根轨迹法校正设计

根轨迹法校正设计
根轨迹法校正设计

1 根轨迹法校正设计

如果设计指标是时域特征量,应采用时域校正方法,即将设计指标转换为对闭环主导极点位置的设计,常称为根轨迹法。设计过程中,不必绘制根轨迹图。根轨迹法同频率分析法一样也可以有串联超前校正、串联滞后校正和串联滞后-超前校正,因“超前”和“滞后”是频域中的概念,在根轨迹法中不使用。

基本概念: ⑴ 动态性能校正

使开环增益满足设计要求。

例:)2)(5()(0++=s s s k s G ;111)(p s z s s G c ++=;222)(p s z s s G c ++=; ⑴ 动态性能校正 配置。配置)(1s G c 的零极点应

使需要的闭环极点在校正后的系统根轨迹上,同时还要满足“闭

环主导极点”条件。

⑵ 增益校正 配置)(2s G c 零极点,使校正后的开环增益满足要求v c c s K s G s G s sG =→)()()(lim 0120

。 说明:以根轨迹的相角条件,图解1z 和1p 的选取;图解2z 和2p 选取原系统的闭环极点位置基本不

变,并使开环可以取较大的数值。

典型设计指标:开环增益K ,超调量σ,和调节时间s t 。无论是典型设计指标还是其它形式的设计指标,都需要转换成满足指标要求的闭环主导极点位置。

设计步骤:

1.1 根据动态性能指标,计算闭环主导极点1s 和2s ;

1.2 按闭环主导极点条件,选取动态特性校正环节结构)(1s G c ;依据校正后系统特征多项式与期

望特征多项式相等,计算出校正环节的参数;

1.3 根据开环增益K ,计算增益校正环节)(2s G c 参数;

为使根轨迹(起始段除外)形状基本不变,即闭环主导极点基本不变,又要有较高的开环增益,校正环节的零点和极点必须相互接近,且接近原点。

p s z s s G c --=)(2,需满足0)()()(2≈-∠--∠=∠p s z s s G i i i c 和α==∞→p

z s G c s )(lim 2; 零点和极点选取方法,1.0)Re(/1

1.4 检验设计结果;主要检验是否满足闭环主导极点条件。

例6-7 )102.0)(112.0()(0++=s s s k s G , 改写为)

50)(3333.8()(0++=s s s K s G ,k K 67.416=; 设计校正环节,性能指标为:170-≥s K v ,%40≤σ,s t s 1≤。

解:(1) 4.0)]1/(exp[2=--=ζζπσ,28.03.0>=ζ;1)/(4==n s t ζω(留余地),33.13=n ω;

闭环主导极点72.1242,1j s ±-=,相应的多项式为 17882++s s ;

(2) 为使校正后系统的阶次不升高,选取a

s s s G c ++=)3333.8()(1,闭环特征多项式满足: ))(1788()50)((2b s s s K s a s s +++=+++;解得238.12=a ,238.54=b ,381.9654=K ;

(3) 7777.15=v K ,必须进行开环增益校正。

437.4/==v v K K α。222.0-=z ,05.0-=p ;05

.0222.0)(2++=s s s G c (4) 检验:校正后开环和闭环传递函数为

)50)(238.12)(05.0()222.0(381.9654)(++++=s s s s s s G ,)

102.0)(10817.0)(120()1505.4(05.70)(++++=s s s s s s G ; )176837.7)(227.54)(244.0()222.0(381.9654)(2+++++=Φs s s s s s ;244

.0227.546791.129185.3432,1-=-=±-=s s j s ;141222.0z s z ≈-=;

则可近似为:176837.7162)(2++=

Φs s s ;2954

.0266.13==ζωn ,s t n s 893.05.3==ζω,05.70379.0==v K σ。 结论:17.23=k ,)238.12)(05.0()3333.8)(222.0()(++++=s s s s s G c ;设计满足要求。 例6-6 (P246) )

1005.0)(101.0)(102.0)(11.0()(0++++=s s s s s k s G ,设计校正环节,性能指标为: (1) 误差系数00=c ,200/11=c ;(2) 超调量%30≤σ;(3) 调节时间s t s 7.0≤。

解:要求200=v K ;改写)

200)(100)(50)(10()(0++++=s s s s s K s G ,k K ?=710 (1) 3.0)]1/(exp[2=--=ζζπσ,358.0=ζ;7.0)/(4==n s t ζω(留余地),96.1516>=c ω;

闭环主导极点94.14728.52,1j s ±-=,相应的多项式为 256456.112++s s ;

(2) 为使校正后系统的阶次不升高,选取a s s s G c ++=)10()(1;系统阶次较高且数值较大,按特征多项 式相等求解很烦琐,容易因计算精度而出现计算错误。先按根轨迹的相角条件计算a 值:

180)200()100()50()(11111-=+∠-+∠-+∠-+∠-∠-s s s a s s

96.3640.401.965.1802.69)(1=---=+∠a s ;583.25=a ;

再按特征多项式相等求出K 值和相应的特征多项式

))(256456.11()200)(100)(50)((232d cs bs s s s K s s s a s s +++++=+++++

631.13493716.345439137456.1125635000100000061109.39526256456.1125635035000127

.364456.112561000000456.11350==++=+==++=+=+=+=+d K d c b a c d K c b a b d c a b a 345439000=K ,特征多项式分解为)65.200)(98.6724476.163)(256456.11(22+++++s s s s s , 显然满足具有闭环主导极点的条件,且精度较高。 (3) 5027.13=v K ,要达到200=v K ,必须进行开环增益校正。

812.14==v v K K α,02.0296.0==p z ;02.0296.0)(2++=s s s G c ;)

583.25)(02.0()10)(296.0()(++++=s s s s s G c ;5439.34=k 。 (4) 验算: 93.0)94.14708.5()94.14432.5()(12=+-∠-+-∠=∠j j s G c ,对增益校正前的闭环极点影响很小,设计满足性能指标。

