全国高中数学 青年教师展评课 圆锥曲线起始课教学设计

合集下载

圆锥曲线高中数学解读教案

圆锥曲线高中数学解读教案

圆锥曲线高中数学解读教案教学内容:圆锥曲线
课时安排:2课时
教学目标:
1. 理解圆锥曲线的定义以及各种形式的表达;
2. 掌握圆锥曲线的性质和特点;
3. 能够应用所学知识解决相关问题。

教学重点:
1. 圆锥曲线的定义和性质;
2. 椭圆、双曲线、抛物线的特点与区别;
3. 圆锥曲线的图像及方程。

教学内容和步骤:
第一课时:
1. 引入学习,了解学生对圆锥曲线的理解和认识;
2. 讲述圆锥曲线的定义及一般方程;
3. 分别介绍椭圆、双曲线和抛物线的定义和特点;
4. 指导学生做相关习题,巩固所学知识。

第二课时:
1. 复习前一节课的内容,解答学生提出的问题;
2. 讲解圆锥曲线的图像和方程的变化规律;
3. 继续指导学生进行练习和讨论;
4. 小结本节课的学习内容,布置相关作业。

教学方法:
1. 教师讲授与学生互动相结合,注重启发式教学方法;
2. 多媒体教学辅助,展示圆锥曲线的图像和方程;
3. 组织学生进行讨论和小组合作,促进彼此之间的交流和学习。

教学评价:
1. 课后布置相关练习和作业,及时进行批改和评价;
2. 观察学生学习情况,及时调整教学进度和方法;
3. 定期进行测试和考查,全面评估学生对圆锥曲线的掌握情况。

全国高中数学 青年教师展评课 圆锥曲线的光学性质课件(浙江台州洪家中学)

全国高中数学 青年教师展评课 圆锥曲线的光学性质课件(浙江台州洪家中学)



群策群力解疑难
口留余香再启智
第三十页,共36页。
口留余香(yú xiānɡ)再启智
第三十一页,共36页。
口留余香(yú xiānɡ)再启智
第三十二页,共36页。
创新 (chuàngxīn)是 一个民族进步的 灵魂,一个国家 兴旺发达不竭的 动力。学生要学 会学习,更要懂 得创新 (chuàngxīn)。 布置课后深层次 思考题,希望能 唤起学生的创新 (chuàngxīn)意 识,激发他们的 创新 (chuàngxīn)潜 能。
读书百遍其义见

汇积小流成江河



读有所得 读有所疑
第十四页,共36页。
汇积小流成江河(jiānɡ hé)—— 读有所疑
第十五页,共36页。
汇积小流成江河(jiānɡ hé)— —读有所疑
上课前挑选整理 (zhěnglǐ)学生疑问, 课堂展示疑问,引 发全体学生积极思 考;将疑问分类板 书,明确了任务, 并留给学生更多的 思考时间。

这是人教版选修2-1第二章《圆 锥曲线与方程》章末的一份阅 读与思考材料,主要介绍抛物 线、椭圆(tuǒyuán)、双曲线的 光学性质以及它们在生活中的 简单应用,是圆锥曲线知识的 进一步拓展,是数学知识与物 理知识的综合,也是数学知识 在实际生活中应用的典型案例。
第三页,共36页。
应圆 用锥
曲 线 的 光 学
教 学 流 程
第八页,共36页。
读书百遍其义见——课前充分阅读(yuèdú) 思—课前充分阅读 思考
提前布置阅读与 思考任务,将阅 读与思考延伸 (yánshēn)到课 前,学生有充裕 的阅读与思考的 时间和空间,可 以得到更多信息, 产生更多疑问。

全国高中数学青年教师展评课圆锥曲线的光学性质(优秀版)word资料

全国高中数学青年教师展评课圆锥曲线的光学性质(优秀版)word资料

全国高中数学青年教师展评课圆锥曲线的光学性质(优秀版)word资料圆锥曲线的光学性质教学设计一.教学内容解析本节课内容是人教A版数学选修2-1中《圆锥曲线与方程》章后的一段阅读与思考材料,重点介绍了椭圆、双曲线、抛物线的光学性质以及它们在生活生产中的广泛应用. 它是圆锥曲线知识的进一步拓展,是数学知识与物理知识的综合,也是数学知识在实际生活中的应用的典型案例. 学生在教师的指引下,对材料进行充分地阅读并进行思考,查阅各类资料积累阅读与思考的成果,通过课堂进行分享与交流,既掌握了圆锥曲线的光学性质及其广泛应用,又学会了如何阅读与思考,在分享与交流过程中体验到学习的快乐,这对学生的今后学习、生活有着深远的意义。

由于三种曲线的性质可以进行适当的类比,在教学中可突出其中一种曲线进行深入研究.本课重点探讨抛物线的光学性质及其应用,通过类比了解其他曲线的光学性质及其作用.二.教学目标解析(1)了解三种圆锥曲线的光学性质,并能对抛物线的光学性质进行数学证明。

