根轨迹校正法

根轨迹校正法
根轨迹校正法

在根轨迹校正法中,当系统的动态性能不足时,通常选择什么形式的串联校正网络?网络参数取值与校正效果之间有什么关系?工程应用时应该注意什么问题?

(1)可以采用的校正装置的形式为

单零点校正:)()(c c c z s k s G +=,零点c z -在s 平面的负实轴上;

零极点校正:)()()

()(c c c c c c z p p s z s K s G >++=,零极点均在负实轴上,零点比极点靠近原

点(即:超前校正)。

(2)零点越靠近原点、极点越远离原点校正作用越强。

(3)在工程应用时,应考虑校正装置的可实施性,零极点分布最好在左半平面的中部,因为零点太靠近原点,微分作用太强,可能使执行机构进入饱和状态而达不到预期的效果。 在根轨迹校正法中,当系统的静态性能不足时,通常选择什么形式的串联校正网络?网络参数取值与校正效果之间有什么关系?工程应用时应该注意什么问题? (1)校正装置的形式为)()

()()(c c c c c c p z p s z s K s G >++=,即滞后校正装置。零极点均在负实轴上,零极点非常靠近虚轴,且与受控对象的其他零极点相比可以构成一对偶极子。

由于增加一对偶极子基本不改变系统的动态性能,但可以增大系统的开环增益,从而达到减小系统静态误差的目的。 (2)零极点之比c c p z 的取值越大,系统开环增益增加幅度越大,因为校正后的开环增益是校正前开环增益的c c p z 倍。

(3)在工程实施时,考虑到系统的稳定性,极点不能太靠近原点。

控制系统校正的根轨迹方法

控制系统校正的根轨迹方法 用根轨迹法进行校正的基础,是通过在系统开环传递函数中增加零点和极点以改变根轨迹的形状,从而使系统根轨迹在S 平面上通过希望的闭环极点。根轨迹法校正的特征是基于闭环系统具有一对主导闭环极点,当然,零点和附加的极点会影响响应特性。 应用根轨迹进行校正,实质上是通过采用校正装置改变根轨迹的,从而将一对主导闭环极点配置到期望的位置上。 在开环传递函数中增加极点,可以使根轨迹向右方移动,从而降低系统的相对稳定性,增大系统调节时间。等同于积分控制,相当于给系统增加了位于原点的极点,因此降低了系统的稳定性。 在开环传递函数中增加零点,可以使根轨迹向左方移动,从而提高系统的相对稳定性,减小系统调节时间。等同于微分控制,相当于给系统前向通道中增加了零点,因此增加了系统的超调量,并且加快了瞬态响应。 根轨迹超前校正计算步骤如下。 (1)作原系统根轨迹图; (2)根据动态性能指标,确定主导极点i s 在S 平面上的正确位置; 如果主导极点位于原系统根轨迹的左边,可确定采用微分校正,使原系统根轨迹左移,过主导极点。 (3)在新的主导极点上,由幅角条件计算所需补偿的相角差φ; 计算公式为: i s s =?±=(s)][G arg -180o ? (1) 此相角差φ表明原根轨迹不过主导极点。为了使得根轨迹能够通过该点, 必须校正装置,使补偿后的系统满足幅角条件。 (4)根据相角差φ,确定微分校正装置的零极点位置; 微分校正装置的传递函数为: 1 1 ++=sTp sTz Kc Gc (2)

例题:已知系统开环传递函数: 试设计超前校正环节, 使其校正后系统的静态速度误差系数Kv ≤4.6,闭环主导极点满足阻尼比ζ=0.2,自然振荡角频率ωn=12.0rad/s ,并绘制校正前后系统的单位阶跃响应曲线、单位脉冲响应曲线和根轨迹。 解:由6.4)(*)(0*lim 0 ==→s Gc s G s Kv s 得kc=2 计算串联超前校正环节的matlab 程序如下: 主函数: close; num=2.3; den=conv([1,0],conv([0.2,1],[0.15,1])); G=tf(num,den) %校正前系统开环传函 zata=0.2;wn=12.0; %要求参数 [num,den]=ord2(wn,zata); %追加系统动态特性 s=roots(den); s1=s(1); kc=2; %增益kc Gc=cqjz_root(G,s1,kc) GGc=G*Gc*kc %校正后系统开环传函 Gy_close=feedback(G,1) %校正前系统闭环传函 Gx_close=feedback(GGc,1) %校正后系统闭环传函 figure(1); step(Gx_close,'b',3.5); %校正后单位阶跃响应 hold on step(Gy_close,'r',3.5); %校正前单位阶跃响应 grid; gtext('校正前的'); gtext('校正后的'); figure(2); impulse(Gx_close,'b',3.5); %校正后单位冲激响应 hold on impulse(Gy_close,'r',3.5); %校正前单位冲激响应 grid; gtext('校正前的'); gtext('校正后的'); figure(3); 0 2.3 s(1+0.2s)(1+0.15s) G =

