第12章 狭义相对论
Lec12 狭义相对论2 - 机械

x
例、S系相对S系沿轴做匀速运动, 在S系中观察到 两个事件同时发生在x轴上, 距离是1m, 在S系 中观察到这两个事件之间的距离是2m 。 求: 在S'系中这两个事件的时间间隔。 S系 解: S'系 事件1: (x1', t1') 事件2: (x2', t2') (x1, t1 ) (x2, t2)
从S' 系变换S 系的速度
v v
ux v ux ' v 1 2 ux c uy v 2 uy ' 1 ( ) v c 1 2 ux c uz v 2 uz ' 1 ( ) v c 1 2 ux c
例、 在地面测到两个飞船分别以0.9c和–0.9c的速 度向相反方向飞行, 求其中一飞船看另一飞 船的速度是多少? y' y 0.9c 解:设S'系静止在乙飞船上 0.9c S 系静止在地面上 x' 乙 甲 S'系相对S系的速度 v = -0.9c o x 甲船相对S 系的速度 ux 0.9c 甲船相对S'系(乙船)的速度 ux v ux ' 0.9c 0.9c 0.994475c v 1 0.9 0.9 1 2 ux c u' =0.994475c < c uz uz 0 u y uy 0
4-8.粘滞流体通过长度为l、管径为r的流管,流阻 为Rf,若再连接长度为l、管径为r/3的流管,则这两 段流管的总流阻为 ( D ) A.2Rf ; B.9Rf ; C.10Rf ; D.82Rf .
ux dx dt dy uy dt uz dz dt
dx ux dt dy S'系 uy dt uz dz dt
2024年度大学物理课件狭义相对论(免费版)

介绍相关的实验,如利用高精度原子钟比较地面和高速飞行飞机上 的时间流逝速率,验证时间膨胀效应的存在。
10
CHAPTER 03
狭义相对论质点动力学
2024/3/23
11
质能关系式E=mc^
质量和能量之间的等效性
质能关系式表明质量和能量之间存在等效性,即质量可以转化为能量,能量也 可以转化为质量。这种等效性是狭义相对论的基本原理之一。
2024/3/23
3
经典物理学局限性
01
绝对时空观
经典物理学认为时间和空间是绝 对的,与观察者的运动状态无关 。
02
光速不变原理
03
牛顿力学体系
在经典物理学中,光速被认为是 相对于任何惯性参照系都不变的 常数。
经典物理学以牛顿力学为基础, 建立了完整的力学体系,但在高 速和微观领域遇到困难。
2024/3/23
2024/3/23
26
THANKS
[ 感谢观看 ]
2024/3/23
27
动量-能量关系式的意义
动量-能量关系式是狭义相对论中描述质点运动的基本方程之一。它揭示了动量和能量之间的内在联系,为我们 理解质点在高速运动时的行为提供了重要的工具。
2024/3/23
13
质点运动方程及守恒定律
质点运动方程
在狭义相对论中,质点的运动方程可以用四维动量守恒定律和四维力来描述。对于一个自由质点,其 运动方程可以简化为p=const,即动量是守恒的。
2024/3/23
24
等效原理简介
2024/3/23
等效原理是爱因斯坦在狭义相对论中提出的一 个重要思想,并在广义相对论中得到了进一步 的发展。
该原理指出,在局部区域内,无法通过实验区 分均匀引力场和加速参考系。换句话说,引力 质量和惯性质量在局部区域内是等效的。
狭义相对论

狭义相对论狭义相对论是爱因斯坦在1905年提出的一种物理学理论,它主要研究的是在匀速直线运动的参考系中,时间和空间的变化规律。
下面将从四个方面详细回答这个问题。
一、狭义相对论的基本假设狭义相对论的基本假设有两个:一是物理定律在所有惯性参考系中都是相同的,即物理学的基本规律具有相对性;二是光速在真空中是不变的,即光速是一个普遍不变的常数。
二、狭义相对论的主要内容狭义相对论的主要内容包括以下几个方面:1. 时间的相对性:不同的惯性参考系中,时间的流逝速度是不同的,即时间是相对的。
2. 长度的相对性:不同的惯性参考系中,长度的测量值是不同的,即长度也是相对的。
3. 质量的变化:物体的质量随着速度的增加而增加,当物体的速度趋近于光速时,质量无限增大。
4. 能量的等效性:质量和能量是可以相互转化的,质量可以转化为能量,能量也可以转化为质量。
三、狭义相对论的实验验证狭义相对论的假设和内容在很多实验中都得到了验证,例如:1. 米歇尔逊-莫雷实验:实验证明了光速在不同方向上的测量结果是相同的,即光速是不变的。
2. 布拉格实验:实验证明了快速运动的电子具有更大的质量,证明了质量的变化。
3. 电子加速器实验:实验证明了质子在高速运动时具有更大的质量,证明了质量的变化。
四、狭义相对论的应用狭义相对论在现代物理学中有着广泛的应用,例如:1. GPS导航系统:GPS导航系统需要考虑相对论效应,才能准确测量卫星和接收器之间的距离。
2. 粒子物理学:狭义相对论对粒子物理学的研究有着重要的影响,例如粒子加速器和粒子探测器的设计和使用。
3. 核能技术:狭义相对论对核能技术的发展也有着重要的推动作用,例如核反应堆的设计和核武器的制造。
总之,狭义相对论是现代物理学的基础之一,它的理论和实验研究对于我们对自然界的认识和技术的发展都有着重要的影响。
第12章 狭义相对论