(2)能通过对一些生活现象的观察提出数学问题,再用数学的方法加以论证。

(3)通过对圆锥曲线光学性质的大量应用,感受数学与生活之间的密切联系,体会数学的抽象性及其广泛的应用性,同时用学到的数学原理进行创新设计的尝试。

(4)学会如何阅读、如何思考与数学有关的材料。

三.学情分析学生已学完解析几何全部课本知识,对用解析法解决解析几何问题的思想、方法已基本掌握,另外,学生已学习过导数知识,因此能用导数工具求解切线斜率.同时了解光的传播的反射知识.信息时代的学生知识面比较广,并能熟练利用书籍、电脑搜索各方面的知识。

由于人教A版课程中学生不学夹角公式、到角公式,以及初中时未学习过角平分线性质定理,这给光学的反射性质的数学证明带来一定的学习困难。

为了突破这一难点,教师引导学生从最熟悉的光在平面的反射入手,渐进到从圆心发出的光经圆反射从而得出光经抛物线反射的光路图,将两线平行最终转化为三角形两边相等,借助导数求出切线方程,得到证明;另一方面在论证上可以有所侧重,本课重点证明简单的抛物线的光学性质,对于双曲线、椭圆的光学性质的论证则留给学生课后自主探究.四.教学过程设计1.提前布置阅读与思考任务:1)通过阅读,你从材料中得到哪些信息、结论?能复述吗?2)通过阅读,你对圆锥曲线光学性质及其应用产生了哪些疑问?你是怎么解决的?还有哪些疑问没解决?3)你在阅读过程中用了哪些好方法?你认为哪些是良好的阅读习惯?4)查阅资料:高中物理选修3-4《光》、高中数学选修2-1《圆锥曲线与方程》上课前,学生将自己的阅读与思考成果(疑问)写在白纸上,教师收集白纸并将不重复的成果投影,与学生共同将这些成果分类,分类结果板书。

2024-2025学年高二数学上学期第十六周圆锥曲线方法教学设计

2024-2025学年高二数学上学期第十六周圆锥曲线方法教学设计
布置课后作业:让学生撰写一篇关于圆锥曲线的短文或报告,以巩固学习效果。
知识点梳理
本节课的主要教学内容是圆锥曲线方法,主要包括以下几个方面的知识点:
1. 圆锥曲线的定义与性质:包括圆锥曲线的基本概念、组成元素和性质。讲解圆锥曲线的定义,让学生了解圆锥曲线的基本形状和特点。介绍圆锥曲线的组成元素,如圆锥、椭圆、双曲线等,并解释它们之间的关系。阐述圆锥曲线的性质,如对称性、连续性、单调性等,并通过实例进行演示和证明。
2. 实例分析:我选择了几个典型的圆锥曲线案例进行分析,让学生全面了解了圆锥曲线的多样性或复杂性,并且能够引导学生思考这些案例对实际生活或学习的影响,以及如何应用圆锥曲线解决实际问题。
(二)存在主要问题
1. 课堂互动:虽然我设计了小组讨论和课堂展示环节,但是在实际操作中,我发现学生的互动不够积极,这影响了课堂的效果。
学具准备
多媒体
课型
新授课
教法学法
讲授法
课时
第一课时
步骤
师生互动设计
二次备课
教学资源准备
1. 教材:确保每位学生都有《2024-2025学年高二数学上学期第十六周 圆锥曲线方法教学设计》所需的教材或学习资料,以便学生能够跟随教学进度进行学习和复习。
2. 辅助材料:准备与教学内容相关的图片、图表、视频等多媒体资源,以便在教学过程中进行直观展示和讲解,帮助学生更好地理解和掌握圆锥曲线的性质和方程。
2. 教学内容:虽然我尽量让课堂内容丰富多样,但是在实际教学中,我发现有些学生的理解程度不够,这说明我对教学内容的把握还需要提高。
(三)改进措施
1. 提高课堂互动:我将更加注重课堂的互动,通过提问、小组讨论等方式,激发学生的兴趣和参与度。
2. 调整教学内容:我将根据学生的实际情况,调整教学内容的深度和广度,力求让每一个学生都能跟上教学的节奏,理解并掌握圆锥曲线的知识。

《圆锥曲线》教学设计

《圆锥曲线》教学设计

《圆锥曲线》教学设计《《圆锥曲线》教学设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!一、学习目标与任务1、学习目标描述知识目标(A)理解和掌握圆锥曲线的第一定义和第二定义,并能应用第一定义和第二定义来解题。