控制系统校正的根轨迹方法

控制系统校正的根轨迹方法 用根轨迹法进行校正的基础,是通过在系统开环传递函数中增加零点和极点以改变根轨迹的形状,从而使系统根轨迹在S 平面上通过希望的闭环极点。根轨迹法校正的特征是基于闭环系统具有一对主导闭环极点,当然,零点和附加的极点会影响响应特性。 应用根轨迹进行校正,实质上是通过采用校正装置改变根轨迹的,从而将一对主导闭环极点配置到期望的位置上。 在开环传递函数中增加极点,可以使根轨迹向右方移动,从而降低系统的相对稳定性,增大系统调节时间。等同于积分控制,相当于给系统增加了位于原点的极点,因此降低了系统的稳定性。 在开环传递函数中增加零点,可以使根轨迹向左方移动,从而提高系统的相对稳定性,减小系统调节时间。等同于微分控制,相当于给系统前向通道中增加了零点,因此增加了系统的超调量,并且加快了瞬态响应。 根轨迹超前校正计算步骤如下。 (1)作原系统根轨迹图; (2)根据动态性能指标,确定主导极点i s 在S 平面上的正确位置; 如果主导极点位于原系统根轨迹的左边,可确定采用微分校正,使原系统根轨迹左移,过主导极点。 (3)在新的主导极点上,由幅角条件计算所需补偿的相角差φ; 计算公式为: i s s =?±=(s)][G arg -180o ? (1) 此相角差φ表明原根轨迹不过主导极点。为了使得根轨迹能够通过该点, 必须校正装置,使补偿后的系统满足幅角条件。 (4)根据相角差φ,确定微分校正装置的零极点位置; 微分校正装置的传递函数为: 1 1 ++=sTp sTz Kc Gc (2)

例题:已知系统开环传递函数: 试设计超前校正环节, 使其校正后系统的静态速度误差系数Kv ≤4.6,闭环主导极点满足阻尼比ζ=0.2,自然振荡角频率ωn=12.0rad/s ,并绘制校正前后系统的单位阶跃响应曲线、单位脉冲响应曲线和根轨迹。 解:由6.4)(*)(0*lim 0 ==→s Gc s G s Kv s 得kc=2 计算串联超前校正环节的matlab 程序如下: 主函数: close; num=2.3; den=conv([1,0],conv([0.2,1],[0.15,1])); G=tf(num,den) %校正前系统开环传函 zata=0.2;wn=12.0; %要求参数 [num,den]=ord2(wn,zata); %追加系统动态特性 s=roots(den); s1=s(1); kc=2; %增益kc Gc=cqjz_root(G,s1,kc) GGc=G*Gc*kc %校正后系统开环传函 Gy_close=feedback(G,1) %校正前系统闭环传函 Gx_close=feedback(GGc,1) %校正后系统闭环传函 figure(1); step(Gx_close,'b',3.5); %校正后单位阶跃响应 hold on step(Gy_close,'r',3.5); %校正前单位阶跃响应 grid; gtext('校正前的'); gtext('校正后的'); figure(2); impulse(Gx_close,'b',3.5); %校正后单位冲激响应 hold on impulse(Gy_close,'r',3.5); %校正前单位冲激响应 grid; gtext('校正前的'); gtext('校正后的'); figure(3); 0 2.3 s(1+0.2s)(1+0.15s) G =

根轨迹方法控制系统校正

根轨迹方法控制系统校正 1.根轨迹方法控制系统 调节时间:t s ≤5S (2%) 最大超调量:M p ≤10% 开环比例系数:K 0≥20 2. ζ=0.6 cos β=53°,取β=45° 4.4/ζWn ≤5s , 取ζW n =1 经计算,C (s )=1.079s/s+2 3.流程图

4.程序 clear; K=2; h=0.05; A=0; B=30; f=@(m,y)(K*m-2*y)/1; fc=@(s,m)(1*s-0.002*m)/1; n=floor(B/h); s(1)=0; m(1)=0; d(1)=0; y(1)=0; t=0:h:B; for i=1:n e(i)=1-s(i); k1=f(e(i),y(i)); k2=f(e(i),y(i)+h*k1/2); k3=f(e(i),y(i)+h*k2/2); k4=f(e(i),y(i)+h*k3); y(i+1)=y(i)+h*(k1+2*k2+2*k3+k4)/6; m(i+1)=(y(i+1)-y(i))/h+0.01*y(i+1); k1=fc(m(i),d(i)); k2=fc(m(i),d(i)+h*k1/2); k3=fc(m(i),d(i)+h*k2/2); k4=fc(m(i),d(i)+h*k3); d(i+1)=d(i)+h*(k1+2*k2+2*k3+k4)/6; s(i+1)=s(i)+h*(d(i+1)+d(i))*0.5; end plot(t,s,'-m') title(sprintf('2(s+0.01)/s(s+0.002)(s+2)')) set(legend,'Location','NorthWest') hold on 5.结果 调节时间4.6S 超调量7.6% K0=50