洛伦兹变换特点
1) 与
成线性关系,但比例系数
。
2)时间不独立, 和 变换相互交叉.
3)
时,洛伦兹变换
伽利略变换。
意义:基本的物理定律应该在洛伦兹变换下保 持不变 . 这种不变显示出物理定律对匀速直线运动 的对称性 —— 相对论对称性 .
12.2.4 狭义相对论时空观 1 同时的相对性
车厢以速度u作匀速直线运动,灯在车厢
解:设地球为S系, 飞船为S系
根据洛伦兹变换式S系中的坐标
12.3 相对论动力学
12.3.1 相对论的质速关系
1. 相对论的质量与速度
质量为 m
恒力 F 作用下
从静止开始做匀加速直线运动, 加速度a为
经过时间t, 物体的速度
物体的质量与物体的运动速度有关,他们的关系为
上式叫做质速关系式.
物体相对与惯性系静止时的质量m0 叫做静质量。
相对论的质能关系为开创原子能时代提供了理 论基础 , 这是一个具有划时代的意义的理论公式 .
质能关系预言:物质的质量就是能量的一种储藏.
例1: 现有 100 座楼,每楼 200 套房,每套房用电功率
10000 W , 总功率
,每天用电 10 小时 ,
年耗电量
,可用约 33 年。
1kg 汽油的燃烧值为
沿x 正方向运动的 S 系中观察到这两事件是同时发
生的, 则在S 系中测量这两事件的地点间隔是多少?
解 在S 系中
在S 系中
S 系相对于S 系运动的速度为
根据洛伦兹的逆变换式
得到, 在 S 系中测量这两事件的地点间隔是
例5 一隧道长为 L0 ,横截面高 h ,宽 w ,一列车固 有长度为 l0,当其以 u 的速度通过隧道时. 问: ( 1)列车上观测者测得隧道尺寸有何变化? (2)在列 车上测,其头部进入隧道到尾部离开隧道需要多少时 间? (3)在地面上测呢? 解: (1) 以列车为参考系(S系) 隧道的高、宽均不变, 长度收缩.
狭义相对论

2 m v cp 0 m c2 ...... 2 第二项是动能。
当速度v 0时,只剩第一项,所以 第一项称为静能。 cp 0 m c2 1 v c2
2
是物体的能量。
网易公开课视频地址: /movie/2010/7/D/U/M6G QSTUPV_M6GR13LDU.html
伽利略变换
事件发生坐标
(0,0) 惯性系S (x,t)
(x',t)
(0,0)
惯性系S' u
t' = t x' = x - u*t
不同惯性系中的牛顿第二定律
牛顿第二定律:F=m*a x' = x - u*t 两边同时对t求导 =>dx'/dt = dx/dt - (u*t)/dt =>v' = v - u 得出了两个惯性系中速度的惯关系。 继续两边同时对t求导 =>dv'/dt = dv/dt -du/dt =>a' = a 两边同时乘以m =>m*a' = m*a = F
t ∆t ∆x x
从随质点运动的坐标系来看: ∆x„=0;∆t' 令∆τ=∆t' ∆S^2=(c*∆τ)^2 ∆S=c*∆τ
得到∆τ和∆t的关系,为了少打几个公式,直接取极限
d v2 1 2 dt c dt 1 d v2 1 2 c
X=(x0,x1) 对时间求导,不能对t求导,因为x0=ct,对τ求导。
光速不变
以太
人们套用机械波的概念, 想像必然有一种能够传播光波的弹性物质, 它的名字叫“以太”
。
迈克尔逊——莫雷实验
目的:测量地球在以太中的速度。 结果:地球不存在相对以太的运动。
狭义相对论解释