(B)了解圆锥曲线与现实生活中的联系,并能初步利用圆锥曲线的知识进行知识延伸和知识创新。

能力目标(A)通过学生的操作和协作探讨,培养学生的实践能力和分析问题、解决问题的能力。

(B)通过知识的再现培养学生的创新能力和创新意识。

(C)专题网站中提供各层次的例题和习题,解决各层次学生的学习过程中的各种的需要,从而培养学生应用知识的能力。

德育目标让学生体会知识产生的全过程,培养学生运动变化的辩证唯物主义思想。

2、学习内容与学习任务说明本节课的内容是圆锥曲线的第一定义和圆锥曲线的统一定义,以及利用圆锥曲线的定义来解决轨迹问题和最值问题。

学习重点:圆锥曲线的第一定义和统一定义。

学习难点:圆锥曲线第一定义和统一定义的应用。

明确本课的重点和难点,以学习任务驱动为方式,以圆锥曲线定义和定义应用为中心,主动操作实验、大胆分析问题和解决问题。

抓住本节课的重点和难点,采取的基于学科专题网站下的三者结合的教学模式,突出重点、突破难点。

充分利用《圆锥曲线》专题网站内的内容,在着重学习内容的基础上,内延外拓,培养学生的创新精神和克服困难的信心。

二、学习者特征分析(说明学生的学习特点、学习习惯、学习交往特点等)l本课的学习对象为高二下学期学生,他们经过近两年的高中学习,已经有一定的学习基础和分析问题、解决问题的能力,基本的计算机操作较为熟练。

高二年下学期学生由于高考的压力,他们保持着传统教学的学习习惯,在l课堂上的主体作用的体现不是太充分,但是如果他们还是乐于尝试、勇于探索的。

高二年的学生在学习交往上“个别化学习”和“协作讨论学习”并存,也就是说学生是具有一定的群体性小组交流能力与协同讨论学习能力的,还是能完成上课时教师布置的协作学习任务的。

青年教师展评课 圆锥曲线起始课教学设计(上海西南位育中学)

青年教师展评课 圆锥曲线起始课教学设计(上海西南位育中学)

圆锥曲线起始课教学设计一、教学内容解析●指定课题说明⏹课题:圆锥曲线起始课⏹课型:概念课⏹说明:体现数学史融入数学教学的思想,借助信息技术、实物模型等,通过丰富的实例,使学生了解圆锥曲线的背景和应用。

经历从具体情境中抽象椭圆本质特征的过程,建立椭圆的概念、标准方程。

●《上海市中小学数学课程标准》以生活中的实例引出椭圆的概念,再抽象为动点的轨迹。

根据椭圆的定义建立椭圆的标准方程,重点讨论焦点在x轴上的标准方程。

●《全国高中数学课程标准》了解圆锥曲线的实际背景;了解圆锥曲线在刻画现实世界和实际问题中的作用和应用;经历从具体情境中抽象出椭圆模型的过程;体会数形结合的思想;掌握椭圆的定义、标准方程。

根据指定课题要求,并参考《上海市中小学数学课程标准》、《全国高中数学课程标准》以及上海市二期课改教材,本节课的教学内容主要设定为:了解圆锥曲线的历史、背景和应用,从生活实例或具体情境出发形成椭圆(以及焦点、焦距)的概念并建立椭圆的标准方程。

在上海市二期课改教材中,椭圆的第一课时课题并非“圆锥曲线起始课”而是“椭圆的标准方程”,从椭圆规画椭圆的过程中归纳椭圆的定义,并重点研究椭圆的标准方程。

由于指定课题说明中对于椭圆概念的形成过程和数学史的融入有更具体的要求,相比上海教材更符合圆锥曲线的历史发展顺序和学生的认知顺序,更有利于学生掌握椭圆的概念,因此考虑将上海教材第一课时“椭圆的标准方程”的教学内容稍作调整,将焦点在y轴上的标准方程以及椭圆标准方程的简单应用移至后续课时完成。

二、学生学情分析本节课为借班上课,授课班级是浦东洋泾中学高二(12)班学生。

据了解,该校为市示范性高中,而本次授课班级是高二四个物理班之一。

但由于借班上课,与学生只有不到半个小时的交流,对班级学生的具体情况仍比较模糊,需要为学生水平的低限做好准备,在难点处多预设一些铺垫,以作备用。

此外,受承办学校教学进度制约,授课班级未学习直线的方程、圆的方程,只学习了曲线方程的概念和求法(仅1课时)。

全国高中数学 青年教师展评课 圆锥曲线起始课教学设计(江西南昌二中)

全国高中数学 青年教师展评课 圆锥曲线起始课教学设计(江西南昌二中)