根轨迹法校正设计

1 根轨迹法校正设计 如果设计指标是时域特征量,应采用时域校正方法,即将设计指标转换为对闭环主导极点位置的设计,常称为根轨迹法。设计过程中,不必绘制根轨迹图。根轨迹法同频率分析法一样也可以有串联超前校正、串联滞后校正和串联滞后-超前校正,因“超前”和“滞后”是频域中的概念,在根轨迹法中不使用。 基本概念: ⑴ 动态性能校正 使开环增益满足设计要求。 例:)2)(5()(0++=s s s k s G ;111)(p s z s s G c ++=;222)(p s z s s G c ++=; ⑴ 动态性能校正 配置。配置)(1s G c 的零极点应 使需要的闭环极点在校正后的系统根轨迹上,同时还要满足“闭 环主导极点”条件。 ⑵ 增益校正 配置)(2s G c 零极点,使校正后的开环增益满足要求v c c s K s G s G s sG =→)()()(lim 0120 。 说明:以根轨迹的相角条件,图解1z 和1p 的选取;图解2z 和2p 选取原系统的闭环极点位置基本不 变,并使开环可以取较大的数值。 典型设计指标:开环增益K ,超调量σ,和调节时间s t 。无论是典型设计指标还是其它形式的设计指标,都需要转换成满足指标要求的闭环主导极点位置。 设计步骤: 1.1 根据动态性能指标,计算闭环主导极点1s 和2s ; 1.2 按闭环主导极点条件,选取动态特性校正环节结构)(1s G c ;依据校正后系统特征多项式与期 望特征多项式相等,计算出校正环节的参数; 1.3 根据开环增益K ,计算增益校正环节)(2s G c 参数; 为使根轨迹(起始段除外)形状基本不变,即闭环主导极点基本不变,又要有较高的开环增益,校正环节的零点和极点必须相互接近,且接近原点。 p s z s s G c --=)(2,需满足0)()()(2≈-∠--∠=∠p s z s s G i i i c 和α==∞→p z s G c s )(lim 2; 零点和极点选取方法,1.0)Re(/1=ζ;1)/(4==n s t ζω(留余地),33.13=n ω; 闭环主导极点72.1242,1j s ±-=,相应的多项式为 17882++s s ; (2) 为使校正后系统的阶次不升高,选取a s s s G c ++=)3333.8()(1,闭环特征多项式满足: ))(1788()50)((2b s s s K s a s s +++=+++;解得238.12=a ,238.54=b ,381.9654=K ; (3) 7777.15=v K ,必须进行开环增益校正。 437.4/==v v K K α。222.0-=z ,05.0-=p ;05 .0222.0)(2++=s s s G c (4) 检验:校正后开环和闭环传递函数为 )50)(238.12)(05.0()222.0(381.9654)(++++=s s s s s s G ,) 102.0)(10817.0)(120()1505.4(05.70)(++++=s s s s s s G ; )176837.7)(227.54)(244.0()222.0(381.9654)(2+++++=Φs s s s s s ;244 .0227.546791.129185.3432,1-=-=±-=s s j s ;141222.0z s z ≈-=;

自动控制原理实验五利用matlab绘制系统根轨迹

实验五利用MATLAB绘制系统根轨迹 一、实验目的 (1)熟练掌握使用MATLAB绘制控制系统零极点图和根轨迹图的方法; (2)熟练使用根轨迹设计工具SISO; (2)学会分析控制系统根轨迹的一般规律; (3)利用根轨迹图进行系统性能分析; (4)研究闭环零、极点对系统性能的影响。 二、实验原理及内容 1、根轨迹与稳定性 当系统开环增益从变化时,若根轨迹不会越过虚轴进入s右半平面,那么系统对所有的K值都是稳定的;若根轨迹越过虚轴进入s右半平面,那么根轨迹与虚轴交点处的K值,就是临界开环增益。应用根轨迹法,可以迅速确定系统在某一开环增益或某一参数下的闭环零、极点位置,从而得到相应的闭环传递函数。 2、根轨迹与系统性能的定性分析 1)稳定性。如果闭环极点全部位于s左半平面,则系统一定是稳定的,即稳定性只与闭环极点的位置有关,而与闭环零点位置无关。 2)运动形式。如果闭环系统无零点,且闭环极点为实数极点,则时间响应一定是单调的;如果闭环极点均为复数极点,则时间响应一般是振荡的。 3)超调量。超调量主要取决于闭环复数主导极点的衰减率,并与其它闭环零、极点接近坐标原点的程度有关。 4)调节时间。调节时间主要取决于最靠近虚轴的闭环复数极点的实部绝对值;如果实数极点距虚轴最近,并且它附近没有实数零点,则调节时间主要取决于该实数极点的模值。 5)实数零、极点影响。零点减小闭环系统的阻尼,从而使系统的峰值时间提前,超调量增大;极点增大闭环系统的阻尼,使系统的峰值时间滞后,超调量减小。而且这种影响将其接近坐标原点的程度而加强。 【自我实践5-1】 在实验内容(2)中控制系统的根轨迹上分区段取点,构造闭环系统传递函数,分别绘制其对应系统的阶跃响应曲线,并比较分析。 1:阻尼比=,k=

系统根轨迹校正

自动控制系统的设计--基于根轨迹的串联校正设计 与频域法相似,利用根轨迹法进行系统的设计也有两种方法:1)常规方法;2)Matlab方法。Matlab的根轨迹方法允许进行可视化设计,具有操作简单、界面直观、交互性好、设计效率高等优点。目前常用的Matlab设计方法有:1)直接编程法;2)Matlab 控制工具箱提供的强大的Rltool工具;3)第三方提供的应用程序,如CTRLLAB等。本节在给出根轨迹的设计思路的基础上,将重点介绍第一、二种方法。 6.4.1 超前校正 关于超前校正装置的用途,在频率校正法中已进行了较详细的叙述,在此不再重复。 利用根轨迹法对系统进行超前校正的基本前提是:假设校正后的控制系统有一对闭环主导极点,这样系统的动态性能就可以近似地用这对主导极点所描述的二阶系统来表征。因此在设计校正装置之前,必须先把系统时域性能的指标转化为一对希望的闭环主导极点。通过校正装置的引入,使校正后的系统工作在这对希望的闭环主导极点处,而闭环系统的其它极点或靠近某一个闭环零点,或远离s平面的虚轴,使它们对校正后系统动态性能的影响最小。

是否采用超前校正可以按如下方法进行简单判断:若希望的闭环主导极点位于校正前系统根轨迹的左方时,宜用超前校正,即利用超前校正网络产生的相位超前角,使校正前系统的根轨迹向左倾斜,并通过希望的闭环主导极点。(一)根轨迹超前校正原理设一个单位反馈系统,G0(s)为系统的不变部分,Gc(s)为待设计的超前校正装置, Kc为附加放大器的增益。绘制G0(s)的根轨迹于图6—19上,设点Sd 为系统希望的闭环极点,则若为校正后系统根轨迹上的一点,必须满足根轨迹的相角条件,即 ∠Gc(Sd)G0(Sd)=∠Gc(Sd)+G0(Sd)=-π 图6-18 于是得超前校正装置提供的超前角为: (6-21) 显然在Sd已知的情况下,这样的Gc(s)是存在的,但它的零点和极点的组合并不唯一,这相当于张开一定角度的剪刀,以Sd为中心在摆动。若确定了Zc和Pc的位置,即确定了校正装置的参数。下面介绍三种用于确定超前校正网络零点和极点的方法。 (二)三种确定超前校正装置参数的方法