狭义相对论解释
狭义相对论是爱因斯坦在1905年提出的一种物理学理论,它主要探讨了时间和空间的相对性,以及质量和能量之间的关系。
在狭义相对论中,时间和空间不再是绝对的,而是相对的,这意味着不同的观察者可能会有不同的时间和空间的体验。
狭义相对论的一个重要结论是光速不变原理,即光速在任何惯性参考系中都是恒定的。
这个结论对于我们理解宇宙的本质和运作方式非常重要。
它告诉我们,光速是宇宙中最基本的常数之一,它不仅仅是一种物理现象,更是宇宙的本质属性。
狭义相对论还揭示了质量和能量之间的等价关系,即著名的质能方程E=mc²。
这个方程告诉我们,质量和能量是可以相互转化的,它们之间存在着一种等价关系。
这个方程的发现对于我们理解宇宙的能量和物质的本质非常重要,它揭示了宇宙中最基本的物理规律之一。
狭义相对论还对时间的流逝提出了新的理解。
在狭义相对论中,时间的流逝是相对的,不同的观察者可能会有不同的时间体验。
这个结论对于我们理解宇宙的时间和空间的本质非常重要,它告诉我们时间和空间不是绝对的,而是相对的。
狭义相对论是一种非常重要的物理学理论,它揭示了宇宙的本质属性和运作方式。
它告诉我们,时间和空间不是绝对的,而是相对的,
光速是宇宙中最基本的常数之一,质量和能量之间存在着一种等价关系。
这些结论对于我们理解宇宙的本质和运作方式非常重要,它们为我们提供了一种新的视角和理解方式。
狭义相对论讲义课件

04
狭义相对论的时空观
同时性的相对性
01
同时性的相对性是狭义相对论 中的一个基本概念,指的是观 察者在不同参考系中观察到的 事件发生顺序可能会不同。
02
在相对论中,两个事件在不同 的参考系中同时发生,并不意 味着它们在所有参考系中都是 同时发生的。
狭义相对论的基本原理
相对性原理
物理规律在所有惯性参考系中形 式都保持不变。
光速不变原理
光在真空中的速度在所有惯性参 考系中都是相同的,约为每秒 299,792,458米。
02
洛伦兹变换
洛伦兹变换的定义
洛伦兹变换是用来描述不同惯性参考系之间坐 标和时间的变换。
在狭义相对论中,所有惯性参考系都是等价的 ,因此可以通过洛伦兹变换将一个惯性参考系 中的事件变换到另一个惯性参考系中。
3
通过洛伦兹变换,我们可以更好地理解狭义相对 论中的基本原理和概念,从而更深入地了解这个 理论。
03
光速不变原理
光速不变原理的表述
光速不变原理是狭义相对论的基本假设之一,它指出在任何惯性参考系中,真空 中光的传播速度都是恒定不变的,约为每秒299,792,458米。
光速不变原理可以表述为:无论观察者的运动状态如何,光的速度在真空中总是 相同的。
狭义相对论的质量和能量 质量与能量的关系
质量和能量是等价的:在狭义相对论中,质量和能量被视 为同一事物的两个方面,它们之间可以相互转换。
核能释放:核反应过程中,原子核中的质量会转化为能量 释放出来。
质能方程E=mc²:该方程表达了质量和能量之间的关系 ,其中E代表能量,m代表质量,c代表光速。
狭义相对论原文

