现代密码学杨波课后习题讲解
合集下载
现代密码学杨波课后习题讲解

选择两个不同的大素数p和q, 计算n=p*q和φ(n)=(p-1)*(q-1)。 选择整数e,使得1<e<φ(n)且e 与φ(n)互质。计算d,使得 d*e≡1(mod φ(n))。公钥为 (n,e),私钥为(n,d)。
将明文信息M(M<n)加密为 密文C,加密公式为 C=M^e(mod n)。
将密文C解密为明文信息M,解 密公式为M=C^d(mod n)。
课程特点
杨波教授的现代密码学课程系统介绍了密码学的基本原 理、核心算法和最新进展。课程注重理论与实践相结合, 通过大量的案例分析和编程实践,帮助学生深入理解和 掌握密码学的精髓。
课后习题的目的与意义
01 巩固课堂知识
课后习题是对课堂知识的有效补充和延伸,通过 解题可以帮助学生加深对课堂内容的理解和记忆。
不要重复使用密码
避免在多个账户或应用中使用相同的密码, 以减少被攻击的风险。
注意网络钓鱼和诈骗邮件
数字签名与认证技术习题讲
05
解
数字签名基本概念和原理
数字签名的定义
数字签名的应用场景
数字签名是一种用于验证数字文档或 电子交易真实性和完整性的加密技术。
电子商务、电子政务、电子合同、软 件分发等。
数字签名的基本原理
利用公钥密码学中的私钥对消息进行签 名,公钥用于验证签名的正确性。签名 过程具有不可抵赖性和不可伪造性。
Diffie-Hellman密钥交换协议分析
Diffie-Hellman密钥交换协议的原理
该协议利用数学上的离散对数问题,使得两个通信双方可以在不安全的通信通道上协商出一个共 享的密钥。
Diffie-Hellman密钥交换协议的安全性
该协议在理论上被证明是安全的,可以抵抗被动攻击和中间人攻击。
《现代密码学(第2版)杨波 01

保密通信系统的组成
明文消息空间M,密文消息空间C,密钥空间 K1和K2,在单钥体制下K1=K2=K,此时密钥K需 经安全的密钥信道由发送方传给接收方; 加密变换Ek1:M→C,其中k1∈K1,由加密器 完成; 解密变换Dk2:C→M,其中k2∈K2,由解密器 实现. 称总体(M,C,K1,K2,EK1,DK2)为保密通信系统.对 于给定明文消息m∈M,密钥k1∈K1,加密变 换将明文m变换为密文c,即 c=f(m,k )=E (m)m∈M,k ∈K
20世纪90年代,因特网爆炸性的发展把人类 带进了一个新的生存空间.因特网具有高度 分布,边界模糊,层次欠清,动态演化,而 用户又在其中扮演主角的特点,如何处理好 这一复杂而又巨大的系统的安全,成为信息 安全的主要问题.由于因特网的全球性,开 放性,无缝连通性,共享性,动态性发展, 使得任何人都可以自由地接入,其中有善者, 也有恶者.恶者会采用各种攻击手段进行破 坏活动.
如何产生满足保密要求的密钥以及如何将密 钥安全可靠地分配给通信双方是这类体制设 计和实现的主要课题. 密钥产生,分配,存储,销毁等问题,统称 为密钥管理.这是影响系统安全的关键因素. 单钥体制可用于数据加密,也可用于消息的 认证. 单钥体制有两种加密方式:
– 明文消息按字符(如二元数字)逐位地加密,称 之为流密码; – 将明文消息分组(含有多个字符),逐组地进行 加密,称之为分组密码.
在信息传输和处理系统中,除了预定的接收 者外,还有非授权者,他们通过各种办法 (如搭线窃听,电磁窃听,声音窃听等)来 窃取机密信息,称其为截收者. 截收者虽然不知道系统所用的密钥,但通过 分析可能从截获的密文推断出原来的明文或 密钥,这一过程称为密码分析,ห้องสมุดไป่ตู้事这一工 作的人称为密码分析员,研究如何从密文推 演出明文,密钥或解密算法的学问称为密码 分析学.
