中介效应分析 原理 程序 Bootstrap方法及其应用
中介效应分析:原理、程序、Bootstrap方法及其应用

校正的非参数百分位法,在X编码框中选择“Indicator”,即将自变量 作为多组别分类变量进行编码。
.
3. Bootstrap中介效应检验方法及其应用
3.2 自变量为多类别分类变量
> 结果汇报
.
1 经典的中介检验方法(即前一个ptt中讲的)
因果逐步回归方法 (Causal Step Regression) (Baron & Kenny1986) (1) (2) (3)
M
a=0.7*
b=0.58*
X
* p<0.05
c’=0.2
Y
c=0.6*
.
1 经典的中介检验方法
温忠麟等(2004)中介效应检验程序(知网上应该有)
资料来源:温忠麟,张雷,侯杰泰,刘红云. 中介效应检验程序及其应用. 心理学报, 2004, 36(5): 614-620. .
1. 经典的中介检验方法
存在的问题 > 主效应并非中介效应存在的前提 > 完全中介并非中介检验的完美准则 > 该方法并非直接检验中介路径a*b=0 > 未能明晰复杂中介的检验
中介效应分析:原理、程序、Bootstrap方法及其应用
清华大学经济管理学院 陈瑞 郑毓煌 刘文静
.
本文的写作目的
• 总结介绍前沿的中介检验程序和方法 • 结合研究实例,阐述Bootstrap中介检验的具体应用 • 结合研究实例,阐述复杂中介检验时Bootstrap的应用、
结果分析和汇报
.
目录
• 经典的中介效应检验方法 • 中介效应检验的原理和程序 • Bootstrap中介检验方法及其应用 • 结论和讨论
中介效应分析原理程序Bootstrap方法及其应用

3. Bootstrap中介效应检验方法及其应用
3.1 简单中介检验
> 具体操作步骤(以Tong, Zheng & Zhao (2013)为例介绍)
安装PROCESS插件(Hayes 2013) 打开SPSS,选择“Analyze”→“Regression”→“PROCESS”; 将自变量(时间概念)、中介变量(防御聚焦)和因变量(享乐实用
• Tong, L., Zheng, Y., & Zhao, P. 2013. Is money really the root of all evil? The impact of priming money on consumer choice[J]. Marketing Letters, 24(2): 119-129.
若两个控制组对因变量影响无显著差异,将控制组合并 (如Calogero & Jost 2010, Janssen et al. 2010)
将对实验操纵的操纵检验变量作为自变量 (如Forgas 2011)
3. Bootstrap中介效应检验方法及其应用
3.2 自变量为多类别分类变量
> 具体操作步骤(以Legate et al. (2013)为例介绍)
选择)依次选入相应的选项框。 选择模型4,设定样本量为5000, Bootstrap取样方法选择偏差校正的
非参数百分位法,即勾选“Bias Corrected”;对置信区间的置信度,选 择95%
• Tong, L., Zheng, Y., & Zhao, P. 2013. Is money really the root of all evil? The impact of priming money on consumer choice[J]. Marketing Letters, 24(2): 119-129.