根轨迹法校正设计

1 根轨迹法校正设计 如果设计指标是时域特征量,应采用时域校正方法,即将设计指标转换为对闭环主导极点位置的设计,常称为根轨迹法。设计过程中,不必绘制根轨迹图。根轨迹法同频率分析法一样也可以有串联超前校正、串联滞后校正和串联滞后-超前校正,因“超前”和“滞后”是频域中的概念,在根轨迹法中不使用。 基本概念: ⑴ 动态性能校正 使开环增益满足设计要求。 例:)2)(5()(0++=s s s k s G ;111)(p s z s s G c ++=;222)(p s z s s G c ++=; ⑴ 动态性能校正 配置。配置)(1s G c 的零极点应 使需要的闭环极点在校正后的系统根轨迹上,同时还要满足“闭 环主导极点”条件。 ⑵ 增益校正 配置)(2s G c 零极点,使校正后的开环增益满足要求v c c s K s G s G s sG =→)()()(lim 0120 。 说明:以根轨迹的相角条件,图解1z 和1p 的选取;图解2z 和2p 选取原系统的闭环极点位置基本不 变,并使开环可以取较大的数值。 典型设计指标:开环增益K ,超调量σ,和调节时间s t 。无论是典型设计指标还是其它形式的设计指标,都需要转换成满足指标要求的闭环主导极点位置。 设计步骤: 1.1 根据动态性能指标,计算闭环主导极点1s 和2s ; 1.2 按闭环主导极点条件,选取动态特性校正环节结构)(1s G c ;依据校正后系统特征多项式与期 望特征多项式相等,计算出校正环节的参数; 1.3 根据开环增益K ,计算增益校正环节)(2s G c 参数; 为使根轨迹(起始段除外)形状基本不变,即闭环主导极点基本不变,又要有较高的开环增益,校正环节的零点和极点必须相互接近,且接近原点。 p s z s s G c --=)(2,需满足0)()()(2≈-∠--∠=∠p s z s s G i i i c 和α==∞→p z s G c s )(lim 2; 零点和极点选取方法,1.0)Re(/1=ζ;1)/(4==n s t ζω(留余地),33.13=n ω; 闭环主导极点72.1242,1j s ±-=,相应的多项式为 17882++s s ; (2) 为使校正后系统的阶次不升高,选取a s s s G c ++=)3333.8()(1,闭环特征多项式满足: ))(1788()50)((2b s s s K s a s s +++=+++;解得238.12=a ,238.54=b ,381.9654=K ; (3) 7777.15=v K ,必须进行开环增益校正。 437.4/==v v K K α。222.0-=z ,05.0-=p ;05 .0222.0)(2++=s s s G c (4) 检验:校正后开环和闭环传递函数为 )50)(238.12)(05.0()222.0(381.9654)(++++=s s s s s s G ,) 102.0)(10817.0)(120()1505.4(05.70)(++++=s s s s s s G ; )176837.7)(227.54)(244.0()222.0(381.9654)(2+++++=Φs s s s s s ;244 .0227.546791.129185.3432,1-=-=±-=s s j s ;141222.0z s z ≈-=;

自动控制原理实验五利用matlab绘制系统根轨迹

实验五利用MATLAB绘制系统根轨迹 一、实验目的 (1)熟练掌握使用MATLAB绘制控制系统零极点图和根轨迹图的方法; (2)熟练使用根轨迹设计工具SISO; (2)学会分析控制系统根轨迹的一般规律; (3)利用根轨迹图进行系统性能分析; (4)研究闭环零、极点对系统性能的影响。 二、实验原理及内容 1、根轨迹与稳定性 当系统开环增益从变化时,若根轨迹不会越过虚轴进入s右半平面,那么系统对所有的K值都是稳定的;若根轨迹越过虚轴进入s右半平面,那么根轨迹与虚轴交点处的K值,就是临界开环增益。应用根轨迹法,可以迅速确定系统在某一开环增益或某一参数下的闭环零、极点位置,从而得到相应的闭环传递函数。 2、根轨迹与系统性能的定性分析 1)稳定性。如果闭环极点全部位于s左半平面,则系统一定是稳定的,即稳定性只与闭环极点的位置有关,而与闭环零点位置无关。 2)运动形式。如果闭环系统无零点,且闭环极点为实数极点,则时间响应一定是单调的;如果闭环极点均为复数极点,则时间响应一般是振荡的。 3)超调量。超调量主要取决于闭环复数主导极点的衰减率,并与其它闭环零、极点接近坐标原点的程度有关。 4)调节时间。调节时间主要取决于最靠近虚轴的闭环复数极点的实部绝对值;如果实数极点距虚轴最近,并且它附近没有实数零点,则调节时间主要取决于该实数极点的模值。 5)实数零、极点影响。零点减小闭环系统的阻尼,从而使系统的峰值时间提前,超调量增大;极点增大闭环系统的阻尼,使系统的峰值时间滞后,超调量减小。而且这种影响将其接近坐标原点的程度而加强。 【自我实践5-1】 在实验内容(2)中控制系统的根轨迹上分区段取点,构造闭环系统传递函数,分别绘制其对应系统的阶跃响应曲线,并比较分析。 1:阻尼比=,k=