现代密码学_清华大学_杨波著_部分习题答案[1]
![现代密码学_清华大学_杨波著_部分习题答案[1]](https://img.taocdn.com/s3/m/1ce7aa8502d276a200292edc.png)
密文 C= E11,23(M)≡11*M+23 (mod 26) =[24 22 15 10 23 24 7 21 10 23 14 13 15 19 9 2 7 24 1 23 11 15 10 19 1]
= YWPKXYHVKXONPTJCHYBXLPKTB ∵ 11*19 ≡ 1 mod 26 (说明:求模逆可采用第 4 章的“4.1.6 欧几里得算法”,或者直接穷举 1~25) ∴ 解密变换为 D(c)≡19*(c-23)≡19c+5 (mod 26) 对密文 C 进行解密:
密文用数字表示为:
c=[4 3 18 6 8 2 10 23 7 20 10 11 25 21 4 16 25 21 10 23 22 10 25 20 10 21 2 20 7] 则明文为 m=3*c+22 (mod 26)
=[8 5 24 14 20 2 0 13 17 4 0 3 19 7 8 18 19 7 0 13 10 0 19 4 0 7 2 4 17]
⇒
Ri'
=
L' i −1
⊕
F
(
R' i −1
,
Ki' )
( ) ( ) ⇔
Li−1 ⊕ F (Ri−1, Ki )
'=
Li−1
⊕
F
(
R' i −1
,
Ki'
)
'
根据(i)(ii) 根据(iii)
⇔
F (Ri−1, Ki )
=
F
(
R' i −1
,
Ki' )
⇔
P(S
( E ( Ri −1 )
⊕
= YWPKXYHVKXONPTJCHYBXLPKTB ∵ 11*19 ≡ 1 mod 26 (说明:求模逆可采用第 4 章的“4.1.6 欧几里得算法”,或者直接穷举 1~25) ∴ 解密变换为 D(c)≡19*(c-23)≡19c+5 (mod 26) 对密文 C 进行解密:
密文用数字表示为:
c=[4 3 18 6 8 2 10 23 7 20 10 11 25 21 4 16 25 21 10 23 22 10 25 20 10 21 2 20 7] 则明文为 m=3*c+22 (mod 26)
=[8 5 24 14 20 2 0 13 17 4 0 3 19 7 8 18 19 7 0 13 10 0 19 4 0 7 2 4 17]
⇒
Ri'
=
L' i −1
⊕
F
(
R' i −1
,
Ki' )
( ) ( ) ⇔
Li−1 ⊕ F (Ri−1, Ki )
'=
Li−1
⊕
F
(
R' i −1
,
Ki'
)
'
根据(i)(ii) 根据(iii)
⇔
F (Ri−1, Ki )
=
F
(
R' i −1
,
Ki' )
⇔
P(S
( E ( Ri −1 )
⊕
杨波, 《现代密码学(第2版)》02

• 初始状态由用户确定。 • 当第i个移位时钟脉冲到来时,每一级存储器ai都将 其内容向下一级ai-1传递,并计算f(a1,a2,…,an)作为 下一时刻的an。 • 反馈函数f(a1,a2,…,an)是n元布尔函数,即n个变元 a1,a2,…,an可以独立地取0和1这两个可能的值,函数 中的运算有逻辑与、逻辑或、逻辑补等运算,最后 的函数值也为0或1。
例2.3 图2.11是一个5级线性反馈移位寄存器,其 初始状态为(a1,a2,a3,a4,a5)=(1,0,0,1,1),可求出输 出序列为: 1001101001000010101110110001111100110… 周期为31。
图2.11 一个5级线性反馈移位寄存器
n级线性反馈移位寄存器的状态周期小于等于2n-1。 输出序列的周期与状态周期相等,也小于等于2n-1。
又由p(x)A(x)=φ(x)可得p(x)q(x)A(x)=φ(x)q(x)。
所以(xp-1)A(x)=φ(x)q(x)。 由于q(x)的次数为 p-n,φ(x)的次数不超过n-1,
所以(xp-1)A(x)的次数不超过(p-n)+(n-1)=p-1。
将(xp-1)A(x)写成 xp A(x)- A(x),可看出对于任意正整 数i都有ai+p=ai。 设p=kr+t, 0≤t<r,则ai+p=ai+kr+t=ai+t=ai,所以t=0,即 r | p。(证毕)