中介效应的检验方法

中介效应的检验方法中介效应是指一个变量在自变量和因变量之间起到了解释机制的作用。
当自变量对因变量的影响是通过中介变量来进行传递的,就可以称之为中介效应。
中介效应的检验方法可以分为两类:统计方法和实验方法。
一、统计方法1. Sobel检验:Sobel检验是最常用的中介效应检验方法之一、该方法通过计算中介变量的影响效应和直接效应的置信区间来判断中介效应的显著性。
Sobel检验的基本原理是通过计算间接效应和直接效应的标准误差来计算Z值,然后通过与标准正态分布表进行比较,判断中介效应的显著性。
2. Bootstrap法:Bootstrap法是一种非参数估计方法,它通过基于样本的重抽样来计算中介效应的置信区间。
具体做法是从原始样本中有放回地抽取若干个子样本进行重抽样,然后分别计算每个子样本中的中介效应,最后得到中介效应的分布情况。
通过对这个分布进行分析,可以得到中介效应的置信区间和显著性。
3. Bootstrapped Sobel检验:这种方法是Sobel检验和Bootstrap法的综合应用。
具体做法是首先通过Bootstrap法计算中介效应的置信区间,然后将这个置信区间代入到Sobel检验中,得到中介效应的显著性。
这种方法在样本量较小或变量之间的关系较复杂时效果较好。
二、实验方法1.自变量操作法:在实验中,研究者可以通过操作自变量来检验中介效应。
首先,确定自变量、中介变量和因变量之间的关系,然后对自变量进行操作,观察中介变量和因变量的变化情况。
如果自变量对中介变量和因变量之间的关系有显著影响,那么就可以认为中介效应存在。
2.中介变量操作法:与自变量操作法类似,中介变量操作法是通过操作中介变量来检验中介效应。
研究者可以通过改变中介变量的取值或引入干预措施,来观察自变量和因变量之间的关系是否发生变化。
如果中介变量对自变量和因变量之间的关系有显著影响,那么就可以认为中介效应存在。
3.研究设计法:在一些实验设计中,研究者可以采用不同的处理组合或阶段性介入的方法来检验中介效应。
中介效应分析方法

中介效应分析方法中介效应是指在两个变量之间的关系中,一个中间变量(中介变量)可以解释这两个变量之间的关系。
通过中介效应分析可以帮助研究者理解为什么两个变量之间存在关系,以及这个关系是如何产生的。
本文将介绍几种中介效应分析的方法。
1. Sobel检验Sobel检验是最常用的中介效应分析方法之一、它基于一个简单的线性回归公式,通过计算中介变量对因变量的回归系数和因变量对自变量的回归系数的乘积与其标准差的比值,来检验中介效应是否显著。
如果计算得到的比值显著不等于零,则可以认为存在中介效应。
2. Bootstrap法Bootstrap法是一种基于重复抽样的统计方法,可以用来估计中介效应的置信区间。
该方法通过构建多个样本并分析每个样本中的中介效应,然后计算中介效应的分布,并从中计算出中介效应的置信区间。
Bootstrap法可以有效地降低因数据偏差和非正态分布而导致的误差。
Baron和Kenny的中介效应分析方法是一种最早的中介效应分析方法。
该方法包括四个步骤:首先,确定自变量对中介变量的回归系数是否显著;然后,确定自变量对因变量的回归系数是否显著;接下来,确定自变量和中介变量对因变量的回归系数是否显著;最后,通过比较两个回归系数的显著性来判断中介效应是否存在。
Preacher和Hayes的中介效应分析方法是一种较新的中介效应分析方法,也被认为是一种更精确的方法。
该方法通过计算中介效应的点估计和置信区间,同时还可以进行多个中介变量的分析。
该方法可以帮助研究者更深入地理解中介效应并进行更准确的统计推断。
除了以上提到的几种中介效应分析方法外,还有许多其他方法,例如结构方程模型、路径分析等。