系统根轨迹校正

自动控制系统的设计--基于根轨迹的串联校正设计 与频域法相似,利用根轨迹法进行系统的设计也有两种方法:1)常规方法;2)Matlab方法。Matlab的根轨迹方法允许进行可视化设计,具有操作简单、界面直观、交互性好、设计效率高等优点。目前常用的Matlab设计方法有:1)直接编程法;2)Matlab 控制工具箱提供的强大的Rltool工具;3)第三方提供的应用程序,如CTRLLAB等。本节在给出根轨迹的设计思路的基础上,将重点介绍第一、二种方法。 6.4.1 超前校正 关于超前校正装置的用途,在频率校正法中已进行了较详细的叙述,在此不再重复。 利用根轨迹法对系统进行超前校正的基本前提是:假设校正后的控制系统有一对闭环主导极点,这样系统的动态性能就可以近似地用这对主导极点所描述的二阶系统来表征。因此在设计校正装置之前,必须先把系统时域性能的指标转化为一对希望的闭环主导极点。通过校正装置的引入,使校正后的系统工作在这对希望的闭环主导极点处,而闭环系统的其它极点或靠近某一个闭环零点,或远离s平面的虚轴,使它们对校正后系统动态性能的影响最小。

是否采用超前校正可以按如下方法进行简单判断:若希望的闭环主导极点位于校正前系统根轨迹的左方时,宜用超前校正,即利用超前校正网络产生的相位超前角,使校正前系统的根轨迹向左倾斜,并通过希望的闭环主导极点。(一)根轨迹超前校正原理设一个单位反馈系统,G0(s)为系统的不变部分,Gc(s)为待设计的超前校正装置, Kc为附加放大器的增益。绘制G0(s)的根轨迹于图6—19上,设点Sd 为系统希望的闭环极点,则若为校正后系统根轨迹上的一点,必须满足根轨迹的相角条件,即 ∠Gc(Sd)G0(Sd)=∠Gc(Sd)+G0(Sd)=-π 图6-18 于是得超前校正装置提供的超前角为: (6-21) 显然在Sd已知的情况下,这样的Gc(s)是存在的,但它的零点和极点的组合并不唯一,这相当于张开一定角度的剪刀,以Sd为中心在摆动。若确定了Zc和Pc的位置,即确定了校正装置的参数。下面介绍三种用于确定超前校正网络零点和极点的方法。 (二)三种确定超前校正装置参数的方法

根轨迹方法控制系统校正

根轨迹方法控制系统校正 1.根轨迹方法控制系统 调节时间:t s ≤5S (2%) 最大超调量:M p ≤10% 开环比例系数:K 0≥20 2. ζ=0.6 cos β=53°,取β=45° 4.4/ζWn ≤5s , 取ζW n =1 经计算,C (s )=1.079s/s+2 3.流程图

4.程序 clear; K=2; h=0.05; A=0; B=30; f=@(m,y)(K*m-2*y)/1; fc=@(s,m)(1*s-0.002*m)/1; n=floor(B/h); s(1)=0; m(1)=0; d(1)=0; y(1)=0; t=0:h:B; for i=1:n e(i)=1-s(i); k1=f(e(i),y(i)); k2=f(e(i),y(i)+h*k1/2); k3=f(e(i),y(i)+h*k2/2); k4=f(e(i),y(i)+h*k3); y(i+1)=y(i)+h*(k1+2*k2+2*k3+k4)/6; m(i+1)=(y(i+1)-y(i))/h+0.01*y(i+1); k1=fc(m(i),d(i)); k2=fc(m(i),d(i)+h*k1/2); k3=fc(m(i),d(i)+h*k2/2); k4=fc(m(i),d(i)+h*k3); d(i+1)=d(i)+h*(k1+2*k2+2*k3+k4)/6; s(i+1)=s(i)+h*(d(i+1)+d(i))*0.5; end plot(t,s,'-m') title(sprintf('2(s+0.01)/s(s+0.002)(s+2)')) set(legend,'Location','NorthWest') hold on 5.结果 调节时间4.6S 超调量7.6% K0=50

系统校正设计:根轨迹法超前校正

系统校正设计:根轨迹法超前校正 一.校正原理 如果原系统的动态性能不好,可以采用微分校正,来改善系统的超调量p M 和调节时间s t ,满足系统动态响应的快速性与平稳性的定量值。 微分校正的计算步骤如下。 (1)作原系统根轨迹图; (2)根据动态性能指标,确定主导极点i s 在S 平面上的正确位置; 如果主导极点位于原系统根轨迹的左边,可确定采用微分校正,使原系统根轨迹左移,过主导极点。 (3)在新的主导极点上,由幅角条件计算所需补偿的相角差φ; 计算公式为: i s s =?±=(s)][G arg -180o ? (1-1) 此相角差φ表明原根轨迹不过主导极点。为了使得根轨迹能够通过该点,必须校正装置,使补偿后的系统满足幅角条件 (4)根据相角差φ,确定微分校正装置的零极点位置; 注意满足相角差φ的零极点位置的解有许多组,可任意选定。在这里给出一种用几何作图法来确定零极点位置的方法如下 ○1过主导极点i s 与原点作直线OA , ○2过主导极点i s 作水平线, ○3平分两线夹角作直线AB 交负实轴于B 点, ○4由直线AB 两边各分 ?2 1 识作射线交负实轴,左边交点为D P -,右边交点为 为D Z -,如图1-1所示。微分校正装置的传递函数为 D D c P s Z s (s)++= G (1-2)