“圆锥曲线起始课”教学设计一.【教学内容解析】1.圆锥曲线是平面解析几何的重要组成部分,也可以说是核心内容.它是继学习了以直线和圆为代表的简单图形之后,用平面几何的方法无法研究的较为复杂的图形.圆锥曲线能充分体现解析几何研究方法.2.圆锥曲线是体现数形结合思想的重要载体.圆锥曲线的研究不是采用逻辑推理的形式,而是运用代数的方法.即以代数为工具解决几何问题,用代数的语言来描述几何图形,把几何问题转化为代数问题,实施代数运算,求解代数问题,再将代数解转化为几何结论,这一过程体现了从形到数的数形结合的思想.3.圆锥曲线是二次曲线非常重要的数学模型,同时它的几何性质在日常生活,社会生产以及其他科学中都有着重要而广泛的应用,宇宙天地的运动,光学仪器,建筑学等等.因此圆锥曲线的学习对学生进一步理解数学模型的意义,树立观念都非常有价值.本节课的内容是选自北师大出版社《高中数学选修2-1》第三章知识的引言部分,属于策略性和介绍性为主的起始课.二.【教学目标设置】1.知识与技能目标本节课的主线为圆锥曲线的发展史,从中参插各种情景.通过用平面对圆锥面的不同的截法,产生三种不同的圆锥曲线,经历概念的形成过程,从整体上认识三种圆锥曲线的内在关系,通过具体情境,从中抽象出椭圆、双曲线、抛物线模型的过程,理解它们的定义(主要是椭圆).2.过程与方法目标初步了圆锥曲线研究的内容;通过动手试验、互相讨论等环节,使学生形成自主学习以及相互协作的团队精神;通过对具体情形的分析,归纳得出一般规律,让学生具备初步归纳能力;借助实物模型,通过整体观察、直观感知,使学生形成积极主动、勇于探索的学习方式,完善思维结构,体会解析几何的研究方法.3.情感、态度与价值观目标通过以圆锥曲线的发展史为主线,设立多种情景引入方式,让学生激发学习圆锥曲线的兴趣,能够自主学习、自我探索,形成注重实践、热爱科学、勇于创新的情感、态度与价值观.4.重难点重点:圆锥曲线的发展史及定义,椭圆的定义.难点:用Dandelin双球发现椭圆的定义,通过椭圆的定义类比双曲线定义.三.【学生学情分析】1.这节课的授课对象是高中二年级的学生,他们有较好的学习习惯,有一定的口头和书面表达的能力.在知识层面上,高一阶段已学习了立体几何空间旋转体中的圆锥,学生具有一定的空间想象能力,学生还学习了解析几何中的直线和圆,具有一定的用解析方法处理问题的能力.在方法的层面,学生在高一、高二年级的学习中基本掌握了数形结合的思想与类比与转化思想.2.学生在学习过程中,也可能会遇到诸多困难:从空间的圆锥截出平面图形的转化问题,特别是通过Dandelin双球发现椭圆的定义;还有理解椭圆,双曲线定义时点的轨迹及动态问题.四.【教学策略分析】1.整个课堂的主线是圆锥曲线的发展史,使学生产生兴趣,并以润物细无声的方法安排各种情景,让学生很自然进入学习圆锥曲线的学习,为后面采用解析的方法学习埋下了伏笔.2.由于是起始课,因此多采取直观的演示幻灯片、动画、实验和使用实物模型,直观感知、操作确认,避免过度抽象. 思辩论证、度量计算等手段在后续课程中再采用.3.在处理椭圆定义的环节,创造条件让学生亲自动手画出椭圆,并安排了一系列情节引导学生在操作过程中注意细节,鼓励学生通过动手实验、独立思考、相互讨论等手段得出结论,鼓励学生表达自己的见解.4.从多种具体情形出发,引导学生归纳出一般规律,培养学生的归纳总结能力.采用模型和软件,使学生的想法能够即时得到实现,所想即所见,快速形成正确认知,提高教学实效性.欧几里得(公元前330-元前275,古希腊数学家)高斯(1777年-1855德国数学家,物理学家)这些问题在两千多年的时间里,有多数学大师研究过,比如早到欧几里得,晚到高斯.直至19世纪,这三个作中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。

全国青年教师素养大赛一等奖圆锥曲线统一定义的教学设计

全国青年教师素养大赛一等奖圆锥曲线统一定义的教学设计

圆锥曲线统一定义的教学设计周口市扶沟县高中许亚丹一教材分析1.教学内容圆锥曲线的统一定义》是普通高中新课程标准实验书北师大版《数学》选修2—1第三章第4节的内容.本节主要研究圆锥曲线的共同特征,2.教材的地位与作用学生已学过求简单曲线方程和利用曲线方程研究曲线几何性质的初步知识。

本章是在这个基础上学习求圆锥曲线方程,进一步熟悉和掌握坐标法。

由于高考试卷中区分度较大的题目都涉及本章内容,所以难度不易把握。

考虑到本校学生的实际情况,设计例题时难度应适中。

3.教学重点和难点圆锥曲线统一定义的推导及其应用。

突破方法:(1)引导学生围绕思考题讨论,并对具体事例进行分析。

(2)引导学生通过类比联想已学知识,找到问题解决的方法。

4.教学目标:知识与技能:了解圆锥曲线的共同特征;熟练利用坐标法求解曲线方程. 过程与方法:利用坐标法来探究圆锥曲线统一定义,使学生经历知识产生与形成的过程,培养学生观察、分析、逻辑推理、理性思维的能力。