这些方法都有各自的优缺点,研究者可以根据自己研究的需求和数据特点选择合适的方法进行中介效应分析。
无论选择哪种方法,都需要保证数据的质量和有效性,并进行适当的假设检验和结果解释,以确保中介效应的可靠性和统计显著性。
统计学中的Bootstrap方法

统计学中的Bootstrap方法引言统计学是一门研究如何收集、整理、分析和解释数据的学科。
在统计学中,Bootstrap方法是一种常用的统计推断方法,它可以通过重复抽样来评估统计量的抽样分布。
本文将介绍Bootstrap方法的原理、应用和优点。
一、Bootstrap方法的原理Bootstrap方法是由Bradley Efron于1979年提出的一种非参数统计推断方法。
它的基本思想是通过从原始样本中有放回地进行随机抽样,形成多个“伪样本”,然后利用这些“伪样本”来估计统计量的抽样分布。
具体步骤如下:1. 从原始样本中有放回地抽取n个样本观测值,形成一个“伪样本”;2. 重复步骤1,生成B个“伪样本”;3. 对每个“伪样本”,计算统计量的值;4. 利用这些统计量的值构建抽样分布。
二、Bootstrap方法的应用Bootstrap方法在统计学中有广泛的应用,以下是一些常见的应用领域:1. 参数估计:Bootstrap方法可以用于估计参数的抽样分布和置信区间。
通过从原始样本中重复抽样,可以得到参数的分布情况,从而估计参数的置信区间。
2. 假设检验:Bootstrap方法可以用于假设检验,特别是在小样本情况下。
通过生成多个“伪样本”,可以计算统计量的抽样分布,并进行假设检验。
3. 回归分析:Bootstrap方法可以用于回归分析中的参数估计和模型选择。
通过对原始样本进行重复抽样,可以得到回归参数的抽样分布,从而进行模型的评估和选择。
4. 非参数统计推断:Bootstrap方法是一种非参数统计推断方法,可以用于估计分布函数、密度函数等非参数统计量的抽样分布。
三、Bootstrap方法的优点Bootstrap方法相对于传统的统计推断方法有以下优点:1. 不依赖于分布假设:Bootstrap方法是一种非参数方法,不需要对数据的分布进行假设。
这使得它在实际应用中更加灵活和适用。
2. 考虑了样本的不确定性:Bootstrap方法通过重复抽样,考虑了样本的不确定性。
中介效应的点估计和区间估计乘积分布法、非参数Bootstrap和MCMC法

中介效应的点估计和区间估计乘积分布法、非参数Bootstrap和MCMC法一、本文概述本文旨在深入探讨中介效应的点估计和区间估计的三种主要方法:乘积分布法、非参数Bootstrap法以及Markov Chn Monte Carlo (MCMC)法。
中介效应分析在社会科学、心理学、经济学等领域中扮演着重要角色,它帮助我们理解一个变量如何通过中介变量影响另一个变量。
在复杂的数据关系中,明确中介效应的大小和置信区间对于揭示变量间的内在逻辑至关重要。
乘积分布法作为最早的中介效应估计方法之一,其理论基础坚实,操作简便,但在样本量较小或数据分布不满足正态假设时,其估计结果可能产生偏差。
非参数Bootstrap法则通过重复抽样生成大量样本,从而得到中介效应的估计值和置信区间,这种方法对数据分布的要求较低,具有较强的稳健性。
MCMC法是一种基于贝叶斯统计的复杂统计方法,它通过模拟样本的生成过程来估计中介效应,尤其适用于处理复杂的统计模型和数据结构。
本文将对这三种方法进行详细的介绍和比较,通过模拟数据和实证分析,探讨它们的适用场景和优缺点。
通过本文的阅读,读者可以对中介效应的点估计和区间估计有更深入的理解,并能够根据研究需求选择合适的方法进行分析。
二、中介效应的基本概念与模型中介效应,又称为间接效应或中介作用,是统计学中一个重要的概念,尤其在社会科学和心理学研究中广泛应用。