分组密码与流密码的区别就在于有无记忆性。 流密码的滚动密钥z0=f(k,σ0)由函数f、密钥k和指定 的初态σ0完全确定。 由于输入加密器的明文可能影响加密器中内部记忆 元件的存储状态,σi(i>0)可能依赖于k,σ0,x0, x1,…,xi-1等参数。
杨波, 《现代密码学(第2版)》04-2

• 如果密钥太短,公钥密码体制也易受到穷搜索攻击。 因此密钥必须足够长才能抗击穷搜索攻击。 • 由于公钥密码体制所使用的可逆函数的计算复杂性 与密钥长度常常不是呈线性关系,而是增大得更快。 所以密钥长度太大又会使得加解密运算太慢而不实 用。因此公钥密码体制目前主要用于密钥管理和数 字签字。 • 第2种攻击法:寻找从公开钥计算秘密钥的方法。 目前为止,对常用公钥算法还都未能够证明这种攻 击是不可行的。
⑥ 加、解密次序可换,即 EPKB[DSKB(m)]=DSKB[EPKB(m)]
其中最后一条虽然非常有用,但不是对所有的算法 都作要求。
单向函数是两个集合X、Y之间的一个映射,使 得Y中每一元素y都有惟一的一个原像x∈X,且由x 易于计算它的像y,由y计算它的原像x是不可行的。
这里所说的易于计算是指函数值能在其输入长 度的多项式时间内求出,即如果输入长n比特,则求 函数值的计算时间是na的某个倍数,其中a是一固定 的常数。这时称求函数值的算法属于多项式类P,否 则就是不可行的。 例如,函数的输入是n比特,如果求函数值所用 的时间是2n的某个倍数,则认为求函数值是不可行 的。
以上认证过程中,由于消息是由用户自己的秘密钥 加密的,所以消息不能被他人篡改,但却能被他人 窃听。这是因为任何人都能用用户的公开钥对消息 解密。为了同时提供认证功能和保密性,可使用双 重加、解密。如图4.3所示。
图4.3 公钥密码体制的认证、保密框图
发方首先用自己的秘密钥SKA对消息m加密,用于 提供数字签字。再用收方的公开钥PKB第2次加密, 表示为 c=EPKB[ESKA[m]] 解密过程为
由gcd(m, q)=1及Euler定理得mφ(q)≡1 mod q,所以 mkφ(q)≡1 mod q [mkφ(q)]φ(p)≡1 mod q mkφ(n)≡1 mod q 因此存在一整数r,使得mkφ(n) = 1+rq,两边同乘以 m=tp得 mkφ(n)+1 = m + rtpq = m + rtn
⑥ 加、解密次序可换,即 EPKB[DSKB(m)]=DSKB[EPKB(m)]
其中最后一条虽然非常有用,但不是对所有的算法 都作要求。
单向函数是两个集合X、Y之间的一个映射,使 得Y中每一元素y都有惟一的一个原像x∈X,且由x 易于计算它的像y,由y计算它的原像x是不可行的。
这里所说的易于计算是指函数值能在其输入长 度的多项式时间内求出,即如果输入长n比特,则求 函数值的计算时间是na的某个倍数,其中a是一固定 的常数。这时称求函数值的算法属于多项式类P,否 则就是不可行的。 例如,函数的输入是n比特,如果求函数值所用 的时间是2n的某个倍数,则认为求函数值是不可行 的。
以上认证过程中,由于消息是由用户自己的秘密钥 加密的,所以消息不能被他人篡改,但却能被他人 窃听。这是因为任何人都能用用户的公开钥对消息 解密。为了同时提供认证功能和保密性,可使用双 重加、解密。如图4.3所示。
图4.3 公钥密码体制的认证、保密框图
发方首先用自己的秘密钥SKA对消息m加密,用于 提供数字签字。再用收方的公开钥PKB第2次加密, 表示为 c=EPKB[ESKA[m]] 解密过程为
由gcd(m, q)=1及Euler定理得mφ(q)≡1 mod q,所以 mkφ(q)≡1 mod q [mkφ(q)]φ(p)≡1 mod q mkφ(n)≡1 mod q 因此存在一整数r,使得mkφ(n) = 1+rq,两边同乘以 m=tp得 mkφ(n)+1 = m + rtpq = m + rtn
现代密码学第1讲资料

2020/5/24
14
通信窜扰
攻击者对通信数据或通信过程进行干预, 对完整性进行攻击,窜改系统中数据的内 容,修正消息次序、时间(延时和重放)、 注入伪造消息。
2020/5/24
15
中断
对可用性进行攻击,破坏系统中的硬 件、硬盘、线路、文件系统等,使系统不 能正常工作,破坏信息和网络资源。
高能量电磁脉冲发射设备可以摧毁附近建筑物中的电子 器件,正在研究中的电子生物可以吞噬电子器件。
2020/5/24
10
系统穿透
未授权人对认证性(真实性Authenticity) 进行攻击,假冒合法人接入系统.
