知其不是周期函数,排除D; 因为cos cos y x x ==,周期为2π,排除C ;作出cos2y x =图象如图2,由图象知,其周期为π2,在区间(4π,2π)单调递增,A 正确;作出sin2y x =的图象如图3,由图象知,其周期为π2,在区间(4π,2π)单调递减,排除B , 故选A .图1图2图3【名师点睛】本题主要考查三角函数的图象与性质,渗透直观想象、逻辑推理等数学素养,画出各函数图象,即可作出选择.本题也可利用二级结论:①函数()y f x =的周期是函数()y f x =周期的一半;②sin y x ω=不是周期函数。

【满足】专题11解三角形三年高考2017数学理真题分项版解析解析版

【满足】专题11解三角形三年高考2017数学理真题分项版解析解析版

【关键字】满足1.【2017山东,理9】在中,角,,的对边分别为,,.若为锐角三角形,且满足,则下列等式成立的是(A)(B)(C)(D)【答案】A【解析】试题分析:所以,选A.【考点】1.三角函数的和差角公式2.正弦定理.【名师点睛】本题较为容易,关键是要利用两角和差的三角函数公式进行恒等变形.首先用两角和的正弦公式转化为含有,,的式子,用正弦定理将角转化为边,得到.解答三角形中的问题时,三角形内角和定理是经常用到的一个隐含条件,不容忽视.2.【2016高考新课标3理数】在中,,边上的高等于,则()(A)(B)(C)(D)【答案】C【解析】试题分析:设边上的高线为,则,所以,.由余弦定理,知,故选C.考点:余弦定理.3.【2016高考天津理数】在△ABC中,若,BC=3,,则AC= ()(A)1(B)2(C)3(D)4【答案】A【解析】试题分析:由余弦定理得,选A.考点:余弦定理【名师点睛】1.正、余弦定理可以处理四大类解三角形问题,其中已知两边及其一边的对角,既可以用正弦定理求解也可以用余弦定理求解.2.利用正、余弦定理解三角形其关键是运用两个定理实现边角互化,从而达到知三求三的目的.4.【2017浙江,14】已知△ABC,AB=AC=4,BC=2.点D为AB延长线上一点,BD=2,连结CD,则△BDC的面积是______,cos△BDC=_______.【答案】【解析】试题分析:取BC中点E,DC中点F,由题意:,△ABE中,,,.又,,综上可得,△BCD面积为,.【考点】解三角形5.【2015高考北京,理12】在中,,,,则.【答案】1【解析】考点定位:本题考点为正弦定理、余弦定理的应用及二倍角公式,灵活使用正弦定理、余弦定理进行边化角、角化边.【名师点睛】本题考查二倍角公式及正弦定理和余弦定理,本题属于根底题,题目所求分式的分子为二倍角正弦,应用二倍角的正弦公式进行恒等变形,变形后为角的正弦、余弦式,灵活运用正弦定理和余弦定理进行角化边,再把边长代入求值.6.【2016高考江苏卷】在锐角三角形中,若,则的最小值是.【答案】8.【解析】,因此,即最小值为8.考点:三角恒等变换,切的性质应用【名师点睛】消元与降次是高中数学主旋律,利用三角形中隐含的边角关系作为消元依据是本题突破口,斜三角形中恒有,这类同于正余弦定理,是一个关于切的等量关系,平时多总结积累常见的三角恒等变形,提高转化问题能力,培养消元意识7.【2015高考新课标1,理16】在平面四边形ABCD中,△A=△B=△C=75°,BC=2,则AB 的取值范围是.【答案】(,)【解析】如图所示,延长BA,CD交于E,平移AD,当A与D重合与E点时,AB最长,在△BCE中,△B=△C=75°,△E=30°,BC=2,由正弦定理可得,即,解得=,平移AD,当D与C重合时,AB最短,此时与AB交于F,在△BCF中,△B=△BFC=75°,△FCB=30°,由正弦定理知,,即,解得BF=,所以AB的取值范围为(,).【考点定位】正余弦定理;数形结合思想8.【2016高考新课标2理数】的内角的对边分别为,若,,,则.【答案】【解析】试题分析:因为,且为三角形内角,所以,,又因为,所以.考点:三角函数和差公式,正弦定理. 能用到。