它描述了一个变量(称为中介变量)如何通过影响另一个变量(称为因变量)来间接影响一个初始变量(称为自变量)与因变量之间的关系。
换句话说,中介效应揭示了一个变量在自变量和因变量之间的“桥梁”作用。
在中介效应模型中,通常包含三个基本组成部分:自变量()、中介变量(M)和因变量(Y)。
这种关系可以用以下三个回归方程来描述:第一个方程描述了自变量如何影响中介变量M,即M = a + e1,其中a是自变量对中介变量M的影响系数,e1是残差项。
第二个方程描述了中介变量M如何影响因变量Y,即Y = bM + e2,其中b是中介变量M对因变量Y的影响系数,e2是残差项。
中介效应检验方法
中介效应检验方法中介效应是指一个变量通过改变另一变量来影响另一个变量与最终结果之间的关系。
在社会科学研究中,中介效应的检验可以帮助理解变量之间的关系机制,揭示出其中的因果过程。
本文将介绍三种主要的中介效应检验方法:Sobel检验、Bootstrap检验和路径分析。
第一种方法是Sobel检验,它是最早也是最常见的中介效应检验方法之一、Sobel检验假设中介变量对因变量的影响是通过一些中介变量所导致的。
它通过计算一系列协方差来评估中介效应的大小和显著性。
具体步骤如下:1.首先,使用回归分析估计出自变量对中介变量和因变量的影响。
2.接下来,计算中介效应的大小,即自变量对因变量的总效应减去中介变量对因变量的效应。
3.然后,计算中介效应的标准误,根据标准误可以判断中介效应是否显著。
4. 最后,计算Sobel统计量,通过将中介效应除以中介效应标准误得到。
如果Sobel统计量的绝对值大于1.96,那么中介效应是显著的。
第二种方法是Bootstrap检验,它是一种非参数的方法,可以更好地解决样本量较小的问题。
Bootstrap检验通过多次重新抽样生成新的样本,并计算中介效应的大量估计值。
然后,计算这些估计值的标准差和置信区间,来判断中介效应是否显著。
具体步骤如下:1.首先,使用回归分析估计出自变量对中介变量和因变量的影响。
2. 然后,使用Bootstrap方法生成多个新的样本。
3.对每个新的样本,重新进行回归分析得到中介效应的估计值。
4.根据这些估计值计算中介效应的标准差和置信区间。
如果标准差不包含0,或者置信区间不包含0,则可以判断中介效应是显著的。
第三种方法是路径分析,它是一种图形分析方法,用来揭示变量之间的因果路径。
路径分析可以直接检验中介效应是否存在,并定量评估其效应的大小和显著性。
具体步骤如下:1.首先,构建一个结构方程模型,其中包括自变量、中介变量和因变量之间的路径。
2.通过最小二乘法估计模型参数,得到每个路径的标准化系数。
中介作用于调节作用:原理与应用
中介效应与调节效应:原理与应用姜永志整理编辑1中介效应和调节效应概念原理1.1中介效应考虑自变量X对因变量Y的影响,如果X 通过影响变量M而对Y产生影响,则称M 为中介变量,中介变量阐明了一个关系或过程“如何”及“为何” 产生。
例如,上司的归因研究:下属的表现→上司对下属表现的归因→上司对下属表现的反应,其中的“上司对下属表现的归因”为中介变量。
假设所有变量都已经中心化(即将数据减去样本均值,中心化数据的均值为0)或者标准化(均值为0,标准差为1),可用下列回归方程来描述变量之间的关系(图1 是相应的路径图):其中方程(1)的系数c 为自变量X对因变量Y的总效应;方程(2)的系数a为自变量X对中介变量M的效应;方程(3)的系数b是在控制了自变量X的影响后,中介变量M对因变量Y 的效应;系数c′是在控制了中介变量M 的影响后,自变量X对因变量Y的直接效应;e1-e3 是回归残差。