图1-1 零极点位置的确定 (5)由幅值条件计算根轨迹过主导极点时相应的根轨迹增益gc K 的值,计算公式为 1(s)(s)G G o c ==i s s (1-3) (6)确定网络参数。(有源网络或者无源网络); (7)校核幅值条件(s)(s)o c G G 、幅角条件(s)](s)G [G arg o c 、动态性能指标 p M 和s t 等。 二.校正实例 已知系统的开环传递函数为)2s(s 4 (s)o += G ,要求s t s 2%,20M p <<,试用 根轨迹法作微分校正。 解:(1)作原系统的根轨迹图如图1-3所示 ○1 原系统的结构图如图1-2所示

1 根轨迹法超前校正

实验8 系统校正设计:根轨迹法超前校正 一.实验目的 对于给定的控制系统,采用根轨迹法设计满足时域性能指标的超前校正装置,并通过仿真结果验证设计的正确性。 二.实验步骤 1. 在Windows界面上用鼠标双击matlab图标,即可打开MATLAB命令平台。 2. 键入命令simulink,打开结构图设计界面。 3. 建立时域仿真的结构图文件“mysimu.m”。 给定结构图如图20所示 图20 SIMULINK仿真结构图 4.结构图单元参数设置。 用鼠标器双击任何一个结构图单元即激活结构图单元的参数设置窗口,完成结构图单元的参数设置。 5.仿真参数设置。 用鼠标选择主菜单的“Simulation”选项,选择“Simulation Parameter”选项,打开仿真参数设置窗口,完成仿真参数设置。 6.仿真操作。 选中“simulation”菜单项中的选项“start”即启动系统的仿真。

(或者使用工具栏上的启动按钮。) 三.实验要求 1. 作原系统的根轨迹图。 numo=[10];deno=[0.5 1 0]; rlocus(numo,deno); 2. 求出闭环极点的位置,计算时域性能M p0和t s0。 numo=[10];deno=[0.5 1 0]; [numc,denc]=cloop(numo,deno,-1); printsys(numc,denc); pzmap(numc,denc); 用于在s 平面上作图,作出零点.极点的位置如图21所示。 [p,z]=pzmap(numc,denc); 图21开环极点用于求得零点.极点的值。 p p = -1.0000 + 4.3589i -1.0000 - 4.3589i z z = [] 3. 作时域仿真。 sysc=tf(numc,denc);step(sysc)

根轨迹串联超前校正

东北大学秦皇岛分校自动化工程系自动控制系统课程设计 根轨迹串联超前校正 专业名称自动化 01 班级学号50801 5080101 学生姓名 指导教师 设计时间2020111111..6.2.277~20 ~20111111..7.8

目录 摘要 (1) 1.绪论 (3) 1.1课题概述 (3) 1.2根轨迹法超前校正简介 (3) 1.3课题研究的目的和意义 (4) 1.4本课题研究的主要内容 (4) 2.系统校正 (5) 2.1已知条件及要求 (5) 2.2对系统进行分析 (5) 2.2.1当串联一个零点时 (7) 2.2.2串联一个具有零点性质的零极点对 (8) 2.2.3串联一个具有两个零点,一个极点的控制器时 (9) 2.2.4当串联具有零点性质的两个极点,一个零点的控制器时 (10) 2.2.5串联更复杂的具有零点性质的控制器 (11) 3.总结 (13) 4.致谢 (13) 5.参考文献 (14)

摘要 根轨迹法是一种直观的图解方法,它显示了当系统某一参数(通常为增益)从零变化到无穷大时,如何根据开环极点和零点的位置确定全部闭环极点位置。从根轨迹图可以看出,只调整增益往往不能获得所希望的性能。事实上,在某些情况下,对于所有的增益,系统可能都是不稳定的。因此,必须改造系统的根轨迹,使其满足性能指标。 利用根轨迹法对系统进行超前校正的基本前提是:假设校正后的控制系统有一对闭环主导极点,这样系统的动态性能就可以近似地用这对主导极点所描述的二阶系统来表征。因此在设计校正装置之前,必须先把系统时域性能的指标转化为一对希望的闭环主导极点。通过校正装置的引入,使校正后的系统工作在这对希望的闭环主导极点处,而闭环系统的其它极点或靠近某一个闭环零点,或远离s平面的虚轴,使它们对校正后系统动态性能的影响最小。 是否采用超前校正可以按如下方法进行简单判断:若希望的闭环主导极点位于校正前系统根轨迹的左方时,宜用超前校正,即利用超前校正网络产生的相位超前角,使校正前系统的根轨迹向左倾斜,并通过希望的闭环主导极点。 用根据轨迹法进行超前校正的一般步骤为: 1)根据对系统静态性能指标和动态性能指标的要求,分析确定希望的开环 增益和闭环主导极点的位置。 2)画出校正前系统的根轨迹,判断希望的主导极点位于原系统的根轨迹左 侧,以确定是否应加超前校正装置。 3)根据题目要求解出超前校正网络在闭环主导极点处应提供的相位超前 角。 4)根据图解法求得G c(s)的零点和极点,进而求出校正装置的参数。 5)画出校正后系统的根轨迹,校核闭环主导极点是否符合设计要求。 本文在进行根轨迹超前校正时应用了MATLAB,MATLAB的根轨迹方法允许进行可视化设计,具有操作简单、界面直观、交互性好、设计效率高等优点。早期超前校正器的设计往往依赖于试凑的方法,重复劳动多,运算量大,又难以得到满意的结果。MATLAB作为一种高性能软件和编程语言,以矩阵运算为基础,