自动控制原理课程设计题目(1)

自动控制原理课程设计题目及要求 一、单位负反馈随动系统的开环传递函数为 ) 101.0)(11.0()(++= s s s K s G k 1、画出未校正系统的Bode 图,分析系统是否稳定 2、画出未校正系统的根轨迹图,分析闭环系统是否稳定。 3、设计系统的串联校正装置,使系统达到下列指标 (1)静态速度误差系数K v ≥100s -1 ; (2)相位裕量γ≥30° (3)幅频特性曲线中穿越频率ωc ≥45rad/s 。 4、给出校正装置的传递函数。 5、分别画出校正前,校正后和校正装置的幅频特性图。计算校正后系统的穿越频率ωc 、相位裕量γ、相角穿越频率ωg 和幅值裕量K g 。 6、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。 7、应用所学的知识分析校正器对系统性能的影响(自由发挥)。 二、设单位负反馈随动系统固有部分的传递函数为 ) 2)(1()(++= s s s K s G k 1、画出未校正系统的Bode 图,分析系统是否稳定。 2、画出未校正系统的根轨迹图,分析闭环系统是否稳定。 3、设计系统的串联校正装置,使系统达到下列指标: (1)静态速度误差系数K v ≥5s -1 ; (2)相位裕量γ≥40° (3)幅值裕量K g ≥10dB 。 4、给出校正装置的传递函数。 5、分别画出校正前,校正后和校正装置的幅频特性图。计算校正后系统的穿越频率ωc 、相位裕量γ、相角穿越频率ωg 和幅值裕量K g 。 6、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。 7、应用所学的知识分析校正器对系统性能的影响(自由发挥)。 三、设单位负反馈系统的开环传递函数为 ) 2(4 )(+= s s s G k 1、画出未校正系统的根轨迹图,分析系统是否稳定。 2、设计系统的串联校正装置,要求校正后的系统满足指标: 闭环系统主导极点满足ωn =4rad/s 和ξ=。 3、给出校正装置的传递函数。 4、分别画出校正前,校正后和校正装置的幅频特性图。计算校正后系统的穿越频率ωc 、相位裕量γ、相角穿越频率ωg 和幅值裕量Kg 。 5、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。

自动课程设计

课程设计任务书 院部名称机电工程学院 专业自动化 班级 M11自动化 指导教师陈丽换 金陵科技学院教务处制

摘要 MATLAB是一个包含大量计算算法的集合。其拥有600多个工程中要用到的数学运算函数,可以方便的实现用户所需的各种计算功能。函数中所使用的算法都是科研和工程计算中的最新研究成果,而前经过了各种优化和容错处理。在通常情况下,可以用它来代替底层编程语言,如C和C++ 。在计算要求相同的情况下,使用MATLAB的编程工作量会大大减少。MATLAB的这些函数集包括从最简单最基本的函数到诸如矩阵,特征向量、快速傅立叶变换的复杂函数。函数所能解决的问题其大致包括矩阵运算和线性方程组的求解、微分方程及偏微分方程的组的求解、符号运算、傅立叶变换和数据的统计分析、工程中的优化问题、稀疏矩阵运算、复数的各种运算、三角函数和其他初等数学运算、多维数组操作以及建模动态仿真等。 此次课程设计就是利用MATLAB对一单位反馈系统进行滞后-超前校正。通过运用MATLAB的相关功能,绘制系统校正前后的伯德图、根轨迹和阶跃响应曲线,,能够利用不同的分析法对给定系统进行性能分析,能根据不同的系统性能指标要求进行合理的系统设计,并调试满足系统的指标。学会使用MATLAB语言及Simulink动态仿真工具进行系统仿真与调试。 关键字:超前-滞后校正 MATLAB 仿真

1.课程设计应达到的目的 1. 掌握自动控制原理的时域分析法,根轨迹法,频域分析法,以及各种补偿(校正)装置的作用及用法,能够利用不同的分析法对给定系统进行性能分析,能根据不同的系统性能指标要求进行合理的系统设计,并调试满足系统的指标。 2. 学会使用MATLAB 语言及Simulink 动态仿真工具进行系统仿真与调试。 2.课程设计题目及要求 题目: 已知单位负反馈系统的开环传递函数, 试用频率法设计串 联滞后——超前校正装置,使之满足在单位斜坡作用下,系统的速度误差系数1v K 10s -=,系统的相角裕量045γ≥,校正后的剪切频率 1.5C rad s ω≥。 设计要求: 1. 首先, 根据给定的性能指标选择合适的校正方式对原系统进行校正,使其满足工作要求。要求程序执行的结果中有校正装置传递函数和校正后系统开环传递函数,校正装置的参数T ,α等的值。 2.. 利用MATLAB 函数求出校正前与校正后系统的特征根,并判断其系统是否 稳 定 , 为 什 么 ? 3. 利用MATLAB 作出系统校正前与校正后的单位脉冲响应曲线,单位阶跃响应曲线,单位斜坡响应曲线,分析这三种曲线的关系。求出系统校正前与校正后的动态性能指标σ%、tr 、tp 、ts 以及稳态误差的值,并分析其有何变化。 4. 绘制系统校正前与校正后的根轨迹图,并求其分离点、汇合点及与虚轴 交点的坐标和相应点的增益K *值,得出系统稳定时增益K * 的变化范围。绘制系 统校正前与校正后的Nyquist 图,判断系统的稳定性,并说明理由。 5. 绘制系统校正前与校正后的Bode 图,计算系统的幅值裕量,相位裕量,幅值穿越频率和相位穿越频率。判断系统的稳定性,并说明理由。 ()(1)(2) K G S S S S = ++

自动控制原理课程设计

课程设计报告 (2014--2015年度第一学期) 名称:《自动控制理论》课程设计 题目:基于自动控制理论的性能分析与校正院系:自动化 班级:自动化 学号: 学生姓名: 指导教师: 设计周数:1周 成绩: 日期:2015年1月9日