情感、态度与价值观:通过自主探究、交流合作激发其更加积极主动的学习精神和探索勇气;通过多媒体展示,让学生体会圆锥曲线和谐美和对称美,培养学生良好的审美习惯和思维品质。

二教法分析高二学生已经具备一定的探索与研究问题的能力。

所以设计问题时应考虑灵活性。

采用启发探索式教学,师生共同探索,共同研究,充分发挥学生主体能动性,教师的主导作用。

在教学过程中采用“自主探究、合作学习、互动交流”的学习方式,向学生提出具有启发性和思考性的讨论题,组织学生展开讨论。

通过讨论,提高学生的阅读、探索、推理、想象、分析和总结归纳等方面的能力。

在教学手段上,采用多媒体等电教手段,增加教学容量和直观性,通过演示,激发学生学习数学的兴趣。

三学法分析从高考发展的趋势看,高考越来越重视学生分析问题解决问题的能力。

因此,要求学生在学习中遇到问题时,不要急于求解,而要根据问题提供的信息回忆所学知识,选择最佳方案加以解决,从而避免"瞎撞、乱撞"的不良解题习惯。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

城东蜊市阳光实验学校指定课题:圆锥曲线与方程〔起始课〕一、教学设计1.教学内容解析圆锥曲线与方程安排在普通高中A版选修2-1中.教材通过章引言介绍了圆锥曲线的名称由来、开展历史、实际用途和坐标方法,主要说明圆锥曲线是什么、为什么要学习圆锥曲线和怎样学习圆锥曲线.尤其是着重说明了类比研究直线与圆的坐标法,研究圆锥曲线的根本套路.同时教材又进一步通过【探究与发现】介绍了Dandelin双球证法,说明了为什么二次函数的图象是抛物线;通过【信息技术应用】介绍了用几何画板探究椭圆的轨迹;通过【阅读与考虑】介绍了圆锥曲线的光学性质及其应用.基于教材对本章内容设置的前后一致逻辑连接的构造顺序,作为本章起始课,拟定以理解圆锥曲线的开展过程和理解圆锥曲线的心理过程为根本线索,力图为学生构建前后一致逻辑连接的学习过程,使学生在领悟圆锥曲线名称由来、广泛应用和研究方法的过程中学会考虑,并侧重于椭圆定义的探究及初步应用.根据以上分析,本节课的教学重点确定为教学重点:椭圆的定义探究及初步应用〔Dandelin双球证法〕.2.学生学情诊断首先,学生在数学2中学习了研究直线与圆的坐标法,初步具备了运用代数方法研究几何问题的意识,初步感受了数形结合的根本思想,对椭圆、抛物线和双曲线的概念也仅仅停留在直观感性认识的层面上.因此,圆锥曲线作为学生再度理解坐标法和进一步感悟数形结合思想的学习内容,是螺旋上升的过程中掌握解析几何思想方法的一个打破口.其次,本节课授课班级是我校实验班,尽管数学根底总体程度较好,但如何将几何问题代数化仍然是多数学生所面临的难题.为此,在起始课中,为降低难点,只让学生初步尝试给定数据的详细椭圆方程的推导方法,而将引发学生推导椭圆标准方程一般式作为后继学习内容.根据以上分析,本节课的教学难点确定为教学难点:详细条件下椭圆方程的推导和化简;坐标法的应用.3.教学目的设置〔1〕通过动态演示平面与圆锥面的截线,学生经历从详细情境中抽象出椭圆、双曲线、抛物线模型的过程,感知圆锥曲线的来由;〔2〕通过丰富多彩的实例,学生体会圆锥曲线应用的广泛性,数与形的辩证统一的关系和圆锥曲线的内在美、和谐美和统一美,感受学习圆锥曲线的理由;〔3〕借助展板动手操作和类比圆的定义,学生探究椭圆的定义,能用文字和符号语言描绘椭圆的定义,会用Dandelin双球证明截口曲线为椭圆的情形,感悟圆锥曲线学法的来由.〔4〕通过详细画出的特殊椭圆,学生类比直线与圆的方程,会初步运用坐标法推导详细给定的椭圆方程,能说出圆锥曲线又作为二次曲线的特征,感触圆锥曲线方程的情由.4.教学策略分析根据章起始课应表达统领全局的地位和作用的特点,采用“引言导入—问题诱导—启发讨论—抽象概括—探究归纳—总结规律〞的探究式教学方法,紧紧围绕为什么学、学什么以及怎样学等问题展开,通过“引、思、探、练、归〞相结合的做法,让学生初识圆锥曲线的相关背景、知识构造、逻辑体系和应用价值,明晰本章的学习内容、学习特点和学习方法.