根轨迹法校正

西安石油大学课程设计 学院:电子工程学院 专业:自动化 班级:自动化0901 学号: 题目根轨迹法校正 学生 指导老师霍爱清 二零一零年十二月

目录 1任务书 (3) 2课程设计的题目 (4) 3设计思想 (4) 4编制的程序及仿真图 (5) (1)求校正装置的放大系数Kc (5) (2)检验原系统的阶跃响应是否满足要求 (5) (3)检验校正装置是否满足要求 (7) 5设计结论 (8) 6设计总结 (9) 7参考文献 (9)

1.《自动控制理论I 》课程设计任务书 题目根轨迹法校正 学生姓名学号专业班级自动化0901 设计内容与要求设计内容: 4. 已知单位负反馈系统被控对象的开环传递函数为: )1 2( 4 ) ( 0+ = s s s G 设计校正环节。要求使其校正后系统单位斜坡响应稳态误差 025 .0v e ss ≤;阶跃响应的超调量% 15 ≤ σ;相角稳定裕度? ≥45 γ;阶跃响应的调节时间s t s 20 ≤。 设计要求: (1)编程绘制原系统节约响应曲线,并计算出原系统的动态性能指标; (2)利用SISOTOOL设计校正方案(得到相应的控制其参数); (3)绘制校正后系统阶跃响应曲线,并计算出校正后系统的动态性能指标; (4)整理设计结果,提交设计报告。 起止时间2011 年12 月19 日至2010 年12 月30 日指导教师签名年月日 系(教研室)主任签 名 年月日学生签名年月日

2.课程设计的题目: 已知单位负反馈系统被控对象的开环传递函数为: ) 12(4)(0+=s s s G 设计校正环节。要求使其校正后系统单位斜坡响应稳态误差0025.0v e ss ≤;阶跃响应的超调量%15≤σ;相角稳定裕度?≥45γ;阶跃响应的调节时间s t s 20≤。 3设计思想: 当根轨迹的性能指标给定为时域指标(如超调量、阻尼系数、自然频率等)时,用根轨迹法对系统进行校正比较方便。这是因为系统的动态性能取决于它的闭环零、极点在S 平面上的分布。 因此,根轨迹法校正的特点就是:如何选择控制的零﹑极点,去促使系统的根轨迹朝有利于提高系统性能的方向变化,从而满足设计要求。 二阶系统的性能指标和参数之间具有明确的解析式,而高阶系统没有这一点,只能通过寻找对系统动态性能起决定作用的主导极点,从而近似二阶系统,在留有余量的情况下,作为设计依据。因此,可以把讨论对系统性能指标的要求转化为对系统期望主导极点在S 平面上的分布要求。所以,根轨迹校正法就是迫使被校正系统的根轨迹通过主导极点而达到校正的目的。 4编制的程序及仿真图:

根轨迹滞后校正

根轨迹滞后校正 系统校正前传递函数为: ) 2.01)(1.01()(0s s s K s G ++= 由传递函数可知其根轨迹有3条分支,其极点为(0,0),(-10,0),(-5,0),没有零点,其实轴上的主要根轨迹为()()0,5,10,--∞- 50 35100-=---,渐近线交点为(-5,0) 渐近线与实轴夹角,?=?=?=

校正后系统传递函数为) 67.821)(2.01)(1.01()31.21()()(0s s s s s K s G s G c ++++= 由传递函数可知其根轨迹有3条分支,其极点为(0,0),(-10,0),(-5,0),(-0.012,0)零点为(-0.43,0),其实轴上的主要根轨迹为()())0,012.0(,43.0,5,10,----∞- 86.41 4)43.0()012.05100(-=------,渐近线交点为(-4.86,0) 渐近线与实轴夹角,?=?=?=