目录 第一部分、总体步骤 (3) 一、课程设计的目的与要求 (3) 二、主要内容 (3) 三、进度计划 (4) 四、设计成果要求 (4) 五、考核方式 (4) 第二部分、设计正文 (5) 一控制系统的数学模型 (5) 二控制系统的时域分析 (9) 三控制系统的根轨迹分析 (15) 四控制系统的频域分析 (19) 五控制系统的校正 (22) 六非线性系统分析 (38) 第三部分、课程设计总结 (40)

第一部分、总体步骤 一、课程设计的目的与要求 本课程为《自动控制理论A》的课程设计,是课堂的深化。设置《自动控制理论A》课程设计的目的是使MATLAB成为学生的基本技能,熟悉MATLAB这一解决具体工程问题的标准软件,能熟练地应用MATLAB软件解决控制理论中的复杂和工程实际问题,并给以后的模糊控制理论、最优控制理论和多变量控制理论等奠定基础。作为自动化专业的学生很有必要学会应用这一强大的工具,并掌握利用MATLAB对控制理论内容进行分析和研究的技能,以达到加深对课堂上所讲内容理解的目的。通过使用这一软件工具把学生从繁琐枯燥的计算负担中解脱出来,而把更多的精力用到思考本质问题和研究解决实际生产问题上去。 通过此次计算机辅助设计,学生应达到以下的基本要求: 1.能用MATLAB软件分析复杂和实际的控制系统。 2.能用MATLAB软件设计控制系统以满足具体的性能指标要求。 3.能灵活应用MATLAB的CONTROL SYSTEM工具箱和SIMULINK仿真软件,分析系统的性能。 二、主要内容 1.前期基础知识,主要包括MATLAB系统要素,MATLAB语言的变量与语句,MATLAB的矩阵和矩阵元素,数值输入与输出格式,MATLAB系统工作空间信息,以及MATLAB的在线帮助功能等。 2.控制系统模型,主要包括模型建立、模型变换、模型简化,Laplace变换等等。 3.控制系统的时域分析,主要包括系统的各种响应、性能指标的获取、零极点对系统性能的影响、高阶系统的近似研究,控制系统的稳定性分析,控制系统的稳态误差的求取。 4.控制系统的根轨迹分析,主要包括多回路系统的根轨迹、零度根轨迹、纯迟延系统根轨迹和控制系统的根轨迹分析。 5.控制系统的频域分析,主要包括系统Bode图、Nyquist图、稳定性判据和系统的频域响应。 6.控制系统的校正,主要包括根轨迹法超前校正、频域法超前校正、频域法滞后校正以及校正前后的性能分析。 三、进度计划

系统校正设计:根轨迹法超前校正

系统校正设计:根轨迹法超前校正 一.校正原理 如果原系统的动态性能不好,可以采用微分校正,来改善系统的超调量p M 和调节时间s t ,满足系统动态响应的快速性与平稳性的定量值。 微分校正的计算步骤如下。 (1)作原系统根轨迹图; (2)根据动态性能指标,确定主导极点i s 在S 平面上的正确位置; 如果主导极点位于原系统根轨迹的左边,可确定采用微分校正,使原系统根轨迹左移,过主导极点。 (3)在新的主导极点上,由幅角条件计算所需补偿的相角差φ; 计算公式为: i s s =?±=(s)][G arg -180o ? (1-1) 此相角差φ表明原根轨迹不过主导极点。为了使得根轨迹能够通过该点,必须校正装置,使补偿后的系统满足幅角条件 (4)根据相角差φ,确定微分校正装置的零极点位置; 注意满足相角差φ的零极点位置的解有许多组,可任意选定。在这里给出一种用几何作图法来确定零极点位置的方法如下 ○1过主导极点i s 与原点作直线OA , ○2过主导极点i s 作水平线, ○3平分两线夹角作直线AB 交负实轴于B 点, ○4由直线AB 两边各分 ?2 1 识作射线交负实轴,左边交点为D P -,右边交点为 为D Z -,如图1-1所示。微分校正装置的传递函数为 D D c P s Z s (s)++= G (1-2)

图1-1 零极点位置的确定 (5)由幅值条件计算根轨迹过主导极点时相应的根轨迹增益gc K 的值,计算公式为 1(s)(s)G G o c ==i s s (1-3) (6)确定网络参数。(有源网络或者无源网络); (7)校核幅值条件(s)(s)o c G G 、幅角条件(s)](s)G [G arg o c 、动态性能指标 p M 和s t 等。 二.校正实例 已知系统的开环传递函数为)2s(s 4 (s)o += G ,要求s t s 2%,20M p <<,试用 根轨迹法作微分校正。 解:(1)作原系统的根轨迹图如图1-3所示 ○1 原系统的结构图如图1-2所示

自动控制根轨迹课程设计(精髓版)

西安石油大学 课程设计 电子工程学院自动化专业 1203班题目根轨迹法校正的设计 学生郭新兴 指导老师陈延军 二○一四年十二月

目录 1. 任务书.........................................1 2.设计思想及内容.................................2 3.编制的程序.....................................2 3.1运用MATLAB编程............................ 2 3.2由期望极点位置确定校正器传递函数...........4 3.3 校正后的系统传递函数.......................5 4.结论...........................................7 5.设计总结.......................................8 6.参考文献.......................................8

《自动控制理论》课程设计任务书

2.设计内容及思想 : 1) 内容:已知单位负反馈系统被控对象传递函数为: ) 25(2500 )(0 0+=s s K s G ,试用根轨迹几何设计法对系统进行滞后串联校正 设计,使之满足: (1)阶跃响应的超调量:σ%≤15%; (2)阶跃响应的调节时间:t s ≤0.3s ; (3)单位斜坡响应稳态误差:e ss ≤0.01。 2)思想: 首先绘出未校正系统得bode 图与频域性能,然后利用MATLAB 的SISOTOOL 软件包得到系统的根轨迹图,对系统进行校正,分析系统未校正前的参数,再按题目要求对系统进行校正,计算出相关参数。最后观察曲线跟题目相关要求对比看是否满足要求,并判断系统校正前后的差异。 3 编制的程序: 3.1运用MATLAB 编程: 根据自动控制理论,对 I 型系统的公式可以求出静态误差系数 K 0=1。再根据要求编写未校正以前的程序 %MATLAB PROGRAM L1.m K=1; %由稳态误差求得; n1=2500;d1=conv([1 0],[1 25]); %分母用conv 表示卷积;