中介效应等于间接效应(indirect effect),即等于系数乘积ab,它与总效应和直接效应有下面关系:Y =cX +e1(1)M =aX +e2 (2)Y =c' X +bM +e3 (3)c = c′+ab (4) 简单中介效应中成立,多重中介效应不成立。
中介效应的因果逐步回归法模型1.2调节效应如果变量Y与变量X的关系是变量M的函数,称M为调节变量。
就是说,Y 与X 的关系受到第三个变量M的影响。
调节变量(moderator)所要解释的是自变量在何种条件下会影响因变量,也就是说,当自变量与因变量的相关大小或正负方向受到其它因素的影响时,这个其它因素就是该自变量与因变量之间的调节变量。
调节变量可以是定性的(如性别、种族、学校类型等),也可以是定量的(如年龄、受教育年限、刺激次数等),它影响因变量和自变量之间关系方向(正或负)和强弱,调节变量展示了一个关系“何时”和“为谁”而增强或减弱。
如,学生一般自我概念与某项自我概念(如外貌、体能等)的关系,受到学生对该项自我概念重视程度的影响:很重视外貌的人,长相不好会大大降低其一般自我概念;不重视外貌的人,长相不好对其一般自我概念影响不大,从而对该项自我概念的重视程度是调节变量。
三种中介效应检验方法及操作步骤
三种中介效应检验⽅法及操作步骤本⽂将介绍三种常见中介效应检验⽅法,分别是因果逐步回归检验法、系数乘积法、改良后的因果逐步回归法,以及如果使⽤SPSSAU进⾏操作。
什么是中介效应中介效应:如果⾃变量X通过影响变量M⽽对因变量Y产⽣影响,则称M为中介变量。
例如,上司的归因研究:下属的表现→上司对下属表现的归因→上司对下属表现的反应,其中的“上司对下属表现的归因”为中介变量。
中介作⽤的检验模型可以⽤以下路径图来描述:图1 中介效应检验模型路径图⽅程(1)的系数c 为⾃变量X对因变量Y的总效应;⽅程(2)的系数a为⾃变量X对中介变量M的效应;⽅程(3)的系数b是在控制了⾃变量X的影响后,中介变量M对因变量Y的效应;⽅程(3)的系数c′是在控制了中介变量M 的影响后,⾃变量X对因变量Y的直接效应;系数乘积a*b即为中介效应等于间接效应1 因果逐步回归检验法因果逐步回归法由Baron和Kenny(1986)提出,其检验步骤分为三步:第⼀,分析X对Y的回归,检验回归系数c的显著性(即检验H0:c=0);第⼆,分析X对M的回归,检验回归系数a的显著性(即检验H0:a=0);第三,分析加⼊中介变量M后X对Y的回归,检验回归系数b和c'的显著性(即检验H0:b=0、H0:c’=0)。
根据检验结果按下图进⾏判断:流程图基于SPSSAU的操作(1)第⼀步,登录SPSSAU,上传数据;(2)第⼆步,选择【问卷研究】--【中介作⽤】;(3)第三步,选择变量拖拽到右侧对应分析框内,点击开始分析。
结果分析SPSSAU的“中介作⽤”可直接将中介作⽤的检验过程⾃动化,⼀键提供出上述提及模型结果。
本次结果中共包含三个模型:①模型1:X对Y的回归模型,结果显⽰x与y存在显著影响关系,回归系数c=0.130.②模型2:x对m的回归模型,结果显⽰x与y存在显著影响关系,回归系数a=0.175.③模型3:加⼊中介变量m后x对y的回归模型,结果显⽰回归系数b、c’均呈现显著性,系数a、b均显著,说明存在中介效应。
中介效应分析-原理、程序、Bootstrap方法及其应用
a,b 至少有一个不显著
检验系数 c’ 显著 不显著
Sobel 检验 显著 不显著
部分中介
完Байду номын сангаас中介 中介显著
中介不显著
Y 与 X 相关不显著 停止中介效应分析
图 1 温忠麟等(2004)中介效应检验程序
资料来源:温忠麟,张雷,侯杰泰,刘红云. 中介效应检验程序及其应用. 心理学报, 2004, 36(5): 614-620.