线性系统的根轨迹法

第五课 线性系统的根轨迹法 教学目的: 1.熟练掌握使用MATLAB 绘制根轨迹图形的方法。 2.进一步加深对根轨迹图的了解。 3.掌握利用所绘制根轨迹图形分析系统性能的方法。 教学内容: 1.用实验的方法求解根轨迹。 在Matlab 控制系统工具箱中提供了rlocus()函数,来绘制根轨迹,rlocus()的调用格式为: r=rlocus(g,k); 式中的g 为线性系统的数学模型;k 为用户自己选择的增益向量;返回的变量r 为根轨迹上对应向量k 的各个增益点的闭环系统的根。 如果用户不给出k 向量,则该函数会自动选择增益向量,在这种情况下,该函数的调用格式为: [r,k]=rlocus(g); 式中向量k 为自动生成的增益向量,r 仍为对应各个k 值的闭环系统的特征根。 例1 系统1的开环传递函数为:) 15.0)(12.0()(++=s s s K s G K 要求:(1)绘制并记录根轨迹; (2)确定根轨迹的分离点与相应的根轨迹增益; (3)确定临界稳定时的根轨迹增益。 (1)参考程序: K=1; z=[];

p=[0,-5,-2]; [num,den]=zp2tf(z,p,K); rlocus(num,den) Matlab运行时出现的根轨迹图形窗口中,可以用鼠标单击所关心的根轨迹上的点,就出现有关这一点的信息,包括相应增益、极点位置、阻尼参数、超调量、自然频率。

例2系统开环传递函数)2()(2 n n s s K s G ?ωω+=中引入一个附加的极点s=-a ,即系统的 开环传递函数变为) )(2()(2 a s s s Ka s G n n ++=?ωω 给出5.0,/2==?ωs rad n ,a 分别为1,3,5时系统的根轨迹变化曲线。 参考程序: clear clc wn=2; xita=0.5; a=[1,3,5]; for i=1:length(a) G=tf(a(i)*wn^2,conv([1,2*xita*wn,0],[1,a(i)])); rlocus(G); axis([-8,5,-5,5]) hold on disp('press any key to continue.') pause%系统暂停,按任意键继续 end

东北大学matlab课程设计根轨迹超前校正

目录 目录 (1) 1课题概述 (3) 1.1课设目的 (3) 1.2根轨迹法超前校正 (3) 1.3 Matlab简介 (4) 2 根轨迹超前校正法 (5) 2.1 根轨迹校正步骤 (5) 2.2 根轨迹超前校正设计的具体方法——几何法 (5) 3 系统校正 (7) 3.1 已知条件及要求 (7) 3.2 系统分析 (7) 3.3 调节参数a (10) 3.4 零极点配置 (11) 4 课设总结 (16) 参考文献 (16)

摘要 近年来,自动控制系统在现代文明和技术的发展与进步中,起着越来越重要的作用。在工程实践中,有时需要在系统分析的基础上将原有系统的特性加以修正和改造,使系统能够实现给定的性能要求,因此,系统中就需要校正控制器的存在。 时域分析表明,闭环特征根是自然模式的指数系数,决定了系统的响应性能。根轨迹法的提出让系统中容易设定的参数在可能的范围内连续变化,引起特征根也连续变化,将特征根的变化轨迹在根平面上绘制出来,从中选择有好的响应性能的特征根,对应的参数也就确定了,这是根轨迹分析要完成的任务。根轨迹分析讨论了影响根轨迹改变的因素。但当改变参数都找不到适合的特征根时,通过配置具有合适的传递函数的控制器来改变系统的结构,改造系统的根轨迹,从而获得好的特征根,使其满足性能指标。 根轨迹的超前校正使用了Matlab软件,通过它可以对根轨迹进行可视化设计,具有操作简单、界面直观、交互性好、设计效率高等优点、克服了之前超前校正装置往往依赖于试凑的方法,重复劳动多,运算量大,又难以得到满意的结果。Matlab作为一种高性能软件和编程语言,以矩阵运算为基础,把计算、可视化、程序设计融合到了一个简单易用的交互式工作环境中,是进行控制系统计算机辅助设计的方便可行的实用工具。因此,随着计算机的发展和Matlab软件的普及,避免了繁琐的计算和绘图过程,从而为线性控制系统的设计提供了一种简单有效地途径。本文将基于根轨迹法设计超前校正器,并给出它的Matlab实现。关键词:根轨迹,超前校正,Matlab

自动控制根轨迹课程设计(精髓版)

西安石油大学 课程设计 电子工程学院自动化专业1203 班题目根轨迹法校正的设计 学生郭新兴 指导老师陈延军

二○一四年十二月

目录 1. 任务书.........................................1 2.设计思想及内容.................................2 3.编制的程序.....................................2 3.1运用MATLAB编程............................2 3.2由期望极点位置确定校正器传递函数...........4 3.3 校正后的系统传递函数.......................5 4.结论...........................................7 5.设计总结.......................................8 6.参考文献.......................................8

《自动控制理论》课程设计任务书

2.设计内容及思想 : 1) 内容:已知单位负反馈系统被控对象传递函数为: ) 25(2500 )(0 0+=s s K s G ,试用根轨迹几何设计法对系统进行滞后串联校正 设计,使之满足: (1)阶跃响应的超调量:σ%≤15%; (2)阶跃响应的调节时间:t s ≤0.3s ; (3)单位斜坡响应稳态误差:e ss ≤0.01。 2)思想: 首先绘出未校正系统得bode 图与频域性能,然后利用MATLAB 的SISOTOOL 软件包得到系统的根轨迹图,对系统进行校正,分析系统未校正前的参数,再按题目要求对系统进行校正,计算出相关参数。最后观察曲线跟题目相关要求对比看是否满足要求,并判断系统校正前后的差异。 3 编制的程序: 3.1运用MATLAB 编程: 根据自动控制理论,对 I 型系统的公式可以求出静态误差系数 K 0=1。再根据要求编写未校正以前的程序 %MATLAB PROGRAM L1.m