对文件进行窜改(窜改系统中数据内容,修正消息次序、时间、
延时和重放).
窃取机密信息. 非法使用资源等。
一般采取伪装、利用系统的薄弱环节、收 集情报等方式实现。
2020/5/24
11
违反授权原则
2020/5/24
4
第一章:引言
信息社会的发展与挑战 Internet上的对抗与威胁 网络安全的防护措施 OSI的参考模型 OSI的安全全业务 OSI的安全机制
2020/5/24
5
信息社会的发展与挑战
人类进入信息化社会时代。数字化、信息化、网络化正在 冲击、影响、改变我们社会生活的各个方面。从科学研究、生 产制造、产品流通、商业运作、超市购物、医疗服务、教育培 训、出版印刷、媒体传播,到文化生活、娱乐消闲、人际交往、 法律规范、伦理道德、乃至军事作战等等,无一不将受到信息 网络的挑战,无一不在信息技术这一最新高科技生产力的作用 下迅速变化。
Internet的安全已受到普遍的重视。
2020/5/24
9
Internet上的对抗与威胁
现代密码学 (杨波 著) 清华大学出版社_khdaw

.c
根据(i)(ii) 根据(iii)
om
da
课后答案网
NCUT 密码学 – 习题与答案 2010
da
fi ( Li −1 , Ri −1 ) = ( Li −1 ⊕ F ( Ri −1 , Ki ), Ri −1 )
则有,
kh
fi 2 ( Li −1 , Ri −1 ) = ( Li −1 ⊕ F ( Ri −1 , K i ), Ri −1 ) = fi ( Li −1 ⊕ F ( Ri −1 , Ki ), Ri −1 ) = ( Li −1 , Ri −1 ) = ( ( Li −1 ⊕ F ( Ri −1 , Ki )) ⊕ F ( Ri −1 , Ki ), Ri −1 )
w
⎡a b ⎤ ⎥, ⎣c d ⎦
.c
om
A 是 2×2 矩阵, B 是 0 矩阵, 又知明文 “dont” 4. 设多表代换密码 Ci ≡ AMi + B (mod 26) 中, 被加密设解密变换为 m=D(c)≡a*c+b (mod 26) 由题目可知 密文 ed 解密后为 if,即有: D(e)=i : 8≡4a+b (mod 26) D(d)=f : 5≡3a+b (mod 26) 由上述两式,可求得 a=3,b=22。 因此,解密变换为 m=D(c)≡3c+22 (mod 26) 密文用数字表示为: c=[4 3 18 6 8 2 10 23 7 20 10 11 25 21 4 16 25 21 10 23 22 10 25 20 10 21 2 20 7] 则明文为 m=3*c+22 (mod 26) =[8 5 24 14 20 2 0 13 17 4 0 3 19 7 8 18 19 7 0 13 10 0 19 4 0 7 2 4 17] = ifyoucanreadthisthankateahcer
杨波, 《现代密码学(第2版)》04-1

由于要求最大公因子为正, 由于要求最大公因子为正,所以 gcd(a, b) = gcd(a, -b) = gcd(-a, b) = gcd(-a, -b).一般 . gcd(a, b)=gcd(|a|, |b|).由任一非 整数能整除 ,可 整数能整除0, .由任一非0整数能整除 得gcd(a, 0)=|a|.如果将a,b都表示为素数的乘积, .如果将 , 都表示为素数的乘积, 都表示为素数的乘积 极易确定. 则gcd(a, b)极易确定. 极易确定 例如: 例如: 300=22×31×52 18=21×32 gcd(18, 300)=21×31×50 = 6 一般由c 可得: 一般由 = gcd(a, b)可得 对每一素数 , 可得 对每一素数p, cp=min(ap, bp). .