为防止以教师讲解为主的告知式,采用激发兴趣、主动参与、积极体验、自主探究的教学方式,形成师生互动的教学气氛,充分调动学生的积极性,引发学生对圆锥曲线进一步学习的强烈期待,为全章内容的后续学习起到较好的铺垫作用.详细教学策略分成如下五个环节:第一环节:引言启导,追溯缘由.从“嫦娥奔月〞的情景和阅读章引言出发,通过问题设疑,引导学生在不断考虑中获取圆锥曲线的来龙去脉;第二环节:应用开路,初识性质.从圆锥曲线广泛的应用性出发,通过引言解读和兴趣传说,引导学生初识圆锥曲线的几何特征和光学性质;第三环节:定义探究,双球验证.从抽象概括椭圆的定义出发,通过类比圆的定义、动手操作画椭圆和讨论Dandelin双球证法,引导学生归纳和运用椭圆的定义;第四环节:方程推导,方法研究.从特殊椭圆方程的推导出发,通过类比直线与圆的方程的推导方法,引导学生尝试运用坐标法的根本步骤导出详细给定的椭圆方程;第五环节:课堂小结,有效建构.从学生自主归纳小结出发,通过引言提炼的内容概述图和交融三种圆锥曲线的知识构造图,让整章的知识体系和逻辑线索鲜活地展如今学生面前.其教学流程如下:二、课堂实录〔一〕情景引入引言:随着我国航天技术的开展日新月异,“嫦娥奔月〞这一古老而美丽的传说正在逐步变为现实.请同学们观看视频.师:这是嫦娥3号环月运行时变轨的过程.变轨后轨道是什么曲线生:椭圆.师:对!椭圆这一类曲线正是我们在本章将要研究的主要内容.请同学们翻开课本第33页,阅读本章引言.〔板书标题:圆锥曲线与方程〕〔二〕课内建构1.名称由来师:好!请同学们停下来,看大屏幕,同学们看书之后,知道圆锥曲线包括哪几种曲线吗生:圆,椭圆,双曲线,抛物线.师:对!那么为什么称为圆锥曲线呢与圆锥有怎样的关系吗请看动画.我们知道,用平面截一个圆锥,当平面与圆锥的轴垂直时,截口曲线是一个圆.用平面截圆锥面还能得到哪些曲线〔教师以flash动画给学生展示:当平面与轴所成的角 变化〔其中截面不过顶点〕时,截口曲线的变化情况.〕师:早在公元前约200年时,古希腊数学家阿波罗尼奥斯〔Apollonius,约前262年~约前190年〕对圆锥曲线的性质就做了系统的研究〔纯几何方法〕,并几乎网罗殆尽,使后人难以有新的发现.阿波罗尼奥斯和欧几里得、阿基米德合称为古希腊三大数学家.【评析】借助动画演示介绍名称由来,嵌入数学史话,加深认知印象.2.广泛应用圆锥曲线不仅在数学历史开展的过程中熠熠生辉,而且在科学文化的其他领域闪烁光.比方,圆锥曲线为开普勒、牛顿、哈雷等数理天文学家研究行星和彗星轨道提供了数学根底.师:让我们回到本章引言,这一段话的主要内容是什么呢生:圆锥曲线的应用.师:那么有哪些方面的应用呢请看图片,这是太阳系行星的运行轨迹,是什么曲线生:椭圆.师:对!有些彗星的轨迹是椭圆,比方著名的哈雷彗星,这是鹿林彗星,不为我们熟知一些,轨迹是双曲线.它的轨迹是如此的长,图片中显示的只是其中一部分.师:当人造天体被以不同的速度从地球发射出去的时候,它的轨迹分别是圆,椭圆,抛物线,双曲线.这涉及到物理中所讲的三大宇宙速度.师:这是热电厂的通风塔,同学们见过吗我们作它的轴截面,取出两侧的轮廓线,是什么曲线生:双曲线.师:这是橄榄球和探照灯.它们的外表分别是由椭圆和抛物线绕其对称轴旋转一周而来〔显示旋转动画〕.为什么探照灯要做成这种形状呢,只是为了美观吗生:应该是为了实用性.师:实际上由于圆锥曲线具有特殊的光学性质,在消费生活中具有广泛的应用.请同学们也来解决一个问题,请看传说:“杰尼西亚的耳朵〞:据说,很久以前,意大利西西里岛有一个山洞,叙拉古的暴君杰尼西亚把一些囚犯关在这个山洞里.囚犯们屡次密谋逃跑,但每次方案都被杰尼西亚发现.起初囚犯们认为出了内奸,但始终未发现告密者.后来他们觉察到囚禁他们的山洞形状古怪,洞壁把囚犯们的话都反射到狱卒耳朵里去了,于是囚犯们诅咒这个山洞为“杰尼西亚的耳朵〞.师:其中的奥秘,同学们解开了吗生:囚洞的剖面近似于椭圆,犯人聚居的地方恰好在椭圆的一个焦点附近,狱卒在另一个焦点处偷听.师:很好!恭喜你揭开了这个奥秘!这里是声波,不过声波和光波具有一样的传播性质.