经典根轨迹校正方案方法研究报告

个人资料整理仅限学习使用

摘要 自动控制系统在现代文明和技术的发展与进步中,起着越来越重要的作用。 在工程实践中,有时需要在系统分析的基础上将原有系统的特性加以修正和改造,使系统能够实现给定的性能要求,因此,系统中就需要校正控制器的存在。 根轨迹提供了系统绝对稳定性的信息,还提供了稳定程度的信息。稳定程度实际上还是描述动态响应特性的方式。如果系统是不稳定的或者动态响应不可接受,根轨迹还可以指出可能改进响应的方法而且可以定性描述改进的效果。 本论文主要是对经典根轨迹校正设计方法的研究,针对受控对象,设计合适的根轨迹校正控制器,改善系统的性能指标,使系统能够实现给定的性能要求。 关键词 控制系统;自动控制;根轨迹;性能指标

Abstract In recent years, automatic control system has assumed an increasingly important role in the development and advancement of modern civilization and technology. In engineering practice,the characteristics of the original system will be revised and modified on the base of systematic analysis, allowing the system to achieve a given performance requirements, therefore,the system requires the presence of correction controller. The root locus provides information not only as to the absolute stability of a system but also as to its degree of stability, which is another way of describing the nature of the transient response. If the system is unstable or has an unacceptable transient response, the root locus indicates possible ways to improve the response and is a convenient method of depicting qualitatively the effects of any such changes. This thesis is the classical root locus design method of correction for the controlled object, design appropriate correction controller of root locus to improve system performance, enabling the system to achieve a given performance requirements. Keywords Control system。 automatic control。 root locus。performance indicators

2 根轨迹法滞后校正

实验9 系统校正设计:根轨迹法滞后校正 一.实验目的 对于给定的控制系统,采用根轨迹法设计满足时域性能指标的滞后校正装置,并通过仿真结果验证设计的准确性。 二.实验步骤 1.在Windows界面上用鼠标双击matlab图标,即可打开MATLAB 命令平台。 2.实验键入命令simulink,打开结构图设计界面。 3.建立时域仿真的结构图文件“mysimu.m”。 给定结构图如图22所示 图22 SIMULINK仿真结构图 4.结构图单元参数设置。 用鼠标器双击任何一个结构图单元即激活结构图单元的参数设置窗口,完成结构图单元的参数设置。 5.仿真参数设置。 用鼠标选择主菜单的“Simulation”选项,选择“Simulation Parameter”选项,打开仿真参数设置窗口,完成仿真参数设置。 6.仿真操作。 选中“simulation”菜单项中的选项“start”即启动系统的仿真。

(或者使用工具栏上的启动按钮。) 三.实验要求 1.作原系统的根轨迹图。 numo=[10];deno=[0.5 1 0]; rlocus(numo,deno); 2.求出闭环极点的位置,计算时域性能M p0和t s0。 numo=[10];deno=[0.5 1 0]; [numc,denc]=cloop(numo,deno,-1); printsys(numc,denc); pzmap(numc,denc); 用于在s平面上作出零点.极点的位置。 [p,z]=pzmap(numc,denc); 用于求得零点.极点的值。 p p = -1.0000 + 4.3589i -1.0000 - 4.3589i z z = [] 3.作时域仿真。 sysc=tf(numc,denc);step(sysc) 求出阶跃响应曲线,记录未校正系统的时域性能指标M p0和t s0;

《自动控制原理》实验报告(线性系统的根轨迹)

实验四线性系统的根轨迹 一、实验目的 1.熟悉 MATLAB 用于控制系统中的一些基本编程语句和格式。 2.利用 MATLAB 语句绘制系统的根轨迹。 3.掌握用根轨迹分析系统性能的图解方法。 4.掌握系统参数变化对特征根位置的影响。 基础知识及 MATLAB函数 根轨迹是指系统的某一参数从零变到无穷大时,特征方程的根在 s 平面上的变化轨迹。这个参数一般选为开环系统的增益 K 。课本中介绍的手工绘制根轨迹的方法,只能绘制根轨迹草图。而用 MATLAB 可以方便地绘制精确的根轨迹图,并可观测参数变化对特征根位置的影响。 假设系统的对象模型可以表示为 G(s) KG0 (s) K b 1 s m b 2s m 1b m s b m 1 s n a1s n 1b n 1s a n 系统的闭环特征方程可以写成: 1 KG 0 (s)0 对每一个 K 的取值,我们可以得到一组系统的闭环极点。如果我们改变K 的数值,则可以得到一系列这样的极点集合。若将这些K的取值下得出的极点位置按 照各个分支连接起来,则可以得到一些描述系统闭环位置的曲线,这些曲线又称为系统的根轨迹。 1)绘制系统的根轨迹rlocus () MATLAB 中绘制根轨迹的函数调用格式为: rlocus(num,den)开环增益 k 的范围自动设定。 rlocus(num,den,k)开环增益 k 的范围人工设定。 rlocus(p,z)依据开环零极点绘制根轨迹。 r=rlocus(num,den)不作图,返回闭环根矩阵。 [r,k]=rlocus(num,den)不作图,返回闭环根矩阵r 和对应的开环增益向量 k。 其中, num,den 分别为系统开环传递函数的分子、分母多项式系数,按s 的降幂排列。 K 为根轨迹增益,可设定增益范围。