4.1.2 模运算
是一正整数, 是整数 如果用n除 ,得商为q, 是整数, 设n是一正整数,a是整数,如果用 除a,得商为 , 是一正整数 余数为r, 余数为 ,则 a=qn+r, 0≤r<n, q = a n 的最大整数. 其中 x 为小于或等于 的最大整数. 为小于或等于x的最大整数 表示余数r, 用a mod n表示余数 ,则 a = a n n + a mod n. 表示余数
整数具有以下性质: 整数具有以下性质: ① a|1,那么a=1. ,那么 . ② a|b且b|a,则a=b. 且 , . 对任一b ③ 对任一 (b≠0),b|0. , . ④ b|g,b|h,则对任意整数 ,n有 b|(mg+nh). , ,则对任意整数m 有 . 性质④的证明: 性质④的证明: 由b|g,b|h知,存在整数 1,h1, , 知 存在整数g 使得g=bg1, h=bh1所以 使得 mg+nh=mbg1+nbh1=b(mg1+nh1), 因此 因此b|(mg+nh). .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 线性反馈移位寄存器:产生密钥流
图2.1 GF(2)上的n级ppt反课件馈移位寄存器
11
习题
1. 3 级 线 性 反 馈 移 位 寄 存 器 在 c3=1 时 可 有 4 种线性反馈函数,设其初始状态为 (a1,a2,a3)=(1,0,1),求各线性反馈函数的输出序列及周期。
解:设反馈函数为 f(a1,a2,a3) = a1⊕c2a2⊕c1a3
定义2.2 设p(x)是GF(2)上的多项式,使p(x)|(xp-1)的 最小p称为p(x)的周期或阶。 定理2.3 若序列{ai}的特征多项式p(x)定义在GF(2)上, p是p(x)的周期,则{ai}的周期r | p。
ppt课件
13
习题
ppt课件
14
习题
3.设 n=4,n=f(a1,a2,a3,a4)=a1⊕a4⊕1⊕a2a3,初始状态为 (a1,a2,a3,a4)=(1,1,0,1),求此非线性反馈移位寄存器的输出 序列及周期。
3 14
(mod
26)
elni=(4,11,13,8)
解得:
A
10
9
13 23
13
8
a
c
b d
13 19
(mod
26)
ppt课件
9
第二章 流密码
ppt课件
10
知识点
1 流密码:利用密钥k产生密钥流,明文与密钥流 顺次对应加密
ppt课件
6
习题
3.设多表代换密码中
3 13 21 9 1
A 15 10 6 25 , B 21 10 17 4 8 8
1
23
7
2
17
加密为:Ci AMi B(mod 26) 明文为:PLEASE SEND…… 解密变换:Mi A1(Ci B)(mod 26)
习题
ppt课件
1
第一章
ppt课件
2
习题
1. 设仿射变换的加密是 E11,23(m)≡11m+23 (mod 26),对明文 “THE NATIONAL SECURITY AGENCY ”加密 , 并使用解 密变换 D11,23(c)≡11-1(c-23) (mod 26) 验证你的加密结果。
解:明文用数字表示: m=[19 7 4 13 0 19 8 14 13 0 11 18 4 2 20 17 8 19 24 0 6 4 13 2 24] 密文 C= E11,23(m)≡11*m+23 (mod 26) =[24 22 15 10 23 24 7 21 10 23 14 13 15 19 9 2 7 24 1 23 11 15 10 19 1] = YWPKXYHVKXONPTJCHYBXLPKTB
ppt课件
3
习题
∵ 11*19 ≡ 1 mod 26 (说明:求模逆元可采用第 4 章的“4.1.7 欧几里得算法”
,或者直接穷举 1~25)
对密文 C 进行解密: m’=D(C)≡ 19*(c-23) (mod 26) =[19 7 4 13 0 19 8 14 13 0 11 18 4 2 20 17 8 19 24 0
10100111010011…,周期为 7。
当 c1=1,c2=1 时,f(a1,a2,a3) = a1⊕a2⊕a3,输出序
列为 10101010…,周期为 2p。pt课件
12
习题