2017届技能高考数学测试题(三角函数)

2017届技能高考数学测试题(三角函数)

黄梅理工2017届高三数学测试题(三角函数)一、选择题:(本大题共6小题,每小题5分,共30分)1.下列说法中正确的是 ( ).A 、60-︒角的终边在第一象限B 、390︒是与30︒终边相同的角C 、150︒=32π D 、0180-角不是界限角.2.下列说法中正确的是( )①如果∂角是第四象限的角,则角α-是第一象限的角 ②5cos1803sin 902tan 06sin 270︒-︒+︒-︒=2③已知角α的终边上的点P 的坐标为(-3,4),则sin α=-45④已知α为第一象限的角,化简tan =cos αA 、①②B 、①③C 、②③④D 、②④3.已知sin 0,tan 0θθ<>化简的结果为( )A 、cos θB 、 cos θ-C 、 cos θ±D 、以上都不对4.若)2,4(ππα∈,则αααtan ,cos ,sin 的大小顺序是( )A 、αααtan cos sin >>B 、αααtan cos sin <<C 、αααsin tan cos >>D 、αααcos sin tan >> 5.若点A (tanx,cosx )是第二象限的点,则角x 是( )A 、第一象限角B 、第二象限角C 、第三象限角D 、第四象限角 6.下列说法中正确的是( )A 、②④B 、①④C 、①③D 、②二、填空题:(本大题共4小题,每小题6分,共24分)7.若扇形的半径为5cm ,圆心角为30°,则该扇形的弧长l = ,扇形面积S = 。

8.,求下列各式的值:已知3tan =a a a a a cos 4sin 3cos sin +-= ,a a sin 11sin 11-++= 。

9.在[]0,2π内,适合关系式1sin 2x =-的角x 是_________________________10.与1130°角终边相同的最小正角是 。

2017年高考数学—三角函数(解答+答案)

2017年高考数学—三角函数(解答+答案)

2017年高考数学—三角函数(解答+答案)1.(17全国1理17.(12分))△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin sin B C ;(2)若6cos cos 1,3B C a ==,求△ABC 的周长.2.(17全国2理17.(12分))ABC ∆的内角A B C 、、所对的边分别为,,a b c ,已知2sin()8sin 2B AC +=, (1)求cos B ;(2)若6a c +=,ABC ∆的面积为2,求b .3.(17全国3理17.(12分))ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sin 0,2A A a b +===(1)求c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD △的面积.4.(17北京理(15)(本小题13分))在ABC ∆中,360,7A c a ∠==o(Ⅰ)求sin C 的值;(Ⅱ)若7a =,求ABC ∆的面积.已知函数())2sin cos 3f x x x x π=--(Ⅰ)求()f x 的最小正周期; (Ⅱ)求证:当[,]44x ππ∈-时,1()2f x ≥-6.(17山东理16)设函数()sin()sin()62f x x x ππωω=-+-,其中03ω<<.已知()06f π=. (Ⅰ)求ω;(Ⅱ)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在3[,]44ππ-上的最小值.7.(17山东文(17)(本小题满分12分))在△ABC 中,角A,B,C 的对边分别为a,b,c,已知b=3,6AB AC =-u u r u u u rg ,3ABC S ∆=,求A 和a 。