根轨迹的超前校正

2013 - 2014学年第1学期 《MATLAB应用设计》 题目:基于根轨迹的相位超前校正 专业:电气工程学院 班级:电气工程及自动化(1) 姓名:操勇 指导教师:朱云国 成绩: 电气工程系

基于根轨迹的相位超前校正 摘要:根轨迹法是一种直观的图解方法,它显示了当系统某一参数(通常为增益)从零变化到无穷大时,如何根据开环极点和零点的位置确定全部闭环极点位置。从根轨迹图可以看出,只调整增益往往不能获得所希望的性能。事实上,在某些情况下,对于所有的增益,系统可能都是不稳定的。因此,必须改造系统的根轨迹,使其满足性能指标。利用根轨迹法对系统进行超前校正的基本前提是:假设校正后的控制系统有一对闭环主导极点,这样系统的动态性能就可以近似地用这对主导极点所描述的二阶系统来表征。因此在设计校正装置之前,必须先把系统时域性能的指标转化为一对希望的闭环主导极点。通过校正装置的引入,使校正后的系统工作在这对希望的闭环主导极点处,而闭环系统的其它极点或靠近某 一个闭环零点,或远离s平面的虚轴,使它们对校正后系统动态性能的影响最小。 借助MATLAB,通过编写函数和程序,可以容易地设计出超前校正器,避免了繁琐的计算和绘图过程,从而为线性控制系统的设计提供了一种简单有效的途径。本文将基于根轨迹法设计超前校正器,并给出它的MATLAB实现。 关键词:根轨迹,超前校正,闭环零点,MATLAB 一、根据轨迹法 根据轨迹法进行超前校正的一般步骤为: 1)根据对系统静态性能指标和动态性能指标的要求,分析确定希望的开环增益和闭环主导极点的位置。 2)画出校正前系统的根轨迹,判断希望的主导极点位于原系统的根轨迹左侧,以确定是否应加超前校正装置。 3)根据题目要求解出超前校正网络在闭环主导极点处应提供的相位超前角。 根据图解法求得Gc(s)的零点和极点,进而求出校正装置的参数。 5)画出校正后系统的根轨迹,校核闭环主导极点是否符合设计要求。 二、超前校正的原理和方法 2、1前校正的原理 所谓校正,就是在调整放大器增益后仍然不能全面满足设计要求的性能指标的情况下,加入一些参数可以根据需要而改变的机构或装置,使系统整个特性发生变化,达到设计要求。

系统根轨迹校正,课程设计,自动控制原理

西安邮电学院 自动控制原理 系统根轨迹校正 2011- 2012 学年第 1 学期 2011年12月5日 到2011年12月17日

一.设计题目:系统根轨迹校正 已知单位负反馈系统被控对象的传递函数为: ()(1)(4)K G s S S S = ++,使 用根轨迹解析法对系统进行超前串联校正设计,使之满足: 1)阶跃响应的超调量%20%σ= 2)阶跃响应的调节时间不超过4(0.02)s t s =?=± 要求: 1)分析建立系统校正环节模型,给出校正后系统的MATLAB 仿真效果 2)运用EWB 软件搭建模拟电路,分别演示校正前、校正后的效果 3)硬件系统搭建并实现

二.原理分析 1.基于根轨迹法的串联超前校正的校正原理: 当系统的性能指标以时域形式提出时,通常用根轨迹法对系统进行校正。基于根轨迹法校正的基本思想是:假设系统的动态性能指标可由靠近虚轴的一对共轭闭环主导极点来表征,因此,可把对系统提出的时域性能指标的要求转化为一对期望闭环主导极点。确定这对闭环主导极点的位置后,首先根据绘制根轨迹的相角条件判断一下它们是否位于校正前系统的根轨迹上。如果这对闭环主导极点正好落在校正前系统的根轨迹上,则无需校正,只需调整系统的根轨迹增益即可;否则,可在系统中串联一超前校正装置1()(1)1C aTs G s a Ts += >+,通过引入新的开环零点z c =-1/aT 和新的开环极点p c =-1/T 来改变系统原根轨迹的走向,使校正后系统的根轨迹经过这对期望闭环主导极点。 2、超前校正装置及其特性: 典型超前校正装置的传递函数可写为1()(0)1C aTs G s a Ts +=>+ 式中a 为分度系数,T 为时间常数 其频率响应1()1C jaT G j jTs ω ωω += + 幅频特性: ()c A ω=

相关文档
最新文档