2.设n级线性反馈移位寄存器的特征多项式为 p(x) ,初始状态
为 (a1, a2 ,…,an ) (00…01) ,证明输出序列的周期等于 p(x) 的阶。
解:列出该非线性反馈移位寄存器 的状态列表和输出列(如右图):
a5 111 0 1 a6 111 0 1
……
(1,1,0,1) (1,0,1,1) (0,1,1,1) (1,1,1,1)
ppt课件
8
习题
4. 设多表代换密码 Ci AMi B(mod 26) 中,A是 2×2 矩阵, B 是 0 矩阵,又知明文“dont”被加密为“elni”,求矩阵A。
解:设矩阵
A
a c
b
d
,
dont=(3,14,13,19)
4 11
a c
b d
当 c1=0,c2=0 时,f(a1,a2,a3) = a1,输出序列为
101101…,周期为 3。
当 c1=0,c2=1 时,f(a1,a2,a3) = a1⊕a2,输出序列如
下 10111001011100…,周期为 7。
当 c1=1,c2=0 时,f(a1,a2,a3) = a1⊕a3,输出序列为
6 4 13 2 24] = THE NATIONAL SECURITY AGENCY
ppt课件
4
习题
2. 设由仿射变换对一个明文加密得到的密文为 edsgickxhuklzveqzvkxwkzukvcuh,又已知明文的前两个字 符是“if”。对该密文解密。
解: 设加密变换为 c=Ea,b(m)≡a*m+b (mod 26) 由题目可知 明文前两个字为 if,相应的密文为ed,即有: E(i)=e : 4≡8a+b (mod 26) E(f)=d : 3≡5a+b (mod 26) 由上述两式,可求得 a=9,b=10。
ppt课件
7
习题
解:将明文分组: 15
18
M1
11 4
,
M2
4
18
……
0
4
将明文分组带入加密变换:Ci AMi B(mod 26) 可得密文:NQXBBTWBDCJJ……
解密时,先将密文分组,再将密文分组带入解密变换:
可证得明文 Mi A1(Ci B)(mod 26)
ppt课件
5
习题
因此,解密变换为
m=D(c)≡9-1(c-10) (mod 26)
密文对应的数字表示为: c=[4 3 18 6 8 2 10 23 7 20 10 11 25 21 4 16 25 21 10 23 22 10 25 20 10 21 2 20 7]
则明文为 c=9-1(c-10) (mod 26) =[8 5 24 14 20 2 0 13 17 4 0 3 19 7 8 18 19 7 0 13 10 0 19 4 0 7 2 4 17] = ifyoucanreadthisthankateahcer
图2.1 GF(2)上的n级ppt反课件馈移位寄存器
11
习题
1. 3 级 线 性 反 馈 移 位 寄 存 器 在 c3=1 时 可 有 4 种线性反馈函数,设其初始状态为 (a1,a2,a3)=(1,0,1),求各线性反馈函数的输出序列及周期。
解:设反馈函数为 f(a1,a2,a3) = a1⊕c2a2⊕c1a3
定义2.2 设p(x)是GF(2)上的多项式,使p(x)|(xp-1)的 最小p称为p(x)的周期或阶。 定理2.3 若序列{ai}的特征多项式p(x)定义在GF(2)上, p是p(x)的周期,则{ai}的周期r | p。
ppt课件
13
习题
ppt课件
14
习题
3.设 n=4,n=f(a1,a2,a3,a4)=a1⊕a4⊕1⊕a2a3,初始状态为 (a1,a2,a3,a4)=(1,1,0,1),求此非线性反馈移位寄存器的输出 序列及周期。
3 14
(mod
26)
elni=(4,11,13,8)
解得:
A
10
9
13 23
13
8
a
c
b d
13 19
(mod
26)
ppt课件
9
第二章 流密码
ppt课件
10
知识点
1 流密码:利用密钥k产生密钥流,明文与密钥流 顺次对应加密
ppt课件
6
习题
3.设多表代换密码中
3 13 21 9 1
A 15 10 6 25 , B 21 10 17 4 8 8
1
23
7
2
17
加密为:Ci AMi B(mod 26) 明文为:PLEASE SEND…… 解密变换:Mi A1(Ci B)(mod 26)