【评析】用传说创设情境,激发学生兴趣,到达引入课题的目的.师:事实上有很多美丽的建筑也与圆锥曲线有关,比方抛物面形天线,双曲线形建筑.师:喷泉是什么形状生:抛物线.师:中国国家大剧院.美吗生:很美.【评析】理解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用,激发起学生学习圆锥曲线的兴趣.3.定义探究师:既然到处都有圆锥曲线美丽的身影,那么我们就有必要理解和研究它们,如何理解呢首先就要知道它的定义.那么圆锥曲线的定义是怎样的呢我们重点看一看椭圆的定义.请大家考虑这样的问题:〔1〕绳子一端固定在平整草地上,另一端拴着一只羊,小羊活动的最大边界是什么曲线生:圆.师:圆的定义是什么生:平面内到两定点的间隔等于定长的点的轨迹.〔2〕绳子两端都固定在草地上〔绳长大于两固定点间的间隔〕,绳上套个小环,环上拴一只羊,小羊活动的最大边界是什么曲线师:我们请每组同学互相配合,来画出小羊活动的最大边界.〔事先发给学生每组一块黑板,两个图钉,一根绳子,绳长240cm a =;每组选一位同学做代表画图,学生画图,教师走动,指导;画完后请三组画的好一些的,2c 的取值不同的三位同学拿着黑板上台展示.〕【评析】学生以小组为单位互相配合,动手操作,体验自主、的探究理念,印象更加深化.师:这三个椭圆,给我们最直观的感受,区别在哪儿生:扁平程度不同.师:你觉得椭圆的扁平程度与什么有关生:两定点间的间隔,绳长.师:很好!我来采访一下,这位同学椭圆画得这么好,有什么窍门吗生:在画的过程中要使得绳子绷直.师:使得绳子绷直,也就是说——生:保证绳长为定值.师:非常好!假设细绳长度等于12||F F ,画出的图形是什么不妨在小黑板上试试.小于呢生:绳长等于12||F F ,画出的图形是线段12F F ;小于12||F F 时,画不出任何图形.师:同学们答复得很好.那么大家能类比圆的定义,能给出椭圆的定义吗〔学生归纳,互相补充,教师再汇总.〕椭圆的定义:平面内与两个定点12,F F 的间隔的和等于常数〔大于12||F F 〕的点的轨迹叫做椭圆,两个定点12,F F 叫做椭圆的焦点,两焦点间的间隔叫做椭圆的焦距. 即12{||||2(22)}.M MF MF a a c +=>师:在前面三种用平面截圆锥的过程中,为什么第一种情况得到的截口曲线是椭圆呢事实上在19世纪,法国数学家Dandelin 就想到一种绝妙的方法证明了这个问题.他是怎么做的呢?让我们一起来分享一下:〔Dandelin 双球证法〕如图,Dandelin 在截面的两侧分别放置一个球,使它们都与截面相切〔切点分别为12,F F 〕,且与圆锥的侧面相切,两球与圆锥侧面的公一一共点分别构成圆1O 和圆2O .设点M 是截口曲线上任一点,Dandelin 过M 点作圆锥的一条母线〔辅助线〕分别交圆1O 和圆2O 于,P Q 两点.如今我们要证明点M 的轨迹是椭圆,用我们刚刚得到的椭圆的定义,如何来证明呢?根据定义,只需证明M 点到某两个定点的间隔之和为常数即可.应该是哪两个定点呢是12,F F 吗 〔学生讨论,说明12,F F 为何是定点.〕师:好!我们只需证明12||||MF MF +为定值即可.下面请同学们以小组为单位,开始讨论.〔学生分组讨论,教师走动指导〕〔几分钟后,相关小组的代表上台讲解〕学生讲解图中所示线段长度之间的关系:1||||MF MP =,2||||MF MQ =,并说明理由:因为过球外一点所作球的切线段的长相等.故12||||MF MF +_______||||MP MQ +________||PQ .师:线段PQ 的长度是常数吗生:||PQ 是常数.师:为什么生:||||||PQ VP VQ =-,即为圆台的母线.师:也就是说,截口曲线上任意一点到两个定点12,F F 的间隔的和等于常数〔大于12||F F 〕.这就说明了截口曲线是椭圆.事实上Dandelin 还利用双球证明了截口曲线是双曲线的情形,利用单球证明了截口曲线是抛物线的情形.这位卓越的数学家实在是具有非凡的天才.【评析】介绍历史上数学家的巧妙方法,并引导学生自主考虑,自主讲解,不仅强化了椭圆的定义,更浸透了数学家追求完美的理性精神.4.