8.(17天津理15.(本小题满分13分))在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知a b >,5,6a c ==,3sin 5B =. (Ⅰ)求b 和sin A 的值; (Ⅱ)求πsin(2)4A +的值.在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知sin 4sin a A b B =,2225()ac a b c =--.(I )求cos A 的值; (II )求sin(2)B A -的值.10.(17浙江18.(本题满分14分))已知函数22()sin cos 23sin cos ()f x x x x x x R =--∈(Ⅰ)求2()3f π的值. (Ⅱ)求()f x 的最小正周期及单调递增区间.11.(17江苏16. (本小题满分14分))已知向量(cos ,sin ),(3,3),[0,]a x x b x π==-∈. (1)若//a b ,求x 的值; (2)记,求()f x 的最大值和最小值以及对应x 的值参考答案:1.解:(1)由题设得21sin 23sin a ac B A =,即1sin 23sin ac B A=由正弦定理得1sin sin sin 23sin AC B A =故2sin sin 3B C =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年高考三角函数试题2017年三角函数、解三角形题型分析及其复习计划本文主要研究近五年高考中出现的三角函数题,其目的是加深自身对高中三角函数这部分内容的认识和理解,并通过对试题的分类、整理、分析、总结出一些关于高考中对三角函数试题的解题方法、技巧和应对策略,希望这些解题方法、技巧和应对策略能够对执教老师和学生起到一定的帮助和启发.同时,选择研究高考三角函数这部分内容也是想为将来的教学工作做一个充分的知识储备.三角函数在高中数学中有着较高的地位,尤其是在函数这一块,它属于基本初等函数,同时,它还是描述周期现象的重要数学模型.通过整理、统计可以看出,每年高考中三角函数试题分值所占比例基本都在10%~15%之间. 从近三年的课标卷、的高考三角函数题的分类、整理、分析知,高考三角函数这一知识点,主要还是考查学生的基础知识和基本技能,难度一般不大.但是,三角函数这部分内容考查的题型比较灵活,并且考查面较广.在选择题、填空题、解答题中均有考查,在前两类题型中多考查三角函数的基础知识,属于基础题;对于解答题则具有一定的综合性.从总体上看,高考三角函数对文科学生能力的考查要求差异不大,但在考查题型上,文科方向的解三角形题量有所减少.从课改前后看,对三角函数考查的内容和范围没有明显变动,仍然是对三角函数的基础知识、三角函数与向量、与三角恒等变换等综合考查,但难度均不大.考题分布全国一卷全国二卷全国三卷2012年(大纲卷)3、4、15、17(共25分)9、17题(共17分)2013年9、10、16(共15分)4、6、16(共15分)2014年2、7、16题(共15分)14、17题(共17分)A .B .C .D . 答案C【命题意图】本试题主要考查了偶函数的概念与三角函数图像性质,。

【解析】由为偶函数可知,轴是函数图像的对称轴,而三角函数的对称轴是在该函数取得最值时取得,故,而,故时,,故选答案C 。

2:(2012大纲卷,文4)已知为第二象限角,,则( )A .B .C .D . 答案A【命题意图】本试题主要考查了同角三角函数关系式的运用以及正弦二倍角公式的运用。

【解析】因为为第二象限角,故,而,故,所以,故选答案A 。

3:(2012大纲卷,文15)当函数取最大值时,2π23π32π53π[]()sin (0,2)3x f x ϕϕπ+=∈y ()f x 3(0)sin 13()3322f k k k Z ϕϕπππϕπ==±⇒=+⇒=+∈[]0,2ϕπ∈0k =32πϕ=α3sin 5α=sin 2α=2425-1225-12252425αcos 0α<3sin 5α=24cos 1sin 5αα=--=-24sin 22sin cos 25ααα==-sin 3(02)y x x x π=≤<.答案:【命题意图】本试题主要考查了三角函数性质的运用,求解值域的问题。