习题
ppt课件
1
第一章
ppt课件
2
习题
1. 设仿射变换的加密是 E11,23(m)≡11m+23 (mod 26),对明文 “THE NATIONAL SECURITY AGENCY ”加密 , 并使用解 密变换 D11,23(c)≡11-1(c-23) (mod 26) 验证你的加密结果。
解:明文用数字表示: m=[19 7 4 13 0 19 8 14 13 0 11 18 4 2 20 17 8 19 24 0 6 4 13 2 24] 密文 C= E11,23(m)≡11*m+23 (mod 26) =[24 22 15 10 23 24 7 21 10 23 14 13 15 19 9 2 7 24 1 23 11 15 10 19 1] = YWPKXYHVKXONPTJCHYBXLPKTB
ppt课件
3
习题
∵ 11*19 ≡ 1 mod 26 (说明:求模逆元可采用第 4 章的“4.1.7 欧几里得算法”
,或者直接穷举 1~25)
对密文 C 进行解密: m’=D(C)≡ 19*(c-23) (mod 26) =[19 7 4 13 0 19 8 14 13 0 11 18 4 2 20 17 8 19 24 0
10100111010011…,周期为 7。
当 c1=1,c2=1 时,f(a1,a2,a3) = a1⊕a2⊕a3,输出序
列为 10101010…,周期为 2p。pt课件
12
习题
2.设n级线性反馈移位寄存器的特征多项式为 p(x) ,初始状态
为 (a1, a2 ,…,an ) (00…01) ,证明输出序列的周期等于 p(x) 的阶。
解:列出该非线性反馈移位寄存器 的状态列表和输出列(如右图):
a5 111 0 1 a6 111 0 1
……
(1,1,0,1) (1,0,1,1) (0,1,1,1) (1,1,1,1)
ppt课件
8
习题
4. 设多表代换密码 Ci AMi B(mod 26) 中,A是 2×2 矩阵, B 是 0 矩阵,又知明文“dont”被加密为“elni”,求矩阵A。
解:设矩阵
A
a c
b
d
,
dont=(3,14,13,19)
4 11
a c
b d
当 c1=0,c2=0 时,f(a1,a2,a3) = a1,输出序列为
101101…,周期为 3。
当 c1=0,c2=1 时,f(a1,a2,a3) = a1⊕a2,输出序列如
下 10111001011100…,周期为 7。
当 c1=1,c2=0 时,f(a1,a2,a3) = a1⊕a3,输出序列为
6 4 13 2 24] = THE NATIONAL SECURITY AGENCY
ppt课件
4
习题
2. 设由仿射变换对一个明文加密得到的密文为 edsgickxhuklzveqzvkxwkzukvcuh,又已知明文的前两个字 符是“if”。对该密文解密。
解: 设加密变换为 c=Ea,b(m)≡a*m+b (mod 26) 由题目可知 明文前两个字为 if,相应的密文为ed,即有: E(i)=e : 4≡8a+b (mod 26) E(f)=d : 3≡5a+b (mod 26) 由上述两式,可求得 a=9,b=10。
ppt课件
7
习题
解:将明文分组: 15
18
M1
11 4
,
M2
4
18
……
0
4
将明文分组带入加密变换:Ci AMi B(mod 26) 可得密文:NQXBBTWBDCJJ……
解密时,先将密文分组,再将密文分组带入解密变换:
可证得明文 Mi A1(Ci B)(mod 26)
ppt课件
5
习题
因此,解密变换为
m=D(c)≡9-1(c-10) (mod 26)
密文对应的数字表示为: c=[4 3 18 6 8 2 10 23 7 20 10 11 25 21 4 16 25 21 10 23 22 10 25 20 10 21 2 20 7]
则明文为 c=9-1(c-10) (mod 26) =[8 5 24 14 20 2 0 13 17 4 0 3 19 7 8 18 19 7 0 13 10 0 19 4 0 7 2 4 17] = ifyoucanreadthisthankateahcer