研究方法师:让我们再一次回到本章引言,如何来研究圆锥曲线呢在古希腊时代是如何研究圆锥曲线的生:几何法.师:后来呢生:代数的方法,也就是坐标法.师:是谁创造了坐标系生:笛卡尔.〔简要介绍笛卡尔的生平〕师:事实上我们以前已经用坐标法研究过直线与圆了,请同学们回忆一下直线方程及方程的形式. 生:点斜式,斜截式,两点式,截距式,一般式.师:利用直线方程,我们可以研究与直线有关的位置关系与相应的性质.比方,我们在初中的时候,要证明两直线平行用的什么方法生:假设同位角相等,或者者内错角相等,那么两直线平行.师:建立了平面直角坐标系,得到直线方程后,又是怎么判断两直线平行的呢生:假设两直线斜率存在且斜率相等,截距不等,那么两直线平行.师:圆的方程有哪些形式呢生:标准方程和一般方程.师:对.假设我们将坐标原点选取在圆心,方程又将如何呢〔演示坐标平挪动画〕生:222x y r +=师:很好!坐标系不同,方程的形式也不同.一般来说,形式越简单,越易于我们研究曲线的性质. 师:我们知道,圆的一般方程是一个特殊的二元二次方程,那么,更一般的形式怎样的?〔屏幕显示〕220.Ax Bxy Cy Dx Ey F +++++=〔※〕〔探究〕〔※〕式方程能否表示我们今天介绍的圆锥曲线的方程在以前我们所学的函数中有没有表示椭圆、双曲线、抛物线的例子请同学们互相讨论一下.学生举出反比例函数和二次函数的例子.学生答完后显示动画,先显示双曲线. 师:这是反比例函数1y x =,我们将坐标系旋转一下.〔旋转动画〕方程还是1y x=吗 生:不是.师:那么方程是怎样的呢〔停顿片刻〕我们后面再研究.师:这是二次函数20y ax bx c a =++>(),如今将坐标系平移,如图,方程变为什么形式 生:2y ax =.师:对,方程的形式变简单了,对吧旋转一下呢方程是——我们后面将要学习.再旋转一下呢 生:2y ax =-.师:当〔※〕式方程中的系数满足一定关系的时候,就可以表示不同的圆锥曲线,所以圆锥曲线也称为二次曲线.【评析】由复习旧知引出新知,符合学生的认知规律.师:同学们在先前画椭圆时,绳长为4分米,其中有同学选取的两图钉间的间隔为2分米,那么这个椭圆的方程如何求呢第一步该做什么生:建立平面直角坐标系.师:如何建立平面直角坐标系呢生1:以两定点12,F F 所在直线为x 轴,线段12F F 的中垂线为y 轴,建立平面直角坐标系. 生2:以两定点12,F F 所在直线为x 轴,点1F 为坐标原点,建立平面直角坐标系.师:分两大组分别在两种建系的情形下计算.〔将全班学生分两组,分别计算,再比较〕〔算出后教师在每组各选一个写的好一点的到实物投影展示;然后屏幕显示:建系,设点,列式,化简,方程的形式〕师:大家求出的椭圆方程也满足〔※〕方程;假设将详细数值换成2a ,2c ,椭圆方程的形式将是什么呢留给同学们下去研究.〔三〕课堂小结今天我们学习了圆锥曲线与方程,请同学们回忆一下,本节课我们学习了哪些内容呢〔2-3个学生归纳〕 师:同学们都归纳的很好!本章我们要研究的重点问题是曲线和方程,它们是我们关注的两个焦点.我们要运用的核心方法是坐标法.〔四〕课后作业1.ABC 中,BC 长为6,周长为16,那么顶点A 在怎样的曲线上运动建立适当的平面直角坐标系并推导其方程.2.查找Dandelin 研究截口曲线分别为双曲线、抛物线的相关资料.三、课后反思1.可取之处〔1〕注重学生的认知规律,教学过程突出“学生为主体,教师为主导〞的理念,强调自主、式学习,从而进步了课堂的效率;〔2〕注重问题的设置梯度,力求做到必要性、准确性、层次性、实效性和逻辑性,以问题促活动,以问题促探究,促成知识体系的生成与建构;〔3〕注重数学的人文价值,通过浸透数学史的相关知识,激发学生的学习兴趣和学习动机,加深学生对数学本质的理解.2.改进之处个别地方的语言欠准确,如“两焦点之间的线段〞;有些环节处理可以更开放一些,如推导给定的椭圆方程后,可让学生自我展示;有些设问不免有浅问浅答之嫌,可适度拓展延伸,为后继学习做好铺垫.。

相关文档
最新文档