首先化为单一三角函数,然后利用定义域求解角的范围,从而结合三角函数图像得到最值点。

【解析】由由可知 当且仅当即时取得最小值,时即取得最大值。

4:(2012课标全国2,文9)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ= ( D )(A )π4 (B )π3 (C )π2 (D )3π45:(2013课标全国Ⅰ,文16)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=______.x =56πsin 32sin()3y x x x π==-502333x x ππππ≤<⇔-≤-<22sin()23x π-≤-≤332x ππ-=116x π=32x ππ-=56x π=5:答案:25解析:∵f (x )=sin x -2cos x 5x -φ), 其中sin φ=55,cos φ=55.当x -φ=2k π+π2(k ∈Z)时,f (x )取最大值. 即θ-φ=2k π+π2(k ∈Z),θ=2k π+π2+φ(k ∈Z). ∴cos θ=πcos 2ϕ⎛⎫+ ⎪⎝⎭=-sin φ=55-.6:(2014·全国新课标卷Ⅰ,文7)在函数①y =cos|2x |,②y =|cosx |,③y =cos ⎝⎛⎭⎪⎪⎫2x +π6,④y =tan ⎝⎛⎭⎪⎪⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③ 答案.A [解析] 函数y =cos|2x |=cos 2x ,其最小正周期为π,①正确;将函数y =cos x 的图像中位于x 轴上方的图像不变,位于x 轴下方的图像对称地翻转至x 轴上方,即可得到y =|cos x |的图像,所以其最小天正周期也为π,②正确;函数y =cos ⎝⎛⎭⎪⎪⎫2x +π6的最小正周期为π,③正确;函数y=tan ⎝⎛⎭⎪⎪⎫2x -π4的最小正周期为π2,④不正确.7:(16年新课标3,文7)若tanθ=31,则cos2θ=( D ) (A )45-(B )15-(C )15(D )458:(2013课标全国Ⅱ,文16)函数y =cos(2x +φ)(-π≤φ<π)的图像向右平移π2个单位后,与函数y =πsin 23x ⎛⎫+ ⎪⎝⎭的图像重合,则φ=__________.8:答案:5π6解析:y =cos(2x +φ)向右平移π2个单位得,πcos 22y x ϕ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦=cos(2x -π+φ)=ππsin 2π++=sin 222x x ϕϕ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭,而它与函数πsin 23y x ⎛⎫=+ ⎪⎝⎭的图像重合,令2x +φ-π2=2x +π3+2k π,k ∈Z , 得5π+2π6k ϕ=,k ∈Z. 又-π≤φ<π,∴5π6ϕ=.9:(16年新课标3,文科14)函数y =sin x –cos x 的图像可由函数y =2sin x 的图像至少向右平移___3π___个单位长度得到. 9:答案:5π610:(16年新课标2,文科3)函数的部分图像如图所示,则 ( A )=sin()y A x ωϕ+(A )(B ) (C ) (D ) 11:(2013课标全国Ⅰ,文9)函数f (x )=(1-cos x )sin x在[-π,π]的图像大致为( ).11: 答案:C解析:由f (x )=(1-cos x )sin x 知其为奇函数.可排除B .当x ∈π0,2⎛⎤⎥⎝⎦时,f (x )>0,排除A. 当x ∈(0,π)时,f ′(x )=sin 2x +cos x (1-cos x )=-2cos 2x +cos x +1.2sin(2)6y x π=-2sin(2)3y x π=-2sin(2+)6y x π=2sin(2+)3y x π=令f ′(x )=0,得2π3x =. 故极值点为2π3x =,可排除D ,故选C. 12:(16年新课标1:文科6)若将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为( B )(A )y =2sin(2x +π4) (B )y =2sin(2x +π3) (C )y =2sin(2x –π4)(D )y =2sin(2x –π3)两角和与差的正弦、余弦、正切1:(2014·新课标2,文科14)函数f (x )=sin(x +φ)-2sin φcos x 的最大值为________.[解析] f (x )=sin(x +φ)-2sin φcos x =sin x cos φ+cos x sin φ-2sin φcos x =sin x cos φ-cos x sin φ=sin(x -φ),其最大值为1.2:(2014·全国新课标卷Ⅰ,文科2) 若tan α>0,则( )A .sin α>0B .cos α>0C .sin 2α>0D .cos 2α>0答案:C [解析]因为sin 2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α>0,所以选C. 3:(2013课标全国Ⅱ,文6)已知sin 2α=23,则2πcos 4α⎛⎫+ ⎪⎝⎭=( ).A .16B .13C .12D .23答案:A解析:由半角公式可得,2πcos 4α⎛⎫+⎪⎝⎭=π21cos 211sin 21232226αα⎛⎫++- ⎪-⎝⎭===.4:(16年新课标3,文科11)函数的最大值为( B )(A )4 (B )5 (C )6 (D )75:(16年新课标1,文科14)已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ–π4)=. 5: 答案:54-解三角形17.(2012课标全国1,文17) 中,内角A .B .C 成等差数列,其对边满足,求.【命题意图】: 本试题主要考查了解三角形的运用。

该试题π()cos 26cos()2f x x x =+-ABC ∆,,a b c 223bac=A从整体看保持了往年的解题风格,依然是通过边角的转换,结合了三角形的内角和定理的知识,以及正弦定理求解三角形中的角的问题。