自动控制原理课程设计--根轨迹法

自动控制原理综合实验 一.实验目的 1.掌握连续系统的根轨迹法校正设计过程 2.掌握用根轨迹法设计校正装置的方法,并用实验验证校正装置的正确性 3.了解MATLAB 中根轨迹设计器的应用 4.了解零点和极点对一个系统的影响 二.实验内容 设控制系统为单位负反馈系统,开环传递函数为: ()(20)(5) K G s s s s =++ 试用根轨迹法设计串联超前校正装置,使校正后系统满足:期望开环放大系数K ≥18,0.4s t s ≤ ,%25%σ≤。 三.实验步骤 (1)用鼠标双击MATLAB 图标,进入MATLAB 命令窗口:“Command Window ”. (2)在“Command Window ”中键入以下程序: clear; num1=[1 ]; den1=conv([1 0],conv([1 20],[1 5])); Gk=tf(num1,den1); rltool(Gk) 得到如图1所示的开环的根轨迹图形,图1中红色正方形是k =1时闭环系统的极点。

图1 (3)选择Analysis—other loop repsonses点击后如图2所示 图2 图2的设置,表示要观察闭环系统的单位阶跃输入的时域响应曲线。 选择STEP后在右边的Closed-loop下面的r to y打钩,按OK.观察系统的阶跃响应,如图3所示

图3 (4)引入设计规则:添加设计条件,在根轨迹上建立期望极点区域。在图4的菜单项中,点击Edit>>Root Locus>>Design Constrains>>New,得图5。 图4 在图4所示的界面上设置调节时间。设置完毕,点击OK,得图5。

1 根轨迹法超前校正

实验8 系统校正设计:根轨迹法超前校正 一.实验目的 对于给定的控制系统,采用根轨迹法设计满足时域性能指标的超前校正装置,并通过仿真结果验证设计的正确性。 二.实验步骤 1. 在Windows界面上用鼠标双击matlab图标,即可打开MATLAB命令平台。 2. 键入命令simulink,打开结构图设计界面。 3. 建立时域仿真的结构图文件“mysimu.m”。 给定结构图如图20所示 图20 SIMULINK仿真结构图 4.结构图单元参数设置。 用鼠标器双击任何一个结构图单元即激活结构图单元的参数设置窗口,完成结构图单元的参数设置。 5.仿真参数设置。 用鼠标选择主菜单的“Simulation”选项,选择“Simulation Parameter”选项,打开仿真参数设置窗口,完成仿真参数设置。 6.仿真操作。 选中“simulation”菜单项中的选项“start”即启动系统的仿真。

(或者使用工具栏上的启动按钮。) 三.实验要求 1. 作原系统的根轨迹图。 numo=[10];deno=[0.5 1 0]; rlocus(numo,deno); 2. 求出闭环极点的位置,计算时域性能M p0和t s0。 numo=[10];deno=[0.5 1 0]; [numc,denc]=cloop(numo,deno,-1); printsys(numc,denc); pzmap(numc,denc); 用于在s 平面上作图,作出零点.极点的位置如图21所示。 [p,z]=pzmap(numc,denc); 图21开环极点用于求得零点.极点的值。 p p = -1.0000 + 4.3589i -1.0000 - 4.3589i z z = [] 3. 作时域仿真。 sysc=tf(numc,denc);step(sysc)

根轨迹串联超前校正

东北大学秦皇岛分校自动化工程系自动控制系统课程设计 根轨迹串联超前校正 专业名称自动化 01 班级学号50801 5080101 学生姓名 指导教师 设计时间2020111111..6.2.277~20 ~20111111..7.8

目录 摘要 (1) 1.绪论 (3) 1.1课题概述 (3) 1.2根轨迹法超前校正简介 (3) 1.3课题研究的目的和意义 (4) 1.4本课题研究的主要内容 (4) 2.系统校正 (5) 2.1已知条件及要求 (5) 2.2对系统进行分析 (5) 2.2.1当串联一个零点时 (7) 2.2.2串联一个具有零点性质的零极点对 (8) 2.2.3串联一个具有两个零点,一个极点的控制器时 (9) 2.2.4当串联具有零点性质的两个极点,一个零点的控制器时 (10) 2.2.5串联更复杂的具有零点性质的控制器 (11) 3.总结 (13) 4.致谢 (13) 5.参考文献 (14)

摘要 根轨迹法是一种直观的图解方法,它显示了当系统某一参数(通常为增益)从零变化到无穷大时,如何根据开环极点和零点的位置确定全部闭环极点位置。从根轨迹图可以看出,只调整增益往往不能获得所希望的性能。事实上,在某些情况下,对于所有的增益,系统可能都是不稳定的。因此,必须改造系统的根轨迹,使其满足性能指标。 利用根轨迹法对系统进行超前校正的基本前提是:假设校正后的控制系统有一对闭环主导极点,这样系统的动态性能就可以近似地用这对主导极点所描述的二阶系统来表征。因此在设计校正装置之前,必须先把系统时域性能的指标转化为一对希望的闭环主导极点。通过校正装置的引入,使校正后的系统工作在这对希望的闭环主导极点处,而闭环系统的其它极点或靠近某一个闭环零点,或远离s平面的虚轴,使它们对校正后系统动态性能的影响最小。 是否采用超前校正可以按如下方法进行简单判断:若希望的闭环主导极点位于校正前系统根轨迹的左方时,宜用超前校正,即利用超前校正网络产生的相位超前角,使校正前系统的根轨迹向左倾斜,并通过希望的闭环主导极点。 用根据轨迹法进行超前校正的一般步骤为: 1)根据对系统静态性能指标和动态性能指标的要求,分析确定希望的开环 增益和闭环主导极点的位置。 2)画出校正前系统的根轨迹,判断希望的主导极点位于原系统的根轨迹左 侧,以确定是否应加超前校正装置。 3)根据题目要求解出超前校正网络在闭环主导极点处应提供的相位超前 角。 4)根据图解法求得G c(s)的零点和极点,进而求出校正装置的参数。 5)画出校正后系统的根轨迹,校核闭环主导极点是否符合设计要求。 本文在进行根轨迹超前校正时应用了MATLAB,MATLAB的根轨迹方法允许进行可视化设计,具有操作简单、界面直观、交互性好、设计效率高等优点。早期超前校正器的设计往往依赖于试凑的方法,重复劳动多,运算量大,又难以得到满意的结果。MATLAB作为一种高性能软件和编程语言,以矩阵运算为基础,