中介效应分析:原理、程序、Bootstrap 方法及其应用*
摘要 以往研究中,中介效应分析普遍参照 Baron & Kenny(1986)的因果逐步回归分 析法进行中介检验。但是,近年来诸多学者对该方法的合理性和有效性提出质疑。 在此背景下,本研究对国际上近年来提出的最新中介效应检验程序和 Bootstrap 方 法进行提炼总结,详细阐述了中介效应分析的原理、程序、以及使用 Bootstrap 方 法的具体步骤。更为重要的是,本文不仅介绍了简单中介效应的检验,还对于研 究中经常遇到的复杂的有调节的中介、多个并列中介和多步中介等多种复杂中介 情况下如何进行中介效应分析进行了详细的介绍,具体涵盖 Bootstrap 方法进行中 介效应检验时的软件操作、数据分析和数据汇报,这对国内研究者进行中介效应 分析将提供有效、科学和便捷的指导。
regression in mediation tests. However, in recent years many researchers have questioned the rationality and reliability of Baron & Kenny’s procedures. Based on this background, this paper summarized the most recent mediation test procedure and Bootstrap method, and elaborated principle, procedure and offers a step-by-step instruction for data analysis using Bootstrap. We not only introduce the simple mediation test, but also elaborate the rationales and methods for several complex mediation models such as mediated moderation, moderated mediation, multiple mediators, and serial multiple mediators, including steps of performing the bootstrap analysis with SPSS software, data analysis and results reports. The paper will provide effective, scientific and convenient guidance for domestic scholar. Key words Mediation Effect; Causal Step Regression; Bootstrap Method
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
面情绪)依次选入相应的选项框。 设定样本量为5000;置信区间选择95%,Bootstrap取样方法选择偏差
校正的非参数百分位法,在X编码框中选择“Indicator”,即将自变量 作为多组别分类变量进行编码。
3. Bootstrap中介效应检验方法及其应用
3.2 自变量为多类别分类变量
> 结果汇报
没有包含0(LLCI=-1.7089, ULCI=-.1597),表明防御聚焦导 向的中
介效应显著,且中介效应大小为-.8379。此外,控制了中介变量
3. Bootstrap中介效应检验方法及其应用
3.2 自变量为多类别分类变量
> 以往检验方法
使用ANOVA进行因果逐步回归(如Pandelaere et al. 2010, Wirtz & McColl-Kennedy, 2009)
中介效应分析:原理、程序、Bootstrap方法及其应用
清华大学经济管理学院 陈瑞 郑毓煌 刘文静
本文的写作目的
• 总结介绍前沿的中介检验程序和方法 • 结合研究实例,阐述Bootstrap中介检验的具体应用 • 结合研究实例,阐述复杂中介检验时Bootstrap的应用、
结果分析和汇报
目录
• 经典的中介效应检验方法 • 中介效应检验的原理和程序 • Bootstrap中介检验方法及其应用 • 结论和讨论
3. Bootstrap中介效应检验方法及其应用
3.4 多个并列的中介变量( Multiple Mediators) Bootstrap方法的优点
可以检验分析所有的并列中介变量共同发挥的中介作用的大小; 其二,可以观测在剔除了其他中介路径的作用之后,单个的中介
路径的作用大小 其三,可以对比不同中介路径的作用大小是否存在显著差异。
> 其他方法:乘积分布法和MCMC法
3. Bootstrap中介效应检验方法及其应用
3.1 简单中介检验
> 具体操作步骤(以Tong, Zheng & Zhao (2013)为例介绍)
安装PROCESS插件(Hayes 2013) 打开SPSS,选择“Analyze”→“Regression”→“PROCESS”; 将自变量(时间概念)、中介变量(防御聚焦)和因变量(享乐实用
选择)依次选入相应的选项框。 选择模型4,设定样本量为5000, Bootstrap取样方法选择偏差校正的
非参数百分位法,即勾选“Bias Corrected”;对置信区间的置信度, 选择95%
• Tong, L., Zheng, Y., & Zhao, P. 2013. Is money really the root of all evil? The impact of priming money on consumer choice[J]. Marketing Letters, 24(2): 119-129.
3. Bootstrap中介效应检验方法及其应用
3.4 多个并列的中介变量
> 结果汇报
按照Zhao et al. (2010)提出的中介分析程序, 参照Preacher & Hayes(2008)提出的多个并列的中介变量检验方法,进行 Bootstrap中介变量检验,样本量选择5000,设置95%的置信区间。 数据结果表明四个中介变量共同发挥的中介作用显著(-.15, -.08), 作用大小为-.11;在四个中介路径中生活目标感知(-.05, -.01)、 正确的价值观(-.04, -0.3)和自我价值感知(-.09, -.03)发挥了显 著的中介作用,中介作用大小依次为-.03,-.02,-.06;而自我效能 的中介作用并不显著(-.02, .00)。为了更好地区分各中介路径相 对大小,对四个中介路径作用的大小进行了对比,数据结果显示, 自我价值感知的中介作用显著高于自我效能(.01, .08)的中介作用, 其他的中介路径比较则没有显著差异18。
资料来源:温忠麟,张雷,侯杰泰,刘红云. 中介效应检验程序及其应用. 心理学报, 2004, 36(5): 614-620.