狭义相对论原文
【实用版】
目录
1.狭义相对论的概述
2.狭义相对论的基本原理
3.狭义相对论的数学表达式
4.狭义相对论的实际应用
正文
【1.狭义相对论的概述】
狭义相对论,是爱因斯坦于 1905 年提出的一种物理学理论。
这一理论的基本思想是,物理定律的形式必须在所有惯性参考系中相同。
换句话说,如果我们在两个不同的运动状态下观察同一事件,那么我们得到的物理定律应该是一致的。
【2.狭义相对论的基本原理】
狭义相对论有两个基本原理,分别是相对性原理和光速不变原理。
相对性原理:所有惯性参考系中,物理定律的形式是相同的。
光速不变原理:在任何惯性参考系中,光在真空中的传播速度都是一个常数,约为每秒 3*10^8 米,通常用字母 c 表示。
【3.狭义相对论的数学表达式】
狭义相对论的数学表达式主要包括洛伦兹变换和时间膨胀公式。
洛伦兹变换:描述在两个不同运动状态下,空间和时间如何相互转换的公式。
时间膨胀公式:描述在高速运动状态下,时间如何变慢的公式。
【4.狭义相对论的实际应用】
狭义相对论虽然主要研究的是高速运动物体的性质,但是其影响已经深入到我们的日常生活中。
例如,GPS 定位系统就需要考虑狭义相对论的效应,因为卫星的运行速度非常快,而地面的观察者速度相对较慢。
如果不考虑狭义相对论,GPS 定位的误差会非常大。
此外,狭义相对论还揭示了质量和能量的等价性,为核能的研究和利用提供了理论基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一:填空
1、以速度v 相对于地球作匀速直线运动的恒星所发射的光子,其相对于地球的速度的大小为______. C
2. 狭义相对论中,一质点的质量m 与速度v 的关系式为______________;其动能的表达式为______________. ()
201c v m m -= 202c m mc E k -=
3. 当粒子的动能等于它的静止能量时,它的运动速度为____________________
/2v =
4. 匀质细棒静止时的质量为m 0,长度为l 0,当它沿棒长方向作高速的匀速直线运动时,测得它的长为l ,那么,该棒的运动速度v =_________,该棒所具有的动能E k =_______________。
v =222000(/1)k E mc m c m c l l =-=-
5. 已知惯性系S '相对于惯性系S 系以 0.5 c 的匀速度沿x 轴的负方向运动,若从S '系的坐标原点O '沿x 轴正方向发出一光波,则S 系中测得此光波在真空中的波速为________ c
二:选择
1. 一火箭的固有长度为L ,相对于地面作匀速直线运动的速度为1v ,火箭上有一个人从火箭的后端向火箭前端上的一个靶子发射一颗相对于火箭的速度为2v 的子弹.在火箭上测得子弹从射出到击中靶的时间间隔是:(c 表示真空中光速)
(A) 21v v +L . (B) 2v L . (C)
12v v -L . (D) 211)
/(1c L v v - . B
2. 关于同时性的以下结论中,正确的是
(A) 在一惯性系同时发生的两个事件,在另一惯性系一定不同时发生.
(B) 在一惯性系不同地点同时发生的两个事件,在另一惯性系一定同时发生.
(C) 在一惯性系同一地点同时发生的两个事件,在另一惯性系一定同时发生.
(D)在一惯性系不同地点不同时发生的两个事件,在另一惯性系一定不同时发生.C
3. 一宇航员要到离地球为5光年的星球去旅行.如果宇航员希望把这路程缩短为3光年,则他所乘的火箭相对于地球的速度应是:(c表示真空中光速)
(A) v = (1/2) c.(B) v = (3/5) c.
(C) v = (4/5) c.(D) v = (9/10) c.
C
4. 在某地发生两件事,相对于该地静止的甲测得时间间隔为4 s,若相对于甲作匀速直线运动的乙测得时间间隔为5 s,则乙相对于甲的运动速度是(c表示真空中光速)
(A) (4/5) c.(B) (3/5) c.
(C) (2/5) c.(D) (1/5) c.
B
5 质子在加速器中被加速,当其动能为静止能量的4倍时,其质量为静止质量的
(A) 4倍.(B) 5倍.(C) 6倍.(D) 8倍.
B
6. 根据玻尔理论,氢原子中的电子在n=4的轨道上运动的动能与在基态的轨道上运动的动能之比为
(A) 1/4.(B) 1/8.
(C) 1/16.(D) 1/32.
C
三:判断
1.甲、乙两人做相对匀速直线运动,在甲看来同时发生的事件,在乙看来一定不是同时发
生。
×
2.某人坐上火箭从地球出发做高速旅行并最终返回地球,在地球上的人看来此人变年轻
了,而在火箭上的人看来地球人都变年轻了。
×
四:计算
1、若从一惯性系中测得宇宙飞船的长度为其固有长度的一半,试问宇宙飞船相对此惯性系的速度是多少?(用光速c表示)
解: 20)/(1c l l v -= 4分
c l l v ⎪⎪⎭⎫ ⎝
⎛-=2021=c 23 (2.6×108m/s) 4分
2、一固有长度为10 m 的物体,若以速率0.60 c 沿x 轴相对某惯性系运动,试问从该惯性系来测量,此物体的长度为多少?
解: 20)/(1c l l v -= (4分)
m l 8)6.0(1102=-= ( 4)分
3. 一艘宇宙飞船的船身固有长度为L 0 =90 m ,相对于地面以=v 0.8 c (c 为真空
中光速)的匀速度在地面观测站的上空飞过.
(1) 观测站测得飞船的船身通过观测站的时间间隔是多少?
(2) 宇航员测得船身通过观测站的时间间隔是多少?
解:解:(1) 观测站测得飞船船身的长度为 =-=20)/(1c L L v 54 m 则 ∆t 1 = L /v =2.25×10-7 s 3分
(2) 宇航员测得飞船船身的长度为L 0,则 ∆t 2 = L 0/v =3.75×10-7 s 3分
4. 地球的半径约为R 0 = 6376 km ,它绕太阳的速率约为=v 30 km ·s -1,在太阳参考系中测量地球的半径在哪个方向上缩短得最多?缩短了多少? (假设地球相对于太阳系来说近似于惯性系)
答:在太阳参照系中测量地球的半径在它绕太阳公转的方向缩短得最多. 20)/(1c R R v -= 3分 其缩短的尺寸为: ∆R = R 0- R ))/(11(20c R v --= 220/2
1c R v ≈ ∆R =3.2 cm 3分。