自动控制原理课程设计

课程设计报告 ( 2013-- 2014 年度第 1 学期) 名称:《自动控制理论》课程设计 题目:基于自动控制理论的性能分析与校正院系:自动化系 班级: 学号: 学生姓名: 指导教师:孙建平 设计周数:1周 成绩: 日期:2014 年 1 月3 日

一、课程设计的目的与要求 本课程为《自动控制理论A》的课程设计,是课堂的深化。设置《自动控制理论A》课程设计的目的是使MATLAB成为学生的基本技能,熟悉MATLAB这一解决具体工程问题的标准软件,能熟练地应用MATLAB软件解决控制理论中的复杂和工程实际问题,并给以后的模糊控制理论、最优控制理论和多变量控制理论等奠定基础。作为自动化专业的学生很有必要学会应用这一强大的工具,并掌握利用MATLAB对控制理论内容进行分析和研究的技能,以达到加深对课堂上所讲内容理解的目的。通过使用这一软件工具把学生从繁琐枯燥的计算负担中解脱出来,而把更多的精力用到思考本质问题和研究解决实际生产问题上去。 通过此次计算机辅助设计,学生应达到以下的基本要求: 1.能用MATLAB软件分析复杂和实际的控制系统。 2.能用MATLAB软件设计控制系统以满足具体的性能指标要求。 3.能灵活应用MATLAB的CONTROL SYSTEM 工具箱和SIMULINK仿真软件,分析系统的性能。 二、主要内容 1.前期基础知识,主要包括MA TLAB系统要素,MA TLAB语言的变量与语句,MATLAB 的矩阵和矩阵元素,数值输入与输出格式,MATLAB系统工作空间信息,以及MA TLAB的在线帮助功能等。 2.控制系统模型,主要包括模型建立、模型变换、模型简化,Laplace变换等等。 3.控制系统的时域分析,主要包括系统的各种响应、性能指标的获取、零极点对系统性能的影响、高阶系统的近似研究,控制系统的稳定性分析,控制系统的稳态误差的求取。 4.控制系统的根轨迹分析,主要包括多回路系统的根轨迹、零度根轨迹、纯迟延系统根轨迹和控制系统的根轨迹分析。 5.控制系统的频域分析,主要包括系统Bode图、Nyquist图、稳定性判据和系统的频域响应。 6.控制系统的校正,主要包括根轨迹法超前校正、频域法超前校正、频域法滞后校正以及校正前后的性能分析。 三、设计正文 1,控制系统模型:

位置随动系统的分析与设计自动控制原理课程设计627036讲课教案

《自动控制原理》课程设计(简明)任务书 引言:《自动控制原理》课程设计是该课程的一个重要教学环节,既有别于毕业设计,更不同于课堂教学。它主要是培养学生统筹运用自动控制原理课程中所学的理论知识,掌握反馈控制系统的基本理论和基本方法,对工程实际系统进行完整的全面分析和综合。 一、设计题目:位置随动系统的分析与设计 二、系统说明: 该系统结构如下图所示 BST BSR 相敏 电流 功率放大 SM 负载 TG 减速器 θ1 θ2 K ε ua u n 其中:放大器增益为Ka=15,电桥增益6K ε=,测速电机增益2t k =,Ra=7Ω,La=10mH,J=0.005kg.m/s 2,J L =0.03kg.m/s 2,f L =0.08,C e =1,Cm=3,f=0.1,K b =0.2,i=0.02 三、系统参量: 系统输入信号:)(t 1θ 系统输出信号:) (t 2θ 四、设计指标: 设定:输入为r(t)=a+bt (其中:a=10, b=5) 在保证静态指标(ess ≤0.3)的前提下,

要求动态期望指标:σ p ﹪≤15﹪;t s ≤5sec; 五、基本要求: 1.建立系统数学模型——传递函数; 2.利用根轨迹方法分析系统: (1)作原系统的根轨迹草图; (2)分析原系统的性能,当原系统的性能不满足设计要求时,则进行系统校正。 3.利用根轨迹方法综合系统: (1)画出串联校正结构图,分析并选择串联校正的类型(微分、积分和微分-积分校正); (2)确定校正装置传递函数的参数; (3)画出校正后的系统的根轨迹图,并校验系统性能;若不满足,则重新确定校正装置的参数。 4.完成系统综合前后的有源物理模拟电路; 六、课程设计报告: 1、课程设计计算说明书一份; 2、原系统组成结构原理图一张(自绘); 3、系统分析,综合用根轨迹图一张; 4、系统综合前后的模拟图各一张; 5、总结(包括课程设计过程中的学习体会与收获、对本次课程设计的认识等内容); 6、提供参考资料及文献; 7、排版格式完整、报告语句通顺、封面装帧成册

课程设计-飞行控制

课 程 设 计 报 告 学 院: 自动化学院 专业名称: 自动化专业 学生姓名: 雷雨田 学 号: 2008302146 指导教师: 谢蓉 时 间: 2010年6月

课程设计任务书 一、设计内容 1 查阅有关资料。 2 已知单位负反馈系统的开环传递函数为: 40 ()(0.21)(0.06251) G s s s s = ++ 对系统进行稳定性分析、稳态误差分析以及动态特性分析。 3 用MATLAB 语言及Simulink 动态仿真工具,绘制根轨迹图、Nyquist 图、Bode 图。 4 设计校正系统,使得校正后的系统相角裕度不小于40 ,幅值裕度不小于10db 。 5 在计算机上实现控制系统,并按指标要求进行实际调试。 6 完成设计报告。 二、主要技术指标 相位裕度o ()40c γω≥,幅值裕度()10c h db ω≥。 三、进度要求 2周完成设计任务,撰写设计报告3000字以上,应包含设计过程、 计算结果、 图表等内容。 学 生 指导教师