1. 经典的中介检验方法
存在的问题 > 主效应并非中介效应存在的前提 > 完全中介并非中介检验的完美准则 > 该方法并非直接检验中介路径a*b=0 > 未能明晰复杂中介的检验
2. 中介检验的检验程序和方法
显著
a×b
不显著
显著
不显著
c'
显著
c'
不显著
a× b× c'
正
负
互补的 中介
竞争的 中介
唯一的 中介
仅有直 接作用
无任何 作用
中介成立
中介成立
中介成立
可能忽略其他中介,有待讨论 唯一的中介
中介不成立 忽略其他中介
中介不成立 错误的理论框架
资料来源:Zhao, Xinshu, Lynch, J. G., Chen, Q. Reconsidering Baron and Kenny: Myths and Truths about Mediation Analysis[J]. Journal of consumer research, 2010, 37(2): 197-206.
3. Bootstrap中介效应检验方法及其应用
3.4 多个并列的中介变量
> 结果汇报(以Liu & Gal (2011)为例)
方法选择偏差校正的非参数百分位法。
3. Bootstrap中介效应检验方法及其应用
3.3 自变量为多类别分类变量
> 结果汇报
按照Zhao et al.(2010)提出的中介分析程序,参照Preacher et al. (2007)和Hayes(2013)提出的有调节的中介分析模型(模型8)进 行Bootstrap 中介变量检验,样本量选择5000,在95%置信区间下,中 介变量自我效能的确中介了香烟渴望程度和忧虑状态对戒烟行为的交 互影响。进一步按照均值、均值加减一个标准差,区分了低、中、高 三种忧虑程度,分析了在不同忧虑程度状态下香烟渴望程度对戒烟行 为影响中自我效能的中介效应,数据结果表明对于低度忧虑和中等忧 虑的病人,自我效能的中介效应显著,Bootstrap检验的置信区间分别 为(-.69, -.04)和(-.41,-.03),均不包含0;而对于高度忧虑的病 人,自我效能并不发挥中介作用(-.31,.03),该区间包含 0。
2. 中介检验的检验程序和方法
a × b 的检验
> Soble test
假设a × b 服从正态分布,但实际上a × b 不服从正态分布,导 致第一类错误的概率增加。
没有直接操作的软件
> Bootstrapping程序 (Preacher & Hayes 2004, 2008)
并不假设a × b 服从正态分布,而是依据实际的分布进行检验 可以通过spss插件直接操作 可以同时检验多个中介等较为复杂的中介
具体操作步骤(以Stillman et al. (2009)为例)
打开SPSS,选择“Analyze”→“Regression”→“PROCESS” ; 将自变量(社会排斥)、中介变量(生活目标感知、自我效能、正 确的价值观、自我价值感知)和因变量((生命意义感知)依次选入 相应的选项框。 选择模型4,设定样本量为5000, Bootstrap取样方法选择偏差校正的 非参数百分位法;对置信区间的置信度,选择95%
3.3 有调节的中介( Moderated Mediation )
7种有调节的中介检验模型
W
M
X
Y
Edwards & Lambert (2007), Preacher, Rucker & Hayes (2007)
Байду номын сангаас
3. Bootstrap中介效应检验方法及其应用
3.3 有调节的中介( Moderated Mediation )
3. Bootstrap中介效应检验方法及其应用
3.2 自变量为多类别分类变量
> 具体操作步骤(以Legate et al. (2013)为例介绍)
安装MEDIATE插件(Hayes & Preacher 2012) 打开SPSS,选择“Analyze”→“Regression”→“MEDIATE”; 将自变量(遵照实验要求)、中介变量(自主性需求)和因变量(负
分别进行两组间比较的回归中介分析(如 Mehta et al. 2012, Pedersen et al. 2011)
若两个控制组对因变量影响无显著差异,将控制组合并 (如Calogero & Jost 2010, Janssen et al. 2010)
将对实验操纵的操纵检验变量作为自变量 (如Forgas 2011)
3. Bootstrap中介效应检验方法及其应用