试题整体上比较稳定,思路比较容易想,先利用等差数列得到角,然后利用正弦定理与三角求解运算得到答案。

【解析】由A .B .C 成等差数列可得,而,故且 而由与正弦定理可得所以可得,由,故 或,于是可得到或。

(17)(2012课标全国2,文17) 已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c = 3a sinC -c cosA(1) 求A(2) 若a =2,△ABC 的面积为3,求b ,c.B 2B AC =+A B C π++=33B B ππ=⇒=23C A π=-223bac=2222sin 3sin sin 2sin 3sin()sin 33B AC A A ππ=⇒⨯=-232223(sin cos cos sin )sin 3sin sin 1433A A A A A A ππ⨯=-⇒+=⇒31cos 2121sin(2)2262A A A π-+=⇒-=27023666A A ππππ<<⇒-<-<266A ππ-=5266A ππ-=6A π=2A π=【解析】解:(1)由c = 3asinC -ccosA 及正弦定理得sin cos sin sin sin 3=--C A C C A有0sin ≠C ,所以21)6sin(=-πA ,所以3π=A (2)⎭⎬⎫=-+=4422bc bc c b ⇒2==c b3:(2013课标全国Ⅰ,文10)已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2A +cos 2A =0,a =7,c =6,则b =( ).A .10B .9C .8D .5 答案:D解析:由23cos 2A +cos 2A =0,得cos 2A =125. ∵A ∈π0,2⎛⎫⎪⎝⎭,∴cos A =15.∵cos A =2364926b b +-⨯,∴b =5或135b =-(舍).故选D.4:(2013课标全国Ⅱ,文4)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,π6B =,π4C =,则△ABC 的面积为( ).A .3+2B 3+1C .232D 31答案:B解析:A =π-(B +C )=ππ7ππ6412⎛⎫-+=⎪⎝⎭, 由正弦定理得sin sin a bA B=,则7π2sinsin 1262πsin sin 6b A a B === ∴S △ABC =112sin 2(62)3122ab C =⨯⨯=. 5:[2014·全国卷2,文科17] 四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2.(1)求C 和BD ; (2)求四边形ABCD 的面积. 解:(1)由题设及余弦定理得 BD 2=BC 2+CD 2-2BC ·CD cos C =13-12cos C ,①BD 2=AB 2+DA 2-2AB ·DA cos A =5+4cos C .②由①②得cos C =12,故C =60°,BD =7.(2)四边形ABCD 的面积 S =12AB ·DA sin A +12BC ·CD sin C=⎝⎛⎭⎪⎪⎫12×1×2+12×3×2sin 60°=2 3.6:(2014·全国新课标卷Ⅰ,文科16)如图1-3,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°,以及∠MAC =75°,从C 点测得∠MCA =60°.已知山高BC =100 m ,则山高MN =________m.图1-3答案:150 [解析] 在Rt △ABC 中,BC =100,∠CAB =45°,所以AC =100 2.在△MAC 中,∠MAC =75°,∠MCA =60°,所以∠AMC =45°,由正弦定理有AM sin ∠MCA =AC sin ∠AMC ,即AM =sin 60°sin 45°×1002=1003,于是在Rt △AMN 中,有MN =sin 60°×1003=150 .7:(15年新课标2,文科17)△ABC 中D 是BC 上的点,AD 平分BAC ,BD =2DC .(I )求 ; (II )若,求.∠sin sin B C∠∠60BAC ∠=B ∠【答案】(I );.8:(16年新课标3,文科9)在ABC中,B==A BC BC sin ,31,4则边上的高等于π ( D )(A)31010(C)5 3109:(16年新课标2,文科15)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若,,a =1,则b =_____2113_______.10:(16年新课标1,文科4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知5a =2c =,2cos 3A =,则b=( D )(A 2 (B 3 (C )2 (D )312304cos 5A =5cos 13C =针对近几年三角函数,解三角形的试题分析,我们可以看出,这一部分知识在高考中的分值为15分或17分,考题就是三个小题共15分,或是一个小题加一个大题共17分。

相关文档
最新文档