1. 设计内容 同课程设计任务书。 2. 设计过程 1 利用MATLAB 函数求得系统零极点,并判断系统稳定性。 1.1、涉及到得自控知识: 1)稳定性的概念: 如果在扰动作用下系统偏离了原来的平衡状态,在扰动消失后,系统能够以足够的准确度恢复到平衡状态,则系统是稳定的。否则,系统不稳定。 2)稳定的充分必要条件: 系统稳定的充分必要条件是系统闭环特征方程的所有根均具有负的实部,或者所有闭环特征根均位于左半s 平面。 1.2、分析过程: 1)系统开环传递函数为: 40 ()(0.21)(0.06251) G s s s s = ++ 可得闭环传递函数为: 40 2625.00125.040 )(2 3+++= Φs s s s 2)系统的零极点: 用MATLAB 计算系统的零极点: 没有零点; 极点为: d=conv([1 0],conv([0.2 1],[0.0625 1]));%分母多项式 roots(d)%求极点 ans =

根轨迹法分析典型二阶系统的动态性能

邢台学院物理系 《自动控制理论》 课程设计报告书 设计题目:根轨迹法分析典型二阶系统的动态性能专业:自动化 班级: 学生姓名: 学号: 指导教师: 2013 年3 月 24 日

邢台学院物理系课程设计任务书 专业:自动化班级: 学生姓名学号 课程名称自动控制理论设计题目根轨迹法分析典型二阶系统的动态性能 设计目的、主要内容(参数、方法)及要求本次课程设计以典型二阶系统为例,用根轨迹法分析该系统的调节时间,振荡频率,无阻尼自然振荡频率,超调量等动态性能。 工作量2周 进度安排3月11日―3月14日:确定自己需要研究的课题,针对需要查找资料。3月15日―3月18日:将搜集到的资料进行整理,简单的写出设计大纲。3月19日―3月22日:下载任务书模板,填写内容逐步完成设计。 3月23日―3月24日:浏览任务书,进行自我完善。 主要参考资料[1] 谢红卫. 现代控制系统. 高等教育出版社,2007 [2] 胡寿松. 自动控制原理. 科学出版社,2007 [3] 黄忠霖. 自动控制原理的MATLAB实现. 国防工业出版社,2007 [4] 黄坚. 自动控制理论及其应用. 科学出版社,2007 指导 教师签字 系主任签字 2013年 3 月 24 日

摘要 由时域分析法可知,系统的输出响应很大程度上取决于其闭环特征方程 式的根(特征根),也即闭环传递函数的极点。当系统的某个参数变化时,特 征方程跟随之在s平面上移动,系统的性能也跟着变化。这样,可以根据特征 根在s 平面上的位置来分析系统的性能,也可以依据对系统性能的要求来确定根的位置,据此确定系统的参数。研究s平面上根的位置随参数变化的规律及 其与系统性能的关系就是根轨迹分析法的主要内容。 根轨迹分析法是一种适合于高阶系统的图解分析方法。该方法简单,实用,既适合于线性定常连续系统,也适合于线性定常离散系统,是经典控制理论的基本方法之一。 本次课程设计以典型二阶系统为例,用根轨迹法分析该系统的调节时间,振荡频率,无阻尼自然振荡频率,超调量等动态性能。 关键词:典型二阶系统根轨迹法

控制系统的根轨迹法设计

大学 课程设计 学院专业 班 题目控制系统的根轨迹法设计 学生 指导老师 二○一〇年十二月 目录

一、任务书(1) 二、设计思想(2) 三、编制的程序(2) 四、设计结论(6) 五、设计总结(6) 六、参考文献(6) 《自动控制理论》

课程设计任务书 当系统的性能指标给定为时域指标(如超调量、阻尼系数、自然频率等)时,用根轨迹法对系统进行校正比较方便。这是因为系统的动态性能取决于它的闭环零、极点在S平

面上的分布。 因此,根轨迹法校正的特点就是:如何选择控制器的零、极点,去促使系统的根轨迹朝有利于提高系统性能的方向变化,从而满足设计要求。 二阶系统的性能指标和参数之间具有明确的解析式,而高阶系统没有这一特点,只能通过寻找对系统动态性能起决定作用的主导极点,从而近似成二阶系统,在留有余量的情况下,作为设计依据。因此,可以把讨论对系统性能指标的要求转化为对系统期望主导极点在S 平面上分布的要求。所以,根轨迹法校正就是迫使被校正系统的根轨迹通过期望主导极点而达到校正的目的。 根据题目要求,然后根据公式σ%=0.16+0.4(Mr-1)=20% 和公式Ko=2+1.5(1/sin γ-1)+2.5(1/sin γ-1)2 ,以及M r =1/sin γ,即可得到Ko.然后利用函数sisotool 即可得到矫正传递函数:。最后观察单位阶跃响应验证校正后系统是否满足要求。 三、编制的程序 (1)因为σ%=0.16+0.4(Mr-1)=20%,则有 Syms Mr sigma ; Mr=solve('0.16+0.4*(Mr-1)=0.2'); %利用超调量求Mr Mr=vpa(Mr,3) 语句执行结果:Mr=1.1. (2)又因Mr=1/sin γ 又Ko=2+1.5(1/sin γ-1)+2.5(1/sin γ-1)2 ,故将Mr 代替1/sin γ来求取Ko; Syms Ko Mr ; Mr=1.1; Ko=2+1.5*(Mr-1)+2.5*(Mr-1) ^2 %根据Mr=1/sin γ=1.1求取Ko 语句执行结果: Ko=2.175,可以取整数K 0=2 . 3)那么开环传递函数为 )2(2 )(0+= s s s G 程序如下 k=2 %原系统的增益; n1=1; %分子; d1=conv([1 0],[1 2]); %分母用conv 表示卷积; sys=tf(k*n1,d1) %原系统表达式; sisotool(sys); %得出原系统的阶跃响应曲线; 语句执行结果可得未校正系统的bode 图和单位阶跃响应如下

